Chapter 3

Inliers estimation in normal models

3.1 ’Introduction

A normal distribution is a verQ important statistical data distribution pattern
occurring in many natural phenomena, such as height, blood pressure of person,
lengths of objects produced by machines, etc. Usually normal distﬁbutions are
symmetrical with a single central peak at the mean (average) of the data. But many
times we may get normal distribution as mixture of infier and target groups. For
“example life time of a battery follows normai distribution, it is possible in the data
set, we may get two sets of observations. The first set of data may have zero or small
life time compared to another group with target life time. This may create two
symmetrical curved graphs, where the mean of inlier group is much less than the
mean of target group. Many authors have worked on mixture of normal

distributions.
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In this chapter the occurrence of instantaneous or early failures in life testing
experiment, which is a phenomenon observed in electronic parts as well as in clinical
trials is modeled as mixture of two normai distributions. These occurrences may be
due to inferior quality or faulty construction or due to no response of the
treatments. The modified model is then a non-standard distribution and we call such
models as inlier{s) prone models. Normal mixture distributions are arguably the most
important mixture models, and also the most technically challenging. The likelihood
function of the normal mixture model is unbounded based on a set of random
samples, unless an artificial bound is placed on its component variance parameter.
Moreover, the model is not strongly identifiable so it is hard to differentiate
between over dispersion caused by the presence of a mixture and that caused by a
large variance, and it has infinite Fisher information with respect to mixing
proportions. There has been extensive research on finite normal mixture models, but
much of it addresses merely cpnsistency of the point estimation or useful practical
‘ procedures, and many results require undesirable restrictions on the parameter

space.

In the developments below we consider N(8,07)as our target population,

and the instantaneous and early failures are inlier components. A two parameter

Normal {target) family has the probability density function

2
1 1 x— .
f(x)=\/§.7;o_exp~—-2-(%€) , —o<X<+oo,~0<P<4o0, 0>0  (3.1.1)

3.2 Inlier(s) prone models and estimaticn

Many times in real life data, we observe that data contains inliers. The data is
mostly from normal population hence, we fit models which will incorporate mixture
distribution of inlier and target observations with normal distributions. The
assumption considered in this chapter is that the inlier and target population defef

only in their mean values, where as population variances are same.



3.2.1 Normal with instantaneous failures

In a parametric model for FTD we start with a family of FTD S={F(x, 8), x=0,

8 QR }, where the form of the distribution function (df) is known except for

labeling parameter, m-dimensional & and F is absolutely continuous function with
probability density function {pdf), flx, 8} with respect to Lebesgue measure. The basic
problem is to infer about unknown & or a suitable function fhereof say y{4), on the
basis of a random sample of size n on the observable random variable say,

X;,X,,......X,. The occurrence of instantaneous failures when some items are put on
test giving X, =0 is quite common in electronic component and some other

situations. Note that because of the limited accuracy of measuring failure time it is

possible that we record X,=0 for some units althoughP[X,=0[68]=0. To

accommodate such instantaneous failures, the model 8 is modified to model

G ={G(x, 8 o), x20, 652, 0 < < 1}, where

l1—-a, x=0

321
1-a+aF(x,8), x>0 (3.2.4)

G(x;&,a):{

! j‘exp~ 1 (y,.—-é?)2 dy is df according to Normal distribution

\/Eo'_w 20°

and «a is the mixing proportion. The estimation of parameters in the above model is

and F(x,8)=

straight forward and depends on only the positive observations in the model. Thus

a=""1 (3.2.2)
n
Zx, Z(Xi "X)z
é::xi>0 and 6—; :.X.L.__ (323)
n-r n—r

are easily obtainable. r denotes number of units that fail instantaneously. As we

are considering life times of an object we get non-negative observations.
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3.2.2 Normal with early failures

As we have already defined early failures in chapter 2, section (2.3}, we can

directly write the likelihood of this model as

Lx,a,0)=[1-a+aF(5,6)] (a[1-F(5, é)])"" H% (3.2.4)
x»8 4 ’

where

1 % 1 2
F(5,6)= jexp—-?z_z—(x,.—-e) dx

V27o

that is, the likelihood of the sample under g;e (}1 is the product of the likelihoods of

r{inliers) and the conditional likelihood of the sample given r which is same as the

likelihood of {n-r) observations coming from the truncated version of feSior

g1€ C}l) restricted to (3, «). Now r is binomial with probability of success given by

l-a+aF(58,8). For fixed 8 and a@e[0,1] this binomial family is complete.

Therefore, the optimal estimating equation for #ignoring « is the conditional score

Hf(x,,@)

x>d

1-F(d,9)

function given r or ag;l" =0, where L =

. Hence optimal estimating

equation for @ is given by equation (3.2.7). Thus, it is same as the estimator given by

optimal estimating 0 equation for #ignoring & ML equations correspond to two

parameter Normal modeis are given as

= 1 (xi "9)2
Int= rln[l—CfF (519)]‘?("”{){5”&"1"0’1]*E;“&?‘* (3.2.5)

atnL___O _faF(516161) +(n—-f)=0

faaiind - 3.26
o 1-aF(s,6,0,) « (3.26)
int —ragagl?(ﬁ,a,o;‘) "y -8

— = L =0 3.27
YRR 1-aF (6,6,0,) +§( o’ ] 3.27)
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and

dintL o,
=0= 2
do, 1-oF (6,6,0,)

n—r
(op

J -
-ra—F(4,9,0,) NBEIPRY
( J+ZL’—(£&-—?-=0 (3.2.8)

1 rel

Here equations (3.2.7) and (3.2.8) may be solved simultaneously using
Newton Raphson method. The above model gives reasonably good estimates of the
parameters for & fixed. See the e;(amp!e in the section (3.8}, at the end of the

chapter.

3.3 Normal with nearly instantaneous failures

With reference to equation (2.4.4) in chapter 2, normal with nearly

instantaneous failures distribution can be written as

- 2 .
1 1{ x-6
x)=pd (x-x,}+ exp| —— ,p+g=1,0<p<1 3.3.1
F0= (550 P(z(qnpq b (3.3.1)

0,>0, —o<f<+o
where

-1-, Xy SxSx,+d

3, (x~x,) z{d , (3.3.2)

0, otherwise

for sufficiently small d. Here the mixing proportion p>0. Also note that
3 (x-x;)=lim &, (x-xp) (3.3.3)
d->0

Since
fi(x)=6,(x-x,)

and

2
1 1{ x—-8 '
fz(x)zmo_ exp(wi( p )) , 0,>0, —0<B< 40
1 1
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where f(x) is given by
F(x)=pf(x)+af,(x) where p+g=1, 0<p<l. (3.3.4)

_and the corresponding survival function and hazard function of the mixture

distribution are

R(x)=pR,(x)+4qR,(x) (3.3.5)
and
_ pfi(x)+afi(x)
h(x)-«——-—-—~—————~—-—pR1(x)+qu(x) (3.3.6)
respectively.

The components of R{x) and h(x) can be obtained as

1, 0<x<X,
d —
R,(x)= -1'5;'—“’5, X, SX<x,+d ‘ (33.7)
o, X2 xy+d
and
R(x)=1-F,(x) x>x,+d (3.3.8)
0, 0sx<x,
hix)={———, X,$x<x,+d {3.3.9)
e d+x,—x ° °
oo, X2 x,+d
and
2
1 1f x—-@
exp| —=
N27o, 2\ o,
h(x)= (3.3.10)
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As a special case of the model, we obtain the Normal with “nearly

instantaneous failure” model, when #,=0 in equation (3.3.2). Accordingly the

simplified expressions of the components in the failure rate and survival functions

are

, 0<xsd
hl()f):: d—x (3311)
o0, x>d
and its survival rate function in equation (3.3.7} is given as
d—x
£=2, 0<x<d
R(x)=¢ d (3.3.12)

0, x>d

Thus the Normal model with “nearly instantaneous failure” occurring uniformly over

[0, d] has survival function

e p(dd—x) ra[1-g(x)], o0<xsd (33.13)
a[1-£(x)], x>d
and
p 1 dp M(x),os)éd
h(x)= p(d—x)-+da(1-F(x))| " p(d—x)+da(1-£(x)) |R,(x) 5310
qu(x) x>d
R,(x)

Nearly instantaneous calculations are performed for the example in section (3.8).

3.3.1 Graphs

In various figures below we provide the graphs for f(x)}, R(x)and h(x)for left

values of mixing proportions and parametric values.
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Fig. 3.3.1. Density functionforu=4ando=2

Fig. 3.3 2. Reliability functionu =4 and o =2

Graph (3.3.4) and (3.3.5) are plotted on the bhasis of random sample
generated from mixture of two normal distributions. From the graph (3.3.4) we can
c!ea}!y identify two symmetrical curves, where first curve has inlier distribution with
mean 4 remarkably less than second curve which can be considered as target
distribution with mean 20. Graph (3.3.5) is known as normal quantile-quantile (Q-Q)
plot. A sample from single normal distribution should produce a linear plot on this
graph, which is not in our case. Hence both the graph clearly represents the

presence of two groups.
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Fig 3.3.4. Density function of mixture of inliers and target distributions

3.4 Inlier detection methods

Here we obtain number of inliers for different data set by various methods,

viz identified inlier model, labeled slippage methods and information criteria.

3.4.1 ldentified inlier model (M)

Referring to equation {2.5.14) of section (2.5.2) from chapter 2 the identified

inliers model with g{(x)as inliers and f(x)as target distribution is written as

L(x{c;ﬁ,ﬂ,v,r):ﬁg(x;)ﬁf(x,.) (3.4.1)

=1 f=ral
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2 2
o1 1fx-¢) & 1 1{x. -6
= exp——| - exp——j ~ {3.4.2)
1;3\/27[0'0 2( o, ] ,-=,Il\/27[o'1 2[ o, )

The likelihood function in {3.4.2} assumes that between the experiments when units
are placed on test we do not know which of the units fail instantaneously.

Equivalently X; =0,X, =0,..X, =0 which fail early i.e. those units whose failure
time distribution is g(x,,,#) with failure rate much larger than that of the failure
fime distribution of the target population whose failure rate is considerably smaller.
The identification is done as follows: evaluate for each fixed r where r = 0,1,2,..n-1
the maximum likelihood equation i, , and then consider 7 being that value of r for

which likelihood is maximum. The computation for example of detection of inliers is

done in section (3.5) and (3.8}.

1.2

Y

-10 0 10 20 30 40

Fig. 3.3.5. Normal Probability Plot for mixture of two distributions

3.4.2 Inlier detection in Labeled slippage model (L)

With g(x)and f(x)as described in section (3.4.1), the likelihood under

labeled slippage model referring to section (2.5} and substituting in equation {(2.5.1},

gives
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rl 5
’ | , (% -9)
InL=r,In1-p)+(n—r,)inp—Ing, (4,0)+nlng —*=——

20°
a 2
_Zl(x(i)“a)
e 3.4.3
20° (3.43)
and the corresponding likelihood equations are
ot~ (n=n)_, (3.4.4)
o (1-p) p
3
X,
dinL ad 2”07
e == e[ ,0) + - 345
T 9, (4.9) : (3.4.5)
ainL 2 2 %o
-_9, ) PR — 3.4.6
a6 a6 ne, (¢ ) (n-r,-n) (3.4.6)
and
1 2 n 2
JnL ;(Xm ~9) +§;1(X<f>’9)
— O = OA- = 1 (3.4.7)
ao n

Here (3.4.4) can be solved to get the estimate of p as p=(n—r,)/n. The equations

(3.4.5) and {3.4.6) contains gamma and digamma functions. The function

(n—r,—r)7 (-0

@ (¢,9) :_J;;——I{G(x)}rl [F(X)]""c"'l e 10 dx

where G(x) and F(x) are cumulative distribution functions of inlier and target

population. The function ¢, (¢,8) is difficult to evaluate and can only be evaluated

using some numerical method.
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3.4.3 iInformation criterion for detection of inliers

As defined in chapter 2, section (2.6} here for Normal distribution, we have

SiC for model with no inliers as

2
sic(0)=2nlogo, +Z(X" ‘0) +plogn (3.4.8)
(¢}

f=1 1

and model with r inliers is defined as

SIC(r)=2r!og0'0+2(n~—r)|ogo‘1+zr:[x’—¢) + i(x,—e) +plogn (3.4.9)

i=1 o =ra\ O

The estimate of inliers say r is such that SIC{r)= {QL” sic(r).

Here we use three information criteria such as SIC, BIC and HQ already

defined in chapter 2. Hence SIC = =2InL{(®)+p Inn, BIC= —lnL(®)+W and

HQ = ~InL(®)+ pln[in(n)] can be used to detect the inliers, whereL(®)the

maximum likelihood function and p is the number of free parameters that need to
be estimated under the model. We now illustrate this method using the simulated
example discussed in the next section. Table (3.5.2) also presents the parameter

estimates and the information criterion values.

3.5 Simulation study

To Hlustrate the method of identifying inliers we have generated 15
independent random samples, where 5 of them are coming from normal distribution

with parameter mean ¢=4 and variance o, = 2 and remaining ten observations
from Normal distribution with parameter mean @=20 and variance o] = 2. The

sample values are 1.44852, 3.667636, 3.949972, 5.548854, 6.017887, 17.61194,
19.26654, 20.09814, 20.23482, 20.36071, 20.64048, 21.08915, 21.26954, 22.53701

and 24.23439. We note that SIC(0)=584562 > SIC(5) =min SIC(r)=34.85999.
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Table 3.5.1. The Likelihood and Information criterions -
L SIC BIC HQ
-38.1951 | 69.82944 | -3.46217 | -2.64648
-34.5019 | 62.44302 | -3.36048 | -2.54479
-31.2064 | 55.85195 | -3.26009 | -2.44439
-20.7104 | 34.85999 | -2.8501 | -2.03441
-26.054 | 45.54709 | -3.07963 | -2.26394
-28.546 | 50.53121 | -3.17098 | -2.35529
-30.997 | 55.43326 | -3.25336 | -2.43766
-33.0841 | 59.62746 | -3.31882 | -2.50313
10| -34.9391 | 63.31742 | -3.37307 | -2.55738
11| -36.6837 | 66.80655 | -3.4218 | -2.6061
12 | -38.4748 | 70.38878 | -3.46947 | -2.65377
13 | -39.6796 | 72.79842 | -3.5003 | -2.68461

-

WIN(N{O W iWIN

-20
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0 H T 10 15
Fig. 3.5.1. Likelihood plot
2.5 -
27 1
29
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[+
33 4 \
35
3.7 . . .
0 5 ro10 15

Fig. 3.5.2. BIC plot
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A similar conclusion can be drawn in the case of other information criterions BIC and

HQ also. Hence r=5 and the estimates are ¢=4.126574,6,=1803727

0=20.73427 , and &, =1.783219 respectively. The graphical representations of the

" likelihood and BIC plots are given in figure (3.5.1) and (3.5.2).

Next, we carried out an experiment with 1000 sampies each of size 15 and
number of inliers as 3, 4, 5 and 6 each with ¢=3and =6, 9,12 and 15. The table
{3.5.2) entitled power of SIC procedure presents the number of times the SiC
procedure correctly identified the number of inliers in proportion to total number of
samples. The values clearly indicate the effectiveness of the method in detecting the
inliers. One of the important problem while detecting the inliers is the masking
effect, where masking effect is defined as the loss of power due to wrong detection

of more than one inliers.

Table 3.5.2. Power of SIC procedure

(@ 2 3 4 5

r .

3 0.570 0.720 0.700 0.550
4 0.460 0.480 0.490 0.440
5 0.460 0.460 0.460 0.462
6 0.410 0.420 0.430 0.410

3.6 Testing of hypothesis for inliers

After detection of number of inliers, it is necessary to test whether the
methods used for detection are valid or not. Hence different tests are applied to test

whether data truly represents our model of mixture of inliers and target population.

3.6.1 Sequential Probability Ratio Test (SPRT) to detect number of inliers
We want to test the hypothesis whether sample observations belong to

inliers population from N (¢0‘§) against hypothesis that it belongs to target

population from N(Q,O'f ), assuming 0 =0, =0,.
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H,:sample observations are taken from normal population with mean ¢

H, : sample observations are taken from normal population with mean e

We use SPRT test given as follows:

L
The likelihood ratio 4, is given by A, = =2 or equivalently

Om

m .8
InZ, =Zln~f—(—)~((—’l~l'
= g{x,9)
m(¢,"2 —92)+2(9—¢)§:xm |
- — , m=12,.n (3.6.1)

For deciding number of inliers r, first arrange the observations in ascending order
and then we continue to take likelihood ratio for m= 1, 2... ,n by including

observations one by one till we reject Hy. That is

(f sz < InB then accept Hp and take the next observation.
i=1

and
If Zz(i) > InA reject Hp and stop.
i=1

The corresponding value of m represents the first observation from target

population and number of inliers F=m—1. A and B are given as
1—
B= B , A:-—Lg (3.6.2)

where & represents probability of type | error and f represents probability of
type li error.

Test criteria for rejection of Hp is

2

(6-9)

I, >InA= Y x, > lnA+§(¢+6) (3.6.3)
=1
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Corresponding value of m for which Hywas accepted last becomes number of inliers

r. The criteria is applied in example in section {3.8}.
3.6.2 Modified likelihood ratio test

The study of the modified likelihood approach to finite normal mixture
models with a common and unknown variance in the mixing components and a test
of the hypothesis of a homogeneous model versus a mixture on two or more
components was done by Chen and Kalbfleisch (2005). Here we use it to study the

test for hypothesis

H, : sample observations are taken from single target normal population with mean

g

H, : sample observations are taken from mixture of inliers with mean ‘¢ and target
distribution with mean 6.

We define M, z{F(x):x~N(6,0'z)} i.e. all observations come from target

population. M, ={F(x)=(1-p)F,(x)+pF,(x)} ie X comes from mixture of two

Normal distribution where Fi{x) and Fy{x) are distribution functions of inliers and

target population, respectively, as defined in previous section.

Then the null hypothesis proceeds with testing Hy: p = L against H;:p<1 or

in other words a test of the hypothesis Xe M, versus Xe M,. The usual likelihood

(LRT) statistics is given by

Inlzz[ sup In(6,X)— sup ln(¢,9,X)}

6, XeMy 9,04,

(3.6.4)

Due to non-regularity of the finite mixture models In A does not have usual

chi-squared distribution. Therefore we proceed with a modified likelihood approach

where the quantity In(#,6, X)is replaced as
min(g,6,X)=In(4,6,X)+cin{ap(1-p)} (3.6.5)
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where ¢ is a positive constant. The purpose of the penalty term cin{4p(1~— p)} is to
restore regularity to the problem by avoiding estimate of p on or near the boundary.
Let In(é,)?l) maximizes min(6,X) for XeM, and In(é,é,)?z) maximizes

min(9,8,X)for Xe M, . Thus modified likelihood ratio statistic is

;ni=z[1n(é,)?1)~tn(é,é,)?2 )} (3.6.6)

The null hypothesis is rejected for values of In A that are sufficiently large. Here ini

follows ;((22) distribution.

3.6.3 Most powerful test for detection of inliers

The most powerful test for testing the hypothesis as given in {1.6.1) whether
the sample is from single population, we frame ‘the hypothesis with common

parameter 4

H,:u=¢ i.e sample observations are from inliers normal population
H,:u=80 i.esample observations are from target normal population

where p is the mean of normal population and 6> ¢.

Then the most powerful test is as given below

w(x)= ’ (3.6.7)

y(x)= peey % (6-9) 2 (3.6.8)
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where C« is such that the test attains level of the test when Hy is true. Thus we

L .
reject Hofor large values of the Zx,. with C,=¢+02z,.
=1

3.6.4 F-testto test whether data contains inlier observations

To test whether the data is taken from single normal population or from
mixture of inlier and target (both normal) distributions, we proceed with the F-test

as follows

Hy:X,,X,,.....X, are independent and follows N(¢,5)
Hy 2 Xy X gy oo Xy TOllOWs N(g,00)and (.11 Xy, FOllows N{6,07)
where ¢<8. '

Then test statistic obtained by Titterrington(1985) gives the maximum ratio

of between sum of squares to within sum of squares as

£ max nyn, (X, %, )’
™ {(”1 —1)s; +(n, —1)s§:l(n1 +n,) (3.6.9)

where the maximum is over all partitioning of data set into two groups..

For detection of inliers, we find Fp, for all possible values of r =1, 2,...n-1.
The number of inliers r will be detected for which corresponding value of Fpe is

maximum.

3.7 Masking effect on tests for inliers

Let X;,X,...X, be sequence of n independent random variables with some

known FTD. Under the null hypothesis Hp these random variables are identically

distributed with df F whereas under alternative hypothesis H, discordant
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observations {(inliers) arise from population df G. The df of G is assumed to be of
same form as that of F with a change in location or scale parameter by an unknown
quantity A. This parameter is called discordancy parameter, measuring the degree of
discordancy. Under H, it is assumed that one of the observation follows df G. Let T(x)
be a test statistics to detect a single discordant observation with critical region
A(n,a). Due to lack of information about the number of discordant observations
present in the sample, however, the true situation may not be specified by H; and -
more than one discordant obsérvation may be present in the sample. In such cases
test statistics T{x) suggested for detection of a single discordant, may fail to detect a
single inlier as discordant even when additional discordant observations are present

in the sample. Such a phenomenon is called masking effect.

Al tests for detecting a single inlier, Ho against H; are based on symmetric
functions of observations or on functions of order statistics. In the k-inlier model,

the joint distribution of order statistics Xm,X(z), X - is same as that under the

exchangeable model introduced by Kale (1975) where it is assumed that any set

X,l,X,.Z,....Xik has priori equal probability of being independent and identically

distributed as G, and the remaining (n-k) observations are distributed as F, the

distribution function of target population.

In exchangeable model X (1), @ X has minimum posterior probability of

coming from G, such that %% is the decreasing function in X. The limiting masking

X

)X,

effect by Bendre and Kale {1985} can be studied by assuming X, ®

e

correspond to observation coming from N(,u—lo:.a’) and then taking limit as

Ao,
k'(n ko Lk
e ) (3.7.1)
()= (12,3..k) Hg‘(x ,glf %)
—00 <& X(li < X(Z).... < X(n) < oo

-77 -



Also f and g, are probability density functions of N(y,az)and
N(,u—-/la,crz) respectively. Thus masking effect on any test statistics T{x)} with

critical region A{n,a), for Labelled slippage model Ly for k 2 1, is obtained as

lim P[7(x)e A(n,a}/ Ly ]=Jim [ hlx 2, X Byt  372)

iy O

converges in distribution to a proper random variable as A—.
3.7.1. Limiting masking effect

For single inlier in left tail, that is to test whether X3 is an inliers, Grubbs

proposed a test proposed by Bendre and Kale (1987).

(%)%, )2

M=

=iz (3.7.3)
n 2 !
Z("m “")
=1
n i
2% 20
where x = — and x=F2-—
n-1 n
The maximum studentized residual T is given by
(n-1) '
. (3.7.4)

3 (0~ %n) 2+(n-1) —

{ (%0 )2 "
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where the sum is over i= 2,3....n. Since under L corresponds to the one infier

2

Xy — X,
observation coming from N(u—%0,0°) and M—;-»o in probability as

X1y ™ Xi)

1
112 -
A—o0 for i =2,3,4......n and therefore T—{n—} in probability as A—>co.
n

Hence as A—>c0, |imp°(1)=1 where P’(A1} is the power function of Grubb’s

test. To study limp’ (1)=limP[T<t,,|L, | as A—>cowe write

na |

.
=7 (3.7.5)

1
X K[
|:Z Yé) -2k n + ";‘

T=

sums are over =1, 2,..n and where

Y =

(0] — —
{n—k+1) - x‘k)
—

with X, isthe meanof x, .x, . ...x, and X, isthe mean of x, x,,...x,

i=1,2,..n (3.7.6)

Therefore Y, —0 in probability for j =1, 2.....k because the numerator of Y, is a

proper r.v., while denominator diverges to infinity. For j =1, 2,.....k, we observe that

(Xw ~Xio-ks1 ) .
Yoy l=im= is such that the numerator has a distribution independent of
(R =%i0)

A and therefore converges to a proper random variable, but denominator diverges to

infinity and hence Yy —>1 in probability as 11— . Therefore under Ly = as

Ao,
T—e[————("_k)r
nk
and
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n—k) |? .
Iimi’f(ﬂ,):: 1, nk <l (377)

0 o.w.

n—k) 2
Thus Grubb's test is free from the limiting masking effect for [( P )} 2t, .
n

and the performance of the test depends on the sample size n and the number of

inliers. In general t__ is a decreasing function of the sample size and hence for large

n with moderate k the test is free from the limiting masking effect. Table (3.7.1),
presents the maximum number of inliers in a sample of size n upto which Grubb’s

test is free from the limiting masking effect.

Table. 3.7.1 Maximum inliers accommodated by Grubb’s test

o n=10|{n=15in=20in=25
0.01 1 1 1 2
0.05 1 2 2 2
0.10 1 2 2 3

3.8 illustrations

3.8.1 Vannman’s data

This example is based on a wood drying experiment. The data of Schedule 1
and 2 of Experiment 3 conducted by Vannman (1991). in both the case n=37. For

data refer appendix.

Table (3.8.1) presents the estimates of the parameters of target distribution

under instantaneous failure, early failures and nearly instantaneous models.
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Table 3.8.1 Estimation for instantaneous failure, early failures and nearly
instantaneous failures

Schedule Instantaneous Early failures Nearly instantaneous
] 4.867917 7.352 5.076087
1
6, 4.398309 3.745867 4.374601
0=15
/] 2.438 3.919167 : 3.0425
2
G, 2.606334 2.390099 2.581076
6=0.9

3.8.2 Rainfall dafa

The data, collected by Amutha and Porchelvan (2009}, represents average
monthly rainfall (in mm) during year 2004 and 2006 for the estimation of surface
runoff in Malattar Sub-watershed which is a major tributary of Palar river. The
watershed experiences tropical‘ monsoon climate with normal temperature,
humidity and evaporation throughout the year. The data was published in Journal of
the Indian Society of Remote Sensing. For our illustration’s purpose we reproduce

two sets of data from the above paper.

Set 1{2004) : 3.40, 0.00, 0.00, 15.80, 232.80, 8.80, 123.20, 47.00, 154.00, 103.20,
89.80 and 12.20.

Set 2 (2006) : 0.00, 0.00, 21.40, 60.20, 53.86, 93.20, 27.80, 45.40, 205.40, 101.i0,
128.20 and 0.00.

We have combined the two sets together and arranged in ascending order to
obtain inlier detection discussed in section (3.3), {3.4} and {3.6). Table (3.8.2),
represents the value of inlier numbers r, likelihood, SIC(r), BIC(r) HQ{r) and modified

test statistics for different values of r.
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Table 3.8.2. Detection of number of inliers

r | Likelihood SIC BIC HQ Ind
2| -39.796 | 85.9489 | -3.5514 | -2.5275 | 7.58094
3| -36.174 | 78.7048 | -3.4559 | -2.4321 | 14.8250
4| -32.756 | 71.8689 | -3.3567 | -2.3328 | 21.6609
5| -30.897 | 68.1503 |-3.2982 | -2.2744 | 25.3795
" B| -28634 | 63.6245|-3.2222 | -2.1983 | 29.9053
7| -27532 | 61.4194|-3.1829 | -2.1591 | 32.1104
8| -25.643 | 57.6421|-3.1119 | -2.0880 | 35.8877
9| -23.759 | 53.8748 | -3.0356 | -2.0117 | 39.6550
10| -27.474 | 61.3047 | -3.1808 | -2.1570 | 32.2251
11| -28165 | 62.6857 | -3.2057 | -2.1818 | 30.8441
12| -2931 64.9769 | -3.2455 | -2.2217 | 28.5529
13| -29606 | 65.5676 | -3.2555 | -2.2317 | 27.9622
14| -30516 | 67.3886 | -3.2858 | -2.2620 | 26.1412
15| -31.102 | 68.5595 | -3.3048 | -2.2810 | 24.9702
16 | -32.072 | 70.5005 | -3.3356 | -2.3117 | 23.0293
17| -33.225 | 72.8055|-3.3709 | -2.3470 | 20.7243
18| -35.026 | 76.4082 | -3.4237 | -2.3998 | 17.1216
19| -36.531 | 79.4180 | -3.4657 | -2.4419 | 14.1118
20| -37.807 | 81.9707|-3.5001 | -2.4762 | 11.5591
21| -39.347 | 85.0499 | -3.5400 | -2.5161 | 8.47988
22| -40.865 | 88.0857 | -3.5778 | -2.5540 | 5.44412

Table {3.8.2) gives us SIC(0) = 99.45467 > SIC(9) = min SIC(r} = -23.759. The

likelihood is maximum for r = 9. The corresponding estimates of the parameter are
¢3 =0.72778, cp= 0.45686 and 0 =7352 , 01=3.74587. For modified likelihood ratio
test also maximum InA corresponds to r = 9. We observe that, SIC(0) = 183.2181 >
SIC(6) = min SIC{r) = 173.5757 . Also the likelihood is maximum for r = 6. The
corresponding estimates of the parameter are é = 14.9, op = 8.78886 and g =
111.182, o, = 58.0748. For modified likelihood ratio test also maximum InA
corresponds to r = 6. For SPRT, we test Hg: ¢=15 against Hp: ¢#>15. For which

we considered (a, 8)=(0.02, 0.05). Then In A = -2.5647 and InB= -2.9755, and the

2

(6-9)

computed statistics value is

InA +%(¢+9)= 101.2454 .
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Table 3.8.3 Estimates of parameters and detection of r

| 3
r | Likelihood |  sic BIC HQ ni | G0
2 | -01.4964 | 188.8817 | 91.57392 | 91.49643 | -5.663600 | 12.200
3 | -88.8320 | 183.5547 | 88.91039 | 88.83290 | -0.336540 | 24.400
4 | -86.5127 | 178.9142 | 86.59016 | 86.51268 | 4.303914 | 40.200
5 | -84.9457 | 175.7802 | 85.02315 | 84.94566 | 7.437946 | 61.600
6 | -83.8434 | 173.5757 | 83.92090 | 83.84341 | 9.642444 | 89.400
7 | -85.0201 | 175.9291 | 85.09758 | 85.02010 | 7.289072 | 134.80
8 | -84.4475 | 174.7838 | 84.52495 | 84.44746 | 8.434343 | 181.80
9 | -83.9214 | 173.7317 | 83.99890 | 83.92141 | 9.486446 | 235.66
10| -84.2590 | 174.4069 | 84.33647 | 84.25899 | 8.811291 | 303.66
11| -85.9395 | 177.7679 | 86.01701 | 85.93953 | 5450209 | 393.56
12 -86.7336 | 179.3560 | 86.81104 | 86.73355 | 3.862165 | 486.76
13| -87.4507 | 180.7903 | 87.52822 | 87.45073 | 2.427797 | 587.96
14 | -87.6541 | 181.1971 | 87.73158 | 87.65410 | 2.021071 | 691.16
15| -88.6952 | 183.2794 | 88.77273 | 88.69525 | -0.061230 | 814.36
161 -89.1081 | 184.1052 | 89.18562 | 89.10814 | -0.887010 | 942.56
17| -89.4825 | 184.8538 | 89.55995 | 89.48247 | -1.635670 | 1096.5

Hence we reject Hy for first time when inlier r is 7 and conclude that number of

inliers in the above data set, see table (3.8.3)is 7F=6.
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