
Chapter 3

Inliers estimation in normal models

3.1 Introduction

A normal distribution is a very important statistical data distribution pattern 

occurring in many natural phenomena, such as height, blood pressure of person, 

lengths of objects produced by machines, etc. Usually normal distributions are 

symmetrical with a single central peak at the mean (average) of the data. But many 

times we may get normal distribution as mixture of inlier and target groups. For 

example life time of a battery follows normal distribution, it is possible in the data 

set, we may get two sets of observations. The first set of data may have zero or small 

life time compared to another group with target life time. This may create two 

symmetrical curved graphs, where the mean of inlier group is much less than the 

mean of target group. Many authors have worked on mixture of normal 

distributions.
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In this chapter the occurrence of instantaneous or early failures in life testing 

experiment, which is a phenomenon observed in electronic parts as well as in clinical 

trials is modeled as mixture of two normal distributions. These occurrences may be 

due to inferior quality or faulty construction or due to no response of the 

treatments. The modified model is then a non-standard distribution and we call such 

models as inlier(s) prone models. Normal mixture distributions are arguably the most 

important mixture models, and also the most technically challenging. The likelihood 

function of the normal mixture model is unbounded based on a set of random 

samples, unless an artificial bound is placed on its component variance parameter. 

Moreover, the model is not strongly identifiable so it is hard to differentiate 

between over dispersion caused by the presence of a mixture and that caused by a 

large variance, and it has infinite Fisher information with respect to mixing 

proportions. There has been extensive research on finite normal mixture models, but 

much of it addresses merely consistency of the point estimation or useful practical 

procedures, and many results require undesirable restrictions on the parameter 

space.

In the developments below we consider as our target population,

and the instantaneous and early failures are inlier components. A two parameter 

Normal (target) family has the probability density function
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—°°<x<+ °° ,—cr>0 (3.1.1)

3.2 lnlier(s) prone models and estimation

Many times in real life data, we observe that data contains inliers. The data is 

mostly from normal population hence, we fit models which will incorporate mixture 

distribution of inlier and target observations with normal distributions. The 

assumption considered in this chapter is that the inlier and target population defer 

only in their mean values, where as population variances are same.
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3.2.1 Normal with instantaneous failures

In a parametric model for FTD we start with a family of FTD 3={F(x, 0), x>0, 

0e£lc:Rm}, where the form of the distribution function (df) is known except for 

labeling parameter, m-dimensional 0and F is absolutely continuous function with 

probability density function {pdf), f(x,ty with respect to Lebesgue measure. The basic 

problem is to infer about unknown 6or a suitable function thereof say y^d), on the 

basis of a random sample of size n on the observable random variable say,

X1,X2,...... Xn. The occurrence of instantaneous failures when some items are put on

test giving X, =0 is quite common in electronic component and some other 

situations. Note that because of the limited accuracy of measuring failure time it is 

possible that we record Xt =0 for some units althoughP[X( =O|0] = O. To

accommodate such instantaneous failures, the model 3 is modified to model 

§ = {G(x, 9, a), x>0, deH, 0< a< 1}, where

G (x;#,ar) =
1 - a, x = 0
1 - a + aF (x,9), x>0

(3.2.1)

and F(x,0)- f exp--------('/j-dfdy is df according to Normal distribution
' 2 aL

and a is the mixing proportion. The estimation of parameters in the above model is 

straight forward and depends on only the positive observations in the model. Thus

a=

&
e=^—

n-r
and

Z(x/~x)2
Xf>0

n-r

(3.2.2)

(3.2.3)

are easily obtainable, r denotes number of units that fail instantaneously. As we 

are considering life times of an object we get non-negative observations.
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3.2.2 Normal with early failures

As we have already defined early failures in chapter 2, section (2.3), we can 

directly write the likelihood of this model as

L(X, a,0) = [l-a+<xF{5,0)] (a[l-F(S, 6)})"" r[J&$ (3.2.4)
Xj>S l — riOftf)

where

F(w)=;&iexp^{^s)2*

that is, the likelihood of the sample under gj€ Q. is the product of the likelihoods of

r (inliers) and the conditional likelihood of the sample given r which is same as the 

likelihood of (n-r) observations coming from the truncated version of / e 3 (or 

gieQ-J restricted to (8, °°). Now r is binomial with probability of success given by

l-a+aF(S,0). For fixed 0 and ctre[0,l] this binomial family is complete. 

Therefore, the optimal estimating equation for 0 ignoring a is the conditional score

Slnl RfM
function given r or ------ - = 0, where L = ■— ——r. Hence optimal estimating

d0 1 -F(S,0)

equation for 0 is given by equation (3.2.7). Thus, it is same as the estimator given by 

optimal estimating 0 equation for 0 ignoring a, ML equations correspond to two 

parameter Normal models are given as

In L = r I n[l - aF (8, #)]+(n - r)[ln a - I
:->5

3)nL„_ -raF(S,0,at) _ (n-r) 

da 1 -aF(S,9,0j) a

9lnL
~dB = 0=> -ra^~F (8,0,0,) „30 ______ - + V

1 -aF(S,0,a1)

'xr-0} 

v J

(3.2.5)

(3.2.6)

(3.2.7)
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and

3lnl
00^

= 0=>
raj^FiS.e,^)

l~a¥{8,0,ffl)
n-r

cr
+

(*? @)
= 0

i 7
(3.2.8)

Here equations (3.2.7) and (3.2.8) may be solved simultaneously using 

Newton Raphson method. The above model gives reasonably good estimates of the 

parameters for 5 fixed. See the example in the section (3.8), at the end of the 

chapter.

3.3 Normal with nearly instantaneous failures

With reference to equation (2.4.4) in chapter 2, normal with nearly 

instantaneous failures distribution can be written as

f(x)=pSd(x-x0) + q—j= exp 
-42?tax

(.. /Ax-8 

V *i 7

2N
,p + q = l, 0<p<l 

7
<Tj >0, —°°<8< +oo

(3.3.1)

where

3/(*-*o) = id
, x0<x<x0+d

(3.3.2)
[0, otherwise

for sufficiently small d. Here the mixing proportionp>0. Also note that

£(*-x0) = |jm£d(x-x0) 
0

(3.3.3)

Since

/i(*) = 3,(*-x0)

and

/*(*) =
■sllzcr. exp

/ ,2^1 x~8

V
2

i Hb n
, <7 >0, ca <8< +oo
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where /(x) is given by

f{x) = pft{x) + qf2{x) where p+q = l, 0<p<l.

, and the corresponding survival function and hazard function of the 

distribution are

R{x) = pR1{x) + qR1{x) 

and

h( v PfA^ + ^jx) 
p/?1(x) + qff2(x)

respectively.

The components of R{x) and h(x) can be obtained as

and

RAx)-

1,
cf+x0-x

0,

0<x<xD 

x0<x<x0+d 

x>x0 + d

R2(x) = l-F2(x) x>x0+of

and

hAx)-

0,

d + x0-x

0<x<x0 

x0<x<x0 + d 

x£x0+d

h2(x) =

j
exp

' l' 

2
x-0

K ai J

1-F2(x)

2\

>

(3.3.4)

mixture

(3.3.5)

(3.3.6)

(3.3.7)

(3.3.8)

(3.3.9)

(3.3.10)
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As a special case of the model, we obtain the Normal with "nearly 

instantaneous failure" model, when t0- 0 in equation (3.3.2}. Accordingly the

simplified expressions of the components in the failure rate and survival functions
0

are

_i_ 0<x<d
d-x
°o, x>d

and its survival rate function in equation (3.3.7) is given as

M*) = ‘ (3.3.11)

d-x
d '

o,

0<x<d

x>d
(3.3.12)

Thus the Normal model with "nearly instantaneous failure" occurring uniformly over 

[0, d] has survival function

R(x)-
~d l-q[l-F2(x)], 0<x<d

q[l-F2(x)],
(3.3.13)

x>d

and

p(d-x)+dq(l-F2(x))

dfii*)

dp
p(d-x)+dq{l-F2(x))

fi{*)
,0<x<d

(3.3.14)

Mx)'
x>d

Nearly instantaneous calculations are performed for the example in section (3.8).

3.3.1 Graphs

In various figures below we provide the graphs for f(x), R(x) and h(x)for left 

values of mixing proportions and parametric values.
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Fig. 3.3.1. Density function for [i = 4 and a = 2

Fig. 3.3 2. Reliability function n = A and a-2

Graph (3.3.4) and (3.3.5) are plotted on the basis of random sample 

generated from mixture of two normal distributions. From the graph (3.3.4) we can 

clearly identify two symmetrical curves, where first curve has inlier distribution with 

mean 4 remarkably less than second curve which can be considered as target 

distribution with mean 20. Graph (3.3.5) is known as normal quantile-quantile (Q-Q) 

plot. A sample from single normal distribution should produce a linear plot on this 

graph, which is not in our case. Hence both the graph dearly represents the 

presence of two groups.
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Fig 3.3.4. Density function of mixture of inliers and target distributions

3.4 Inlier detection methods

Here we obtain number of inliers for different data set by various methods, 

viz identified inlier model, labeled slippage methods and information criteria.

3.4.1 Identified inlier model (Mk)

Referring to equation (2.5.14) of section (2.5.2) from chapter 2 the identified 

inliers model with g(x)as inliers and f(x) as target distribution is written as

L(xW,e,v,r)^Y[g{xi)\[f(xi) (3 A A)
i~t /=r+l
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(3.4.2)=n
i i

exp—n/z^x.
XT' ^ ___ 1 rx-e

l J ,-ili 42nox P 2
^ ai j

The likelihood function in (3.4.2) assumes that between the experiments when units 

are placed on test we do not know which of the units fail instantaneously. 

Equivalently X. =0,X. =0,....Xj =0 which fail early i.e. those units whose failure

time distribution is with failure rate much larger than that of the failure

time distribution of the target population whose failure rate is considerably smaller. 

The identification is done as follows: evaluate for each fixed r where r = 0,l,2,...n-l 

the maximum likelihood equation Lr, and then consider r being that value of r for 

which likelihood is maximum. The computation for example of detection of inliers is 

done in section (3.5) and (3.8).

3.4.2 Inlier detection in Labeled slippage model (£*)

With g(x)and f(x) as described in section (3.4.1), the likelihood under

labeled slippage model referring to section (2.5) and substituting in equation (2.5.1), 

gives
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(3.4.3)

\nL~ r0\n(l-p) + {n - r0)\np-\ng>r^,d) + n\ncr —!_i—---

n . . ?I (*,„-»)

/—rj+1
2 cr2

and the corresponding likelihood equations are

9lnL _ -r„ [ (n-r0)

dp (1-p) p
= 0 (3.4.4)

rxt xn
3lni. 3 . / , „ w

(3.4.5)

and

I *(,3 In £. 3. / , i=ri +i
—— = -—In<pr (<p,d) + 7—------------r
30 30 1 (n — r0 — r2)

i(*(,-<*)'+£(*«-»)■

3 Ini. „ /=i ■
------- = 0=> <7 =------------------
3(7 n

(3.4.6)

(3.4.7)

Here (3.4.4) can be solved to get the estimate of p as p-(n-r0)/n. The equations 

(3.4.5) and (3.4.6) contains gamma and digamma functions. The function

<p, (iu^y^Gwr [fwrrt *

1 -jlzcr '

dx

where G(x) and F(x) are cumulative distribution functions of inlier and target 

population. The function q> (^,0) is difficult to evaluate and can only be evaluated

using some numerical method.
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3.4.3 Information criterion for detection of inliers

As defined in chapter 2, section (2.6) here for Normal distribution, we have 

SIC for model with no inliers as

S/C(0) = 2nlog£X1+]T
n (x.-e^

\ 2
+ plogn (3.4.8)

and model with r inliers is defined as

SIC(r)=2r\oga-0+2{n-r)\og(T1+^+ ]T
rx-^2

V *0 2 l-r+1

rx,-6*

°i 2
+plogn (3.4.9)

The estimate of inliers say r is such that SIC(r) = minSIC(r).

Here we use three information criteria such as SIC, BIC and HQ already

, . . . O.BpInfn)
defined in chapter 2. Hence SIC = -2lnL(©)+p In n, BIC = -lnl{©) +-------- —- and

HQ = -lnt(@)+ p ln[ln(n)] can be used to detect the inliers, wherel(©)the

maximum likelihood function and p is the number of free parameters that need to 

be estimated under the model. We now illustrate this method using the simulated 

example discussed in the next section. Table (3.5.2) also presents the parameter 

estimates and the information criterion values.

3.5 Simulation study

To Illustrate the method of identifying inliers we have generated 15 

independent random samples, where 5 of them are coming from normal distribution 

with parameter mean 0=4 and variance <j^= 2 and remaining ten observations 

from Normal distribution with parameter mean 0=20 and variance <7^ = 2. The 

sample values are 1.44852, 3.667636, 3.949972, 5.548854, 6.017887, 17.61194, 

19.26654, 20.09814, 20.23482, 20.36071, 20.64048, 21.08915, 21.26954, 22.53701 

and 24.23439. We note that SIC(0)=58.4562 > SIC(5) = mm SIC(r) = 34.85999.
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Table 3.5.1. The Likelihood and Information criterions
r L SIC BIC HQ
2 -38.1951 69.82944 -3.46217 -2.64648
3 -34.5019 62.44302 -3.36048 -2.54479
4 -31.2064 55.85195 -3.26009 -2.44439
5 -20.7104 34.85999 -2.8501 -2.03441
6 -26.054 45.54709 -3.07963 -2.26394
7 -28.546 50.53121 -3.17098 -2.35529
8 -30.997 55.43326 -3.25336 -2.43766
9 -33.0941 59.62746 -3.31882 -2.50313
10 -34.9391 63.31742 -3.37307 -2.55738
11 -36.6837 66.80655 -3.4218 -2.6061
12 -38.4748 70.38878 -3.46947 -2.65377
13 -39.6796 72.79842 -3.5003 -2.68461

Fig. 3.5.1. Likelihood plot
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A similar conclusion can be drawn in the case of other information criterions BIC and 

HQ also. Hence r-5 and the estimates are ^ = 4.126574 ,a0 =1.803727 

0=20.73427, and <t, =1.783219 respectively. The graphical representations of the 

likelihood and BIC plots are given in figure (3.5.1) and (3.5.2).

Next, we carried out an experiment with 1000 samples each of size 15 and 

number of inliers as 3, 4, 5 and 6 each with ^ = 3 and (9=6,9,12 and 15. The table 

(3.5.2) entitled power of SIC procedure presents the number of times the SIC 

procedure correctly identified the number of inliers in proportion to total number of 

samples. The values clearly indicate the effectiveness of the method in detecting the 

inliers. One of the important problem while detecting the inliers is the masking 

effect, where masking effect is defined as the loss of power due to wrong detection 

of more than one inliers.

Table 3.5.2. Power of SIC procedure

rs\
2 3 4 5

3 0.570 0.720 0.700 0.550
4 0.460 0.480 0.490 0.440
5 0.460 0.460 0.460 0.462
6 0.410 0.420 0.430 0.410

3.6 Testing of hypothesis for inliers

After detection of number of inliers, it is necessary to test whether the 

methods used for detection are valid or not. Hence different tests are applied to test 

whether data truly represents our model of mixture of inliers and target population.

3.6.1 Sequential Probability Ratio Test (SPRT) to detect number of inliers

We want to test the hypothesis whether sample observations belong to 

inliers population from against hypothesis that it belongs to target

population from A/(#,0^), assuming <x = er0 =<?1.
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tf0: sample observations are taken from normal population with mean 0 

: sample observations are taken from normal population with mean Q

We use SPRT test given as follows:

The likelihood ratio Xm is given by Xm =-l2L or equivalently
f-n m

m|n4=2ln

/=!

r(v4

2(0-0)]Txw
__________________i-i

2a2
m = l,2,....n (3.6.1)

For deciding number of inkers r, first arrange the observations in ascending order 

and then we continue to take likelihood ratio for m= 1, 2.... ,n by including 

observations one by one till we reject H0. That is

m
lf YjZV) - In8 then accept H0 and take the next observation.

;=i

and

If 2Z(0 - reject H0 and stop.
i=i

The corresponding value of m represents the first observation from target 

population and number of inliers r = m—1. A and S are given as

1 -a
(3.6.2)

where a represents probability of type I error and /? represents probability of 
type II error.

Test criteria for rejection of H0 is

In An >ln* =>!>(,) + + (3.6.3)
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Corresponding value of m for which H0was accepted last becomes number of inliers 

r. The criteria is applied in example in section (3.8).

3.6.2 Modified likelihood ratio test

The study of the modified likelihood approach to finite normal mixture 

models with a common and unknown variance in the mixing components and a test 

of the hypothesis of a homogeneous model versus a mixture on two or more 

components was done by Chen and Kalbfleisch (2005). Here we use it to study the 

test for hypothesis

H0: sample observations are taken from single target normal population with mean

0
: sample observations are taken from mixture of inliers with mean and target 

distribution with mean 0.

We define M1 ={f(x):x~A/(0,ct2)] i.e. all observations come from target 

population. M, ={f(x) = (l-p)f1(x) + pF2(x)j i.e. X comes from mixture of two

Normal distribution where Fx(x) and f2(x) are distribution functions of inliers and 

target population, respectively, as defined in previous section.

Then the null hypothesis proceeds with testing H0: p = 1 against Hi: p < 1 or 

in other words a test of the hypothesis XeMt versus Xe Mr The usual likelihood 

(LRT) statistics is given by

lnX=2 sup \n(0,X)- sup In(0,9,X)
e,Xi=M1 $,0,XeM2

(3.6.4)

Due to non-regularity of the finite mixture models In A does not have usual 

chi-squared distribution. Therefore we proceed with a modified likelihood approach
4

where the quantity ln(^,#,X)is replaced as

mln(^,<9,X) = !n(^,#,X) + clnj4p(l-p)] (3.6.5)
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where c is a positive constant. The purpose of the penalty term cln{4p(l-p)} is to 

restore regularity to the problem by avoiding estimate of p on or near the boundary. 

Let \r\[d,X^j maximizes m\r\(0,X) for XeMt and ln^,<9,X2J maximizes 

mln(0,0,X)for Xs M2. Thus modified likelihood ratio statistic is

Ini = 2 Inf*?,^)—In(#,<M2)] (3.6.6)

The null hypothesis is rejected for values of Ini that are sufficiently large. Here Ini 

follows z^2) distribution.

3.6.3 Most powerful test for detection of inliers

The most powerful test for testing the hypothesis as given in (1.6.1) whether 

the sample is from single population, we frame the hypothesis with common 

parameter p

H0:p = <j) i.e sample observations are from inliers normal population 

: p = 0 i.e sample observations are from target normal population 

where p is the mean of normal population and ©><(».

Then the most powerful test is as given below

Pl(X)

Po(*)
pi(x)

P0(x)

> Ca

< Ca

(3.6.7)

which can be simplified as

yx CaO2 n{e+(/>)

h ' (*-*) 2
o.w

(3.6.8)
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where Ca is such that the test attains level of the test when Ho is true. Thus we

reject Ho for large values of the ]Tx, with Ca=0+crza.
i-1

3.6.4 F- test to test whether data contains inlier observations

To test whether the data is taken from single normal population or from 

mixture of inlier and target (both normal) distributions, we proceed with the F-test 

as follows

H0: xx,x2,.... xn are independent and follows n(0,<j2)

^1 :x(i)>X(2)......*w follows N(+,tr02)and x(,tl),x(rrt),.....x(B) follows N(0Ja21)

where 0<0.

Then test statistic obtained by Titterrington(1985) gives the maximum ratio 

of between sum of squares to within sum of squares as

max (xt -3c,)2

“ |>I-iK+("1-ih1](»1+",) (3'6'91

where the maximum is over all partitioning of data set into two groups..

For detection of inliers, we find Fmax for all possible values of r =1, 2,...n-l. 

The number of inliers r will be detected for which corresponding value of Fmox is 

maximum.

3.7 Masking effect on tests for inliers

Let X1,X2....Xn be sequence of n independent random variables with some 

known FTD. Under the null hypothesis H0 these random variables are identically 

distributed with df F whereas under alternative hypothesis Hi, discordant
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observations (inliers) arise from population df G. The df of G is assumed to be of 

same form as that of F with a change in location or scale parameter by an unknown 

quantity A. This parameter is called discordancy parameter, measuring the degree of 

discordancy. Under Hx it is assumed that one of the observation follows df 6. Let T(x) 

be a test statistics to detect a single discordant observation with critical region 

A(n,a}. Due to lack of information about the number of discordant observations 

present in the sample, however, the true situation may not be specified by Hx and 

more than one discordant observation may be present in the sample. In such cases 

test statistics T{x) suggested for detection of a single discordant, may fail to detect a 

single inlier as discordant even when additional discordant observations are present 

in the sample. Such a phenomenon is called masking effect.

Ail tests for detecting a single inlier, H0 against Hi are based on symmetric 

functions of observations or on functions of order statistics. In the k-inlier model, 

the joint distribution of order statistics X(1),X(2),....X(n) is same as that under the

exchangeable model introduced by Kale (1975) where it is assumed that any set 

X^,X^,....Xik has priori equal probability of being independent and identically

distributed as Gx and the remaining (n-k) observations are distributed as F, the 

distribution function of target population.

In exchangeable model X(1), .X, > has minimum posterior probability of

9g
coming from Gx such that is the decreasing function in X. The limiting masking 

effect by Bendre and Kale (1985) can be studied by assuming X^,X^2y....X^ 

correspond to observation coming from ) and then taking limit as

—^OO.

e.7.1)

-°°<X(lj<X,:2)....<Xw<°o
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Also / and gx are probability density functions of /v(//,cr2)and 

w(/r-A<x,crz) respectively. Thus masking effect on any test statistics l{x) with 

critical region A{n,a), for Labelled slippage model LSk for k > 1, is obtained as

limP[T(x)eA(nJflr)/irt]=iim J fi(*w*(2)....x(n))dx(1)...... cfx(n) (3.7.2)
A{n,a)

Under £Sfc as A-*™, X{n_k+1),X{n_k+1),.... X{n) behave as order statistics of a

sample of size [n-k) from N^o*) and X[iyX[2),....X(t) diverge to zero. However if

t( « v if ) is a function whose distribution does not depend on X then T \ a(i),a(2)'..... w;

converges in distribution to a proper random variable as X—

3.7.1. Limiting masking effect

For single inlier in left tail, that is to test whether x(1) is an inliers, Grubbs 

proposed a test proposed by Bendre and Kale (1987).

S(x«-*«)2

G^-------- T
(3.7.3)

2X('•)

where x„ = —-----and x= —
n-1 r

V)

The maximum studentized residual T is given by

(n-l)

y (X(0 X(”)) [ (n l)
(3.7.4)
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where the sum is over / = 2,3.....n. Since under Lsl corresponds to the one iniier

fx-.j -X- j)

observation coming from w(//-2<7,<7^ and -------------- 3--»0 In Pr°bability as
(x(i)-x(n))

for i =2,3,4.......n and therefore T->|-—-j in probability as 2—»°°.

Hence as X —>°o, limP1e(2)-l where P1®(2) is the power function of Grubb's 

test. To study limP/(2)=limP[r<to a |£*] as 2->«>we write

T = - n
Yr(2ir2^+- 

^ (1) n n

{3.7.5)

sums are over / =1,2,...n and where

\ = j
/ = 1,2,..... n (3.7.6)

with x[„_l+1) is the mean of x(t+1),x(i+2),....x(n) and x, is the mean of x(1),x(2)......xw

Therefore y{/) —> 0 in probability for / =1, 2.... k because the numerator of V(0 is a

proper r.v., while denominator diverges to infinity. For / =1, 2,.....k, we observe that

VJ.j — 1 —— \ ...... ...——- is such that the numerator has a distribution independent of

X and therefore converges to a proper random variable, but denominator diverges to 

infinity and hence y(f)->l in probability as Therefore under Lsk as

(n~k) 
nk

and
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(3.7.7)limP2G(l) = 1,
'(n~kY

nk

0 o.w.

< t.

1
2

and the performance of the test depends on the sample size n and the number of 

inliers. In general tna is a decreasing function of the sample size and hence for large

n with moderate k the test is free from the limiting masking effect. Table (3.7.1), 

presents the maximum number of inliers in a sample of size n upto which Grubb's 

test is free from the limiting masking effect.

Thus Grubb's test is free from the limiting masking effect for
(n-k)

nk

Table. 3.7.1 Maximum in iers accommodated by Grubb's test

a n =10 n = 15 n = 20 n = 25
0.01 1 1 1 2

0.05 1 2 2 2

0.10 1 2 2 3

3.8 Illustrations

3.8.1 Vannman's data

This example is based on a wood drying experiment. The data of Schedule 1 

and 2 of Experiment 3 conducted by Vannman (1991). In both the case n=37. For 

data refer appendix.

Table (3.8.1) presents the estimates of the parameters of target distribution 

under instantaneous failure, early failures and nearly instantaneous models.

-80-



Table 3.8.1 Estimation for instantaneous failure, early failures and nearly
instantaneous failures

Schedule Instantaneous Early failures Nearly instantaneous

1

0 4.867917 7.352 5.076087

8=1.5
*i 4.398309 3.745867 4.374601

2

0 2.439 3.919167 3.0425

<£=0.9
2.606334 2.390099 2.581076

3.8.2 Rainfall data

The data, collected by Amutha and Porchelvan (2009), represents average 

monthly rainfall (in mm) during year 2004 and 2006 for the estimation of surface 

runoff in Malattar Sub-watershed which is a major tributary of Palar river. The 

watershed experiences tropical monsoon climate with normal temperature, 

humidity and evaporation throughout the year. The data was published in Journal of 

the Indian Society of Remote Sensing. For our illustration's purpose we reproduce 

two sets of data from the above paper.

Set 1 (2004): 3.40,0.00, 0.00,15.80, 232.80, 8.80,123.20, 47.00,154.00,103.20, 

89.80 and 12.20.

Set 2 (2006): 0.00,0.00, 21.40, 60.20, 53.86, 93.20,27.80,45.40, 205.40,101.20, 

128.20 and 0.00.

We have combined the two sets together and arranged in ascending order to 

obtain inlier detection discussed in section (3.3), (3.4) and (3.6). Table (3.8.2), 

represents the value of inlier numbers r, likelihood, SIC(r), BIC(r) HQ(r) and modified 

test statistics for different values of r.
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Table 3.8.2. Detection of number of inliers

r Likelihood SIC BIC HQ Ini

2 -39.796 85.9489 -3.5514 -2.5275 7.58094
3 -36.174 78.7048 -3.4559 -2.4321 14.8250
4 -32.756 71.8689 -3.3567 -2.3328 21.6609
5 -30.897 68.1503 -3.2982 -2.2744 25.3795
6 -28.634 63.6245 -3.2222 -2.1983 29.9053
7 -27.532 61.4194 -3.1829 -2.1591 32.1104
8 -25.643 57.6421 -3.1119 -2.0880 35.8877
9 -23.759 53.8748 -3.0356 -2.0117 39.6550

10 -27.474 61.3047 -3.1808 -2.1570 32.2251
11 -28.165 62.6857 -3.2057 -2.1818 30.8441
12 -29.31 64.9769 -3.2455 -2.2217 28.5529
13 -29.606 65.5676 -3.2555 -2.2317 27.9622
14 -30.516 67.3886 -3.2858 -2.2620 26.1412
15 -31.102 68.5595 -3.3048 -2.2810 24.9702
16 -32.072 70.5005 -3.3356 -2.3117 23.0293
17 -33.225 72.8055 -3.3709 -2.3470 20.7243
18 -35.026 76.4082 -3.4237 -2.3998 17.1216
19 -36.531 79.4180 -3.4657 -2.4419 14.1118
20 -37.807 81.9707 -3.5001 -2.4762 11.5591
21 -39.347 85.0499 -3.5400 -2.5161 8.47988
22 -40.865 88.0857 -3.5778 -2.5540 5.44412

Table {3.8.2) gives us SIC(O) = 99.45467 > SIC(9) = min SIC(r) = -23.759. The 

likelihood is maximum for r = 9. The corresponding estimates of the parameter are 

0 = 0.72778, a0 = 0.45686 and 9 = 7.352, Oi= 3.74587. For modified likelihood ratio 

test also maximum Ini corresponds to r = 9. We observe that, SIC(O) = 183.2181 > 

SIC(6) = min SIC(r) = 173.5757 . Also the likelihood is maximum for r = 6. The 

corresponding estimates of the parameter are 0 = 14.9, ao = 8.78886 and 9 = 

111.182, Oi = 58.0748. For modified likelihood ratio test also maximum Ini 

corresponds to r = 6. For SPRT, we test H0: 0 = 15 against H0: 0>15. For which

we considered (a, 6) =(0.02, 0.05). Then In A = -2.5647 and In B = -2.9755, and the

2

computed statistics value is  --------InA-l—(0 + 0) = 101.2454 .
(0-0) 2;
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Table 3.8.3 Estimates of parameters and detection of r

r Likelihood SIC BIC HQ In X
m

Ixw
/=!

2 -91.4964 188.8817 91.57392 91.49643 -5.663600 12.200
3 -88.8329 183.5547 88.91039 88.83290 -0.336540 24.400
4 -86.5127 178.9142 86.59016 86.51268 4.303914 40.200
5 -84.9457 175.7802 85.02315 84,94566 7.437946 61.600
6 -83.8434 173.5757 83.92090 83.84341 9.642444 89.400
7 -85.0201 175.9291 85.09758 85.02010 7.289072 134.80
8 -84.4475 174.7838 84.52495 84.44746 8.434343 181.80
9 -83.9214 173.7317 83.99890 83.92141 9.486446 235.66
10 -84.2590 174.4069 84.33647 84.25899 8.811291 303.66
11 -85.9395 177.7679 86.01701 85.93953 5.450209 393.56
12 -86.7336 179.3560 86.81104 86.73355 3.862165 486.76
13 -87.4507 180.7903 87.52822 87.45073 2.427797 587.96
14 -87.6541 181.1971 87.73158 87.65410 2.021071 691.16
15 -88.6952 183.2794 88.77273 88.69525 -0.061230 814.36
16 -89.1081 184.1052 89.18562 89.10814 -0.887010 942.56
17 -89.4825 184.8538 89.55995 89.48247 -1.635670 1096.5

Hence we reject H0 for first time when inlier r is 7 and conclude that number of 

inliers in the above data set, see table (3.8.3) is r — 6.
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