
CHAPTER VII

IDENTIFICATION OF SYSTEM CHARACTERISTICS 
FROM NORMAL OPERATING DATA

USING THE DELAY LINE SYNTHESIZER PRINCIPLE
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A computational technique is presented here for identify
ing the impulse response of a linear system from normal operat
ing noisy data. No assumption, however, is made regarding the 
nature of the noise. The technique derives its idea from the 
Delay Line Synthesizer (DLS) though in this case the DLS coeff
icients which discretely represent the weighting function are 
computed automatically employing the steepest descent method.
The method has been tried out on a first order as well as a 
second order system simulated on a digital computer and the es
timated impulse response is found to be very close to the actual 
one.

7.1 Introduction

The obj ective of adaptive control is to enable the control 
system to operate while satisfying certain performance criteria 
under changing conditions, environmental or inherent. Identifi
cation of the transfer function, impulse response or equivalent 
characteristic of a system is necessary for self-adaptation. For
a linear system the performance can be evaluated in terms of the

16 102inpulse response ' • - and to accomplish self-adaptation, con
trollable parameters can be adjusted until the identified impulse
response tabes the desired form.

cGoodman and Reswick developed an experimental device, 
namely. Delay Line Synthesizer (DLS), to obtain an impulse res
ponse by feeding to the device auto- and cross-correlations
computed beforehand from the input-output record of the physical

< *

system. The auto-correlation vf>(t) of the input and the cross
correlation t) of the input with the output bear the same
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5 103convolution relation * as that between the input r (t) and 
the output c(t) at time t (Fig. 7.1) as shown by equations 
(7.1) and (7.2), were h(t) is the impulse response.

c(r)

W)

/h(t) r(r-t) dt,
0

h(t) = 0 t*^0 (7.1)

h(t) * 0 t<0 (7.2)

Equation (7.2) is well Known in the literature as the Wiener- 
Hopf equation.

„ 104*or a damped type-0 system , h(t) tends to zero as 
t~*« and becomes practically negligible beyond a certain inst
ant t = t^» Thus equation (7.2) becomes

\p('T) = [* h(t) #(r-t) dt (7.3)
0J

where h(t) =0 for t ^ 0 and t * t^» If the input to the sy
stem is a random noise with zero mean and no dominating periodic
component, the auto-correlation <f>(t) of the input tends to 

103zero as t-* ac . However, in a practical situation, q>(t)
becomes negligible beyond some finite value of time t » t^
as can be seen in Fig. 7.2. Therefore, when ^ t,+ t_ , the1 2
argument (7T-t) of in equation (7.3) is greater than for 
any value of t between 0 and I w^ience (t-t) =- ~0 . 
Therefore \jr(*£) =* 0 for T ~ t^ where t^ = t^ + t^. Thus, the 
cross-correlation in equation (.7.3) is always zero beyo
nd the instand t_ as can be seen in Fig. 7.3 • since t„ is 
not known for an unknown system, it can be estimated as t^ » 
tj - t^ , where t^ and t^ are known from the given data for 
auto- and cross-correlations.
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Goodman and Reswick used the DLS to simulate the integral
in equation (7.3) discretely by dividing the period 0 to t^
into K equal segments each of duration T (fig. 7.4) and then
using the trapezoidal rule for integration# as given below

K-l
* h h(o) §tv) T + h h(KT) #(r-KT) T + £ h(nT)§(r_nT) T

n»l
(7.4)

Here M &" means “is approximately”• Equation (7.4) contains 
(K + 1) terms each being a product of an ordinate of the weigh
ting function at an instant nT by the auto-correlation delayed 
by the time nT where n = 0# 1# • . • #K. The device thus 
contains K delay lines (neglecting the zero delay in the first 
term) and (K+l) multipliers h(nT) for n = 0# 1# . . . #K .
Xhe technique used by Goodman and Reswick to obtain h(nT)'s 

in their DLS is to feed the auto-correlation of the input data 
as input to DLS and adjust all h(nT)‘s manually until the out
put, i.e. the cross-correlation# tallies with the given cross
correlation at all instants of time. The pulse-like shape of 
the auto-correlation makes this task easier.

The technique discussed here does not require the DLS as 
a unit as this is simulated on the digital computer and moreover* 
the DLS coefficients are computed automatically using the steep
est descent method.

7.2 Computational Scheme for Cross-Correlation

In applying the trapezoidal rule in equation (7.4), it is 
assumed that the function h(nT) ^(TT-nT) is linear between 
samples. But the auto-correlation is wavy and so# from an accuracy
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point of view, this assumption is justified when the sampling 
interval T is very small. However, during the identification 
process it is desirable to have less samples, i.e. wider sampl
ing interval, to save computational time without losing accura
cy. This is accomplished by representing the auto-correlation 
by a polynomial of suitable degree higher than the first and 
the weighting function by a straight line (i.e. first degree 
polynomial) between widely spaced samples and then performing 
the exact integration. The auto-correlation is to be substitu
ted by a higher degree polynomial rather than linear because it 
is more wavy as compared to the iirpuls® response. Representing 
the intergral from 0 to in equation (7.3) by the sum of the 
integrals over each of the sampling intervals, equation (7.3) 
becomes

K-X (n+l)T
^f(T) * f h(t) #(r~t) at (7.5)n=s0 nT
The cross-correlation ^(Z) is computed at discrete instants 
mT , m = 0, 1, 2, . . , M and so writing mT for Z , letting

» mT and noting that |?(t}. * #(-t) * equation
(7.5) becomes
^m for ^^ at

(n+l)T
f h(t) <p(t-mT) dt

T K-lW - ym mn=0 nT
K-l T

- 51 J h(nT + t) cjzinT - mT + t) dtn=0 o „ a ?m s= 0, l.
(7.6)

M
Let hR denote h(nT) and suppose that the weighting function 
for the time interval nT to (n+l)T is represented by the 
relation
h(nT + t) = h + * t n n (7.7)
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for n =* 0, 1# . . . , K-l and O^t^T, where =< is then
slope of the impulse response h(t) at t *= nT and is given 
by
5*n £Ldt ntl n

t=nT
Also writing 4s for the auto-correlation #(nT+t) , 0^t^T#

JTJL
and representing by a polynomial of N degree, one - .n
obtains

_N^L_
i*=0 a , t n, i ; n = -K, -(K-l), . , -1, 0, 1 . .

• . , K-l (7.8)
where the a .*s are the coefficients of polynomial for the 
auto-correlation for the time interval nT to (ntl)T. Substi
tuting for $(t) and h(t) in equation (7.6), one obtains

K-l T _ N 4« ZI f a„_m4t1]dt (7.9)
m n=0 d> 1 n n J L n-m,i J
Performing the integration, equation (7.9) simplifies to

K-l
- H

n-0

“ E_ rmitl mi+2 \

an=ro, i \ I+T hn + i + 2 °*nj
m - 0, 1,

(7.10)

M

7.3 Identification Scheme

In the identification problem, the auto-correlation (and
hence the a ,'s) and the cross-correlation are given and n,x
only the hn's are to be evaluated. let the given cross-corre
lation (computed from the given input-output data) be denoted 
by for m *» 0, 1, . . , M. If the impulse response (i.e.
hn*s) were precisely known, the cross~correlation computed
by using equation (7.10) would not be identical with but
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there would be some error. This error may be attributed to the 
presence of noise or imperfect measurements or approximations 
involved in the computation. Therefore, denoting the errors by 
S for m * 0, 1 , , » . , M , one obtains

m = 0 M (7.11)

Substituting for \jf„, and rearranging, equation (7.11) becomes
III

sm Tm
K-l
n-0

Ti+1 h + T1+2rc<_n-m, i i + 1 n i +' 2 n (7.12)

m “ 0, 1 , • a . , M
As noted earlier, even if the impulse response were preci

sely known, the vjr and \Jr' would not be the same but close 
* T m ’ m

to each other and so the error would be very small. Conver-m
sely, the h^'s in equation (7.12) can be adjusted in a scien
tific manner until the errors become negligibly small to arrive 
close to the system's true impulse response. Indeed, out ident
ification procedure consists in assuming some arbitrary set of 
values for the h^'s in equation (7.12) and then modifying 
the h^'s successively using the steepest descent rule until 
the sum of the squares of the errors E ,m = 0, 1,..,MHI
reaches a minimum. The results thus obtained give the best poss
ible impulse response of the linear system based on the minimum 
square error criterion. This criterion yields the same results
as would be obtained by the minimum mean square error criterion, 

1 M 2i.e. rrrr '£ S , because the two criteria differ only by a 
ra-0 m

constant. The best possible linear system thus obtained is also
103known as the optimum linear system .



In equation (7.12), It is required to determine K value* 
of h^’s for n = 0, 1 , . . . , K-l and so we should know at 
least K values of the errors E . Therefore let M = K-l. Mak
ing use of the minimum square error criterion, the performance 
index I to be minimized is given by
I — EJ? (7.13)

The magnitude of increments (or decrements) in h^ *s needed
to reach the minima are determined by the steepest descent rule
Taking the differential of I with respect to the h„*s (not-n
ing that each of the errors E 's depends on all h * s), oneul li
obtains

2 h>
K-l JE
j-0 ■'"j

(7.14)

where
3smcTh„

H
T-
i=0 j hh, x (_ x + 1

j <j.i+l Ti+2 cfy<^ i i £ x + 1 + i + 2 ihj j “

-±-i Vi + 2 6 h. J
1

Substituting for
cTe<-|
WHUIHWWa —“j

and
^ °^i-l __ 6__
d'h, “ Fh~'

r h, j-i
3 *

}

1
T

1
T j * 0, 1 ,

and h_^ = 0

aj-l-m,i

(7.15)

(7.16)

K-l
(7.17)

in equation (7.15), one obtains
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f-JS — S- rpi+1 f a1 ~*r, 1 . ai-l-m#i ohj fzQ l i+1 * i+2
*i-m.i \
i+2 I (7.18)

and using this result in equation (7.14), one gets
K-l r N J / a. _ . a.

-2
K-l
2_ E. 
m=*0 m

K-l
e:j=0

r K-l
-2 H

m=0

V- f V mi+1 / a1-*n,i + _i.-lHtn# 1
jtol i=o V- i+1 i+2

a1-m,f}
” i+2 /

f N
2 i

Ah,J
j3 ^ 2Z_ ^i+i / + Lipi-m#, It,
m l i=0 \ i+1 i+2 

a.i-m, 2. 
i+2 Ah. (7.19)

The expression within the outer brackets in equation (7.19) is 
the increment of I with respect to the increment of hj . Let

this increment be represented by Sl/Sh.. Thus# equation (7.19)J
becomes

K-l
ai = 21 

j=o itjH (7.20)

97The steepest descent rule , used to reach the minima of I
requires that the increments in h 's satisfy

n
Ah.n ■‘XrK-1 f J I \ 2 1 YzL jiolSSJ )

n 0, 1 # • * t K-l
(7.21)

97In equation (7.21)# the coefficient «< fixes the step-size of 
the increment along the gradient and is to be chosen suitably 
so that on each successive iteration the performance index 
becomes smaller and smaller. large values of *1 may lead to 
overcorrection of the hn's and the performance index# instead 
of approaching the minima# may jump to and f ro around the minima. 
It has been found from experience that# in the early stages, K
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should be chosen as about 5 % of the peak value of the impulse 
response. However, since the peak value of the impulse response 
is not known, its peak value may be roughly estimated as the 
ratio of the peak value of the cross-correlation to that of the 
auto-correlation. In the later stages, when the performance index 
is getting closer to the minima, this value of <X is found to 
be quite large and must be successively reduced whenever the cu
rrent value of the performance index exceeds its previous yalue. 
In fact, the whole operation can be performed automatically by 
proper computer programming.

The entire computational procedure can be outlined as 
follows.
(1) It must be first assured that both the input and output 
data have zero means and no predominant periodic component. The 
statistical means for both should be computed and, if they are 
not zero they should be deduced respectively from the input and 

output records which, in turn, must be used to compute 4&(£) 
and ^ST(t) (in a similar manner ) taking a sampling interval 
small enough to justify the trapezoidal rule for numerical 
integration. The values of t^ and t are to be fixed by 
inspecting the entire range of <Jj(t) and ^~(t} such that, 
beyond t^ and t^ , the function <§{t) and ^(t) are resp
ectively less than 1% of their peak values. The value of t^ 
can not be determined if the <f>(t) fails to satisfy this con
dition which means that either the input record contains a pre
dominant periodic component or, in other words, both the input

21cind the output data require similar pre-whitening treatment.
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The interval 0 to , i.e, (t^-t^)# should be divided into
K equal parts with a sampling interval or delay time of t^/K.
For a first order system in which case the impulse response is
not too wavy# (K=10) gives quite satisfactory results. However,
considering the possibility of higher order damped-oscillatory
systems where the samples should be relatively closer# 0fcs20)
is# in general# a better choice. A polynomial of degree lowest
enough to give the fit of desired accuracy should be fitted to
all sections of <£>{t) to compute a 4 *s in equation (7.8).n# x
(2) Let the initial guess for the ha's#n = Q# !#,.«#
K-l be all zeroes.
(3) The Em*s and I should be computed using equations 
(7.12) and (7.13).
(4) Having fixed as discussed earlier the Alik's can be 
computed from equation (7.21). The hn's are then to be modifi
ed as
new h = old h + Ah # n = 0 # 1 # ...# K-l (7.22)n n n
where “new h’n and old h^ denote the new and old values of h^ 

respectively.
(5) The sequence (7.3) to (7.4) is to be repeated until the 
performance index I reaches a minimum. If at any stage the 
quantity I becomes larger than its previous value# the value 
of should be halved and the above sequence should be continued 
until further reduction is necessary.

7.4 Numerical Results

The method has been tried out on the following four systems
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with different forms of weighting functions.
(1) G(s) « l/(s + 1) ? h(t) = e~”
(2) G(s) * 1/(s + 1) (s + 2) 7 h(t) a e*”^ - @*-2t

(3) G(s) * l/(s2 + 2s + 5) i h(t) = @“t sin 2t
<4) G(s) = l/(s2 + 2s t 10) 7 h(t) » e~'t sin 3t

The output for each system was computed on a digital computer 
with a very small sampling interval for a random input with 
zero mean, using relation (1). The random data was generated by 
using the RRN (Rectangular Random Number generator) subroutine . 
The correlations <f?(t) and \jf(t) were computed following the 
discussion given in reference (5). Figures 7.2 and 7.3, which 
depict respectively <p(t) and >jf(t) for a first order system 
with the transfer function G(s) = l/(s+l), suggest t^ = 26 
secs, and t^ * 31 secs. Hence tj — t^ - t = 5 secs. Taking 
K s 20 , T becomes 0.25 secs. A fourth order was found to be 
the minimum order of the polynomial for all sections of cf?(t) 
satisfying the "F testM^^^#^^®. The criteria!for good- fit cho

sen for the "F test" is that the probability of hypothesis, 
that an extra coefficient, introduced due to the next higher 
order polynomial, is zero, is more than 95 % . Computer runs 
were made following the computational procedure outlined in the 
previous section with zero as the initial guess on h *s. Simi-

33.
lar procedure was followed for each of these systems• The results 
of the impulse response identified for these systems are shown 
in Figures 7.5, 7.6, 7.7 and 7.8. The time taken for identifica
tion was about 1.5 mins, on IBM 7094 after having computed a 
an#i*s an<^ ^jf (t). The time taken for computing <|?(t) and ''ir'(t)
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and then fitting a polynomial to $(t) 
about 4 to 5 mins.

to obtain
;

an i*s was
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