CHAPTER II
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ESTIMATION TECHNIQUES : PAST & PRESENT
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é.I General

The art of automatic control is very old. In fact, it ori-
ginated with life itself as all living organisms, including human
beings, are themselves wonderful models of automatic control sys-
tems adjusting to the environments. The automatic control in its
early stages was developed in an empirical and a trial-and-error
fashion as an engineering solution to the problems of industry.
The principle of feedback did not follow from the sophisticated
mathematical vhilosophy but evoived later as an analytical inter-
pretation to help understand the operation and analysis of auto=-
matic control systems. The Eerms autcmgtic control and feedback
control are therefore used interchangeably. One of the earliest
application of the principle of feedback in every day life .is a

thermostat controlling temperature in an electric iron, in an

oven or inside the room.

The world war II gave an impetus, by sheer necessity, to
the development of the theory and practice of automatic control.
Systematic mathematical procedures for analysis and design were
developed and standardized to meet the urgent and congtant mili-
tary needs. Here, the terms 'analysis' means the investigation of
performance of a system which is already designed. The term
‘design' is used in the sense that the system is to be found
which will satisfy the required specifications of performance.
In general, design is a trial-and-error procedure. However, if
there is a clear-cut mathematical procedure for going from the
. given performance specifications to the corresponding system,

it 'is called synthesis.
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The problem of analysis and design of control systems can
be tackled in three different ways. The first is the most common
aoproach based upon the methods such as Nyquist plot, Bode dia-
gram, Nichol's chart and the root-locus method of Evans. This is
often referred to as the trial-and-error procedure. The control
engineer is given a set of some of the specifications like gain
margin, phase margin,queak: output impedance, rise time, settl-
ing time and peak overshoots. The system configuration including
some standard power actuating devices and transducers is also more
or less fixed by the general requirements. The designer's task

then is to provide proper gain adjustment or egualiser compensa-

tion.

Another approach is the analytical design in which some
criterion based on integrated history of the response of the entire
system is used as a measure of performance. There are several
performance criteria of this kind. For -example, either the mini-
mization of Mean~Square-ErrorgMSE) or the Integral-Sguare~Error
(ISE) may be used as suggesteé by"%ﬁener6 and Ha117. The detailed
discussion on such criteria is presented by Rideouts, et.al. Use
of classical methods of calculus of variations is made to minimize
the criterion and to obtain consequently the compensating network.
The system that minimizes the performance index is then said to
be the "best* or "optimal". A typical classical feedback control
system is illustrated in Fig. 2.1. The compensating network is
introduced to obtain the desired output responée. The function

of the transducer is to transform the output into the same form

as that of the input. Applicationsof these classical methods are
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‘limited to idealized and relatively simple feedback control sys-

tems.

During the last decade, the control theory has been invol-
ved in a period of evolutionary development in which significant
advances have been made. The introduction of high speed digital
computers has revolutionalized the philosophy of analysis and
design of control systems. With the introduction of digital come
puters for system design and analysis, the older methodology and
tools gave way to better ones. Also, the classical approach was
confronted by severe limitations to the design of more complex,

multivariable and time-varying systems.

Modern trend is in the direction of optimum control. The
limited supply of natural resources, raw materials and energy and
the immense pressure of business competition for producing better
and cheaper products have forced all types of industry - chemical,
steel, automobile, food processing, aircraft, textile, machine
tools, etc. to seek greater and greater efficiency through optie
mum control. The businessman strives to get the maximum out of
his investment. The plant manager tries to maximize production
and to minimize cost. The rocket expert attempts to sent the rock-
et to the maximum height with minimum fuel. ‘he design and oper-
ation of power plant by an engineer is also aimed at producing
electric power with minimum cost. The weapons engineer attempts
to design weapon-gystems with maximum destructive power. During
the last decade, the need for better controls in industrial,
military and space applications has stimulated a great deal of

interest in problems of optimum control and system optimization.
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Most of these complex systems fall under the scope of system
engineering - which involves a co-ordinated research and develop-
ment of a certain system or a sétup concerning several branches

of engineering and science. Optimum design of such complex systems
demands a computer program or an algorithm which could be process-

ed on a digital computer.

The third approach to the design and synthesis of control
systems evolved to meet the aforesaid requirements. It is a broad
generalization of the second and has developed in different ways.
The problem of optimum design of a control system may be roughly
stated as follows. Given a plant or a process to be controlled,
to determine the control law or an optimum control policy so that
a set of specified performence criteria is minimized or maximized.
The control law is an expression of the contreol variables as fun-
ctions of plant variables, i.e. a feedback system results. The
optimum control law 1s to be generated by the optimum controller
or by the digital computer incorporated in the control system.
This concept of optimum design has developed during the last deca-~
de and as such it is of ten referred to as the Modern Control

%heory.
2.2 Modern Design Approach

The advent of high speed digital computers has considerably
influenced the trend in modern design methods. The optimizstion
technigues are now evaluated not only with respect to their math-
. matical elegance, but also in relation to their compu¥ationszl

feasibility. The state space approach has both these advantages



15

and as such is given an increased emphasis.

The modern design method begins with the characterization
of the system by state varisbles followed bv its design employing
state-space techniques. In a general formulation, the design of
optimun control is usually viewed as a variational prokblem. There
are several possible variational methods for minimizing or maxi-
mizing a functional over a function space. The range is from cla-
ssical methods in the calculus of variations to numerical and
successive approximation techniques of experimental or model sys-
tems. The methodsl most commonly used are :

1) The Calculus of Variations —related to Euler — Lagrange

equations,

2} The Pontryagin's Maximum Principle - related to Hamilton

principle,

3) The Dynamic Programming -—related to Hamilton - Facobi

theory.
tthatever the method, the object is to find the control law that

seeks extremum of the given fuctional of the performance indices.

The state variables describing the dynamics of a system are
sometimes all accessible for measurement and obserwvation. For
linear systems with this feature, the determination of the opti-
mal control law.as a function of state variables can be worked
out even in the presence of measurement noise. However, it happens
quite frequently in engineering systems that the state variables

are not all accessible for measurement and observation. The opti-

mal control law is then determined as a function of the best
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possible estimates of the state variables computed in an optimum
fashion from the measurable noisy output signals. Consequently,
the more general case involves both optimum estimetion and opti-

mum control.

Since the modern control theory is eveolved in deal with more
general, complex and multivariable systems, the basic control sys-
tem configuration is markedly complicated from that of a classical
feedback control system shown in Fig. 2.1. For example, in the
automatic control of a boiler for an electric generating station,
the outputs(or variables which can be measured) include the stean
temperature, the rate of steam flow, the water level, etc. There
are likewise several inputs(&r variables which can be adjusted in
order to realize the optimum operating conditions) including pri-
mary fuel input, water input, etc. Thus, the process is decribed
by a diagram similar to that shown in Fig.2.2. In such a system,
the task of the controller is typically to adjust autohatically
each of the input variables in order to realize the optimum econo-
my of operation whiié simultaneously maintaining each of the out-
put variables within the limits prescriked by safety considerat-

ions.

The matrix of transfer functions, relating the outputs with
inputg, varies with the loading conditions of the vower plant. If
the matrix were to remain constant irrespective of the load, the
optimum performance could be obtained by designing the controller,
once for all, whatever may be the load condition. The optimum
control is thus accomplished in an open-loop manner, having iden-

tified earlier the constant matrix of transfer functions. However,
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in order to realize optimum dynamic performance of the boiler,

as the load varies over a range from the méximum value to & small
fraction of the mawximum, the transfer function matrix must be de-~
termined at each operating point. Once the process is characterized
or idéntified off-line, the design of controller system, although
complicated, can be realized with a digital computer implementa-
tion. If the process-matrix variation with plant loading is thus
known at the time of system design, the controller can consist
simply of a pre-programmed controller(shown by dotted line in
Fig. 2.2) characteristic as a function of the single variable,
the load. The controller would then modify itself according to
load variations giving optimum performance under any load cond-
ition. Here again, off-line identification is necessary. This
type of design is possible especially when the variations in the
process characteristics are predicfable and follow a definite
pattern. It can be classified as a well-~designed optimum or ada-
ptable control system but it does not meet the definition of a
self~optimizing9 or adaptive control system. A detailed biblio-
graphy on adaptive control system is available in Reference (10).
The need for an adaptive control system arises when the dynamic
characteristics of a controlled system change very widely in a
manner which is difficult or impossible to predict. As for exam-~
'ple, in coal-fired boilers,the process matrix changes markedly
and unpredictably with time and hence the designer finds it
impracticable to determine a priori the process matrix for all
loading cgnditicns. Under such circumstances, the contrciler

has to be adaptive, that is, it must during normal operation
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éQaluate the dynamic characteristics of the system from measur-
able outputs, decide the control law and then generate an actu-
ating signal which results in satisfactory overall performance.
Thus, the adaptive control system involves three stageslls
Identification, Decision and Actuation as shown in Fig. 2.3.
This type of scheme necessitates on-line identification of the
transfer fﬁnction matrices which are to be computed from measu-
rable inputs and outputs of the process without disturbing the
normal operation. Both the inputs and outputs usually are corr-
upted with noise and as such the transfer function matrices are
determined optimally to £it the given input-output data satisf-

ving a certain performance criterion. Thus, this rroblem inclu-

des the optimum control preceded by optimum identification.
2.3 Egtimation

The problem of identifying an unknown process or a klack
kox is known under different guises such as Identificationlz,
Estimation, Characterization, Evaluation or Measuresment. The
word " Process" is more general and may include an engineering
system, & biological system, an economical sﬁstem or a sociolog-
ical system. In the literature on circuit Theory and Communicat-
ion Theory, the terms "IdentificationY and "Estimation® had been
familiar for a long time. The recent trend of research towards
adaptive control has brought an added significance to it. On
many occassions, these two terms have been used synonymously.
However, depending on the a priori and the desired knowledge of
the process, the distinction can be madel3. Identification really

means the determination of the topology or structure of the
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process. Considering it as an absolute YBlack box", On the other
hand, estimation involves the determination of the parameter
'values of the process, assuming the topology to be known. The
identification is therefore of a more general nature and hence
the estimation can ke considered to be a subclass of identific-~
ation. For engineering purposes, the estimation is more realis=-
tic since some a priori information regarding the process is
always avazilable. Forvsudh cases, it may be possible to derive
an incomplete mathematicel structural model from observation
and understanding of the vhysical process. The missing details
like numerical values of‘péraﬁeters can then be determined by

a suitable estimation technique. In view of this, the word "Es-
timation" will be used in context to differential equations{or
transfer function) model of a process. Since no structural inf-
ormation need be known, the word "lIdentification® is more appre-

priate in context to impulse response.

Since estimation involves collecting normal operating
input-output data and then computing the transfer function(or
the weighting function) by some technique, it does take some
time. When the process characteristics are changing faster, the
estimation time must be shorter, if the estimation is to be of
any subsequent use in decision and actuation. it is therefore
essential that the estimation time be comparablz to the time-
constants of the systeml4. Moreover, the normal operation of the

plant should not be unduly disturbed during identification.

The plant identificetion is not always necessary15 for

n
adaptive control as some criterion based on the %Fegrated history
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" of the response{like ITAE, ISE, etc.)8 of the system can be
" used to determine whether the controller adjustment is optimum

or whether changes are required.

Most of the research work §one so far in the area assumes
the plant to have a single input and single output with either
complete, partial or no a priori knowledge. In the early stages
of de&elopment, the idea of adaptive control aroused so much of
attraction, interest aﬁd curiosity that people working in the
area did not realize the gravity of sophisticated identification
procedures but hastily resorted to the use of simple technigues
employing crude gadgeteering. In, the beginning, research workers
were more inclined towards identificetion of imvulse response,
réther than transfer function,,réstricted to linear systems only.
Thereafter much work has been done emploving variety of techni-
gues with increasing emphasis on estimation of a differential
equation(or transfer function) model of the plant. The identi-
fication technigue must be in the time domain if it is to be
realistic from the adaptive control point of view. The technigues
found in the literature are so diverse in principle and applica-
tion that a control enginer facing the task of identifying a
process is in a state of confusion as to what method is best
suited for his problem. 2An overall review of literature and an
investigation regarding the merits and demerits of different
methods is very much desirable. An attempt is made in the succ-
eeding pages to review different methods of identification from
the available literature. Several types of classifications are

.possible depénding upon
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i) Whether the: gystem to be identified is linear or non-
linezar,

ii) Whether the weighting function or the transfer funct-
ion is desired. This depends upon whether the adaptive
scheme is based on the former or the latter,

iii) Whether the preg%ce of noise is considered or not. Co-
nsideration of noise is a more realistic case,

iv) Whether complete, partial or no a priori information
regarding the noise and dynamics of the plant is avai-
lable. It is not always possible, except in rare cases,
that nothing is known of the plant. Some a priori infor-
mation is always availble due to the familiarity with
the plant,

v) Whether normal input-output record or external testing
signals are used,

vi) Whether the identification scheme is based on the con-
tinous or sampled record of input-output,

vii) The classification can also be based on the analytical
techniques employed. Various kinds of analytical and

experimental methods are available.

Relatively a few articles are published on impulse response
identification. All such papers are grouped together. The rest
of the papers on estimation of a differential éequation{or trans-
fer function) model are discuséed under different groups depend-
ing upon the techniques used. The next section deals with the
review of methods of impulse response or weighting function ide-

nt+ification.
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2.4 Impulse Regponse Identification

The dynamic characteristics of any linear system can be
completely represented by its impulse response. This is true
because the characteristics of a linear system does not depend
on the form or the magnitude of the system input. Unknown linear
systems are therefore often identified in terms of impulse respo-
nse. Moreover, the performance of a linear system can be evalu-

ate616

in terms of the impulse respyonse and to accomplish self-~
adaption, controllable parameters can be adjusted until the id-
entified impulse response takes the desired form. In practice,
the output of the system is corrupted with noise and as such all
realistic identification procedures aim at reaching the'best po~
ssible" or "optimum” estimate of impulse response of the system
£from normal noisy input-output data. The available methods can
be subdivided into three groups:

A. Cross~correlation Identification,

B. Identification from sampled input-Output Data, and

C. Matched Filter Identification.

2.4A Cross-correlation Identification

Most of the technigues employed so far use correlation
functions. The cross-correlation of the input with output of the
system is related to the auto-correlation of input throuch a

i
convolution integral involving the systems imoulse response,

This relation is well known as the Wiener-Hopf equations. As

17,18

early as 1950, Wienerl7 and Lee pointed out that when the

input of a system is white noise, its auto-correlation function
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is an impulse function and as such the cross-correlation funct-
ion in the Wiener-Hopf equation represents the impulse response.

16 in th-

The same method was emploved later by Anderson, et.al.
eir identification scheme for an adaptive control of an aircraft

pitch damper.

2.4B Identification from Sampled Input-Output Data

Goodman and Reswicks developed in 1956 an experimental
device, namely Delay Line Synthesizer (DLS), to obtain the
impulse response at discrete instants by feeding to the device
auto- and cross-correlations computed beforehand from the nor-
mal noisy input-output record of the system. In essence, the
DLS unit performs "deconvolution" on the Wiener-Hopf eguation
to recover the weighting function. This is discussed in greater

details in Chapter VII.

Levin19 used the least squares method for identifying the
impulse response at discrete instants from sampled input-output
record observed over a limited period. The measured cuﬁput is
viewed as the sum of ideal output(not observable) and random
noise as depicted in Fig. 2.4. It is assumed that the noise has
zero mean. The optimum imoulse response is sought as that which
minimizes the sum of the squares of errors between the observed
oupput and the computed output at sampling instants. The computed
:ggfg£tained from the expression of discrete version of the con-
volution integral releting the observed input and the system's

impulse response to be estimated. The minimization procedure

gives rise to & set of linear equations from which the estimate
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of impulse response at discrete instants is obtained. These egu-
ations are in the form of sampled-data analog of the Wiener-Hopf
eguation, thereby showing that the method of *"deconvolution® by

Goodman and Reswick and the least sguares method would give al-

most the same results. It is further shown that (a) if the noise
is white, the least squares estimates and Markov estimates coin-
cide and are the same as the minimum variance unbiased estimates
and (b) if the noise is white and also gaussian, then the least

squares and Markov estimates are the same as the maximum likeli-
hood estimates and are efficient(i.e. they have minimum variance

among all unbiased estimates).

Kerr and Surberzoused the same approach as suggested by
Levin but they went further to provide a test of the reliability
of identification by introducing a "sufficient record length®
criterion. Emphasis is laid on the fact that the estimation schame
of time-varying systems must be based on as short an operating
record as possible, consistant with the desirgd degree of acc-~
uracy. For short duration records, a strictly statistical desc-
ription of the input and output signals is precluded. A conflict
of requirement arises, in fact, since it is desirable to use as
long a record as possible for noise smoothing, but as short a
record as possible, so that the system may be assumed to be time-
invariant over the estimation interval. Hence, for a given rate
of parameter variation, a given noise level and a given type of
control signal variation, it is shown that there does exist an

optimum record length of inmput and output data.
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It is assumed that the system has a finite settling time
so as to represent the system's impulse response by a finite
number of parameters. The precision with which the set of para-
meters can be estimated increases with the increase in the length
of the observed record. This type of noise smoothing is .a funct-
ion of the degree of redundancy in the data, i.e. the nﬁmber of
independent output data samples relative to the number of para-
meters to be estimated., If the assumed settling time is too long,
the apparent number of parameters to be estimated will be incre-
ased. This also increases the effective noise smoothing and- resul-
ts in poorer precision., However, if the settling time is too short
g sgystematic error will be introduced into the estimates of the
retained parameters. The best choice of settling time for a fixed
observed record is obtained when the systematic error became of
the same order of magnitude as the expected noise-~induced estima-

tion error.

If the system is assumed to have an effective upper cut-off
freguency fc' then no significant information is lost in setting
the sampling intervel At = (1/2fc). If at is chosen to be smaller

then this, then a larger numbker of parameters will be required
for the same settling time. In addition to requiring a faster
sampling rate and a greater computer capacity, this increases the
expected error in the parameter estimetes. This provides less
filtering of the noise in the output, thus increesing the effect
of the noise energy relative to the signal energyZI. However,if
A&t were chosen higher than (l/zfc). some information in the

high freguency region would be lost thereby introducing a system-
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atic structural error.

The estimation procedure and the conclusions for the

given statistical description of the noise are generally the
same as those suggested by levin. The reliability of estimate

is shown to depend critically upon the nature of the input and
noise. An expression for the eépected integrated-squared-error
between the actual and the estimated impulse responses is deri-
ved to indicate the degree of reliabilitv. A “sufficient signal®
ig defined as the one for which the expected integral-squared-
error does not exceed some specified value. It is shown that if
the statistics of the imput signal and noise are known a priori,
*sufficient test signal" would be cbtained with a record of cer-
tain length. Thus the “sufficient test signal® criterion is tra-

nsformed in to 2 "sufficient record length" criterion.

2.4C Matched Filter Identification

A different approach developed by Turin22 uses an estimate-
ing filter, as depicted in Fig. 2«5, at the system output to make
2 linear minimum mean-sqguare-error estimate of the impulse res-
ponse of the system. Such a procedure requires no multiplier, and
the output of the filter is the impulse response as a continuous
function of real time. The system in this case is a transmission
medium such as ionosphere. The transmission medium characteristics
does vary with time but it is assumed that it varies slowly and
consequently it remains unchanged during the estimation period.
Moreover, to make the problem realistic, the signal after trans-
mission through the medium is considered to be perturbed by sta-

tionary random noise. The mean-square of the error (considering



27

the statistical average over the ensemble of possible noises
ard impulse responses of the medium), between the output of the
estimating filter and the impulse response of the medium, is
minimized by adjusting the estimating filter impulse response
and the nature of input. Making use of the Fourier transforms,
this gives optimum transfer function of the estimating filter
vhich gives at its output the optimum impulse response of the

medium.

Although Turin's problem arose in the field of communica-
tions and radar, the idea was applied to process identification
for adaptive control by LichtenburgerZB. The method consists of
injecting a special test signal at the input along with the re-
gular actuating signal and then passing the output through a
correlating filter whose output gives the estimate of impulse
response of the time-~invariant svstem. The amplitude of the test
signal must be small with respect to the actuating signal for
the practical reason that the process output is not appreciably
disturbed. In this case, the actuating signal is treated as noise
and as such the noise power will be relatively greater then the
test signal power. The corresponding noise in the output will
also be guite high. The effect of output noise is reduced by
increasing the effective duration of the test signal so as to
increase the energy of the test signal without increasing its

average amplitude. This is accomplished in the following mannern

A train of a finite number of test pulses(as against only
one testing pulse used by Turin) is added to the normal in@ut

of the linear process as shown in Fig. 2.6. The output of the
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process during each test pulse is added to the sum of all the
previous tests in the measurement at each instant of time. This
is accomplished by the use of delay or storage gnd an adder. This
process is called ccherent summation. After the last test pulse,
the result of the summation, still a function of time, is passed
into an estimating filter. The expected mean-square-error is then
minimized by the choice of estimating filter, test signal, and
number of testing signals to get the estimating filter output as
the best estimate of process impulse response. This method does
give better results but takes a longer time. This is unfortunate
because one would like to have the results available as soon as
possible from the point of view of control system performance
and because even for slowly varying processes, error builds up

seriously for sufficiently long measurements.

As pointed out by Lindenlaub and Cooper24, the mathematical
similarity of the akove three methods is vrovided by Wiener-Hopf
equation, the solution of which becomes simpler by considering
the input to be white noise, However, since the external noise
enters the problem differently in each method, different techni-
gues are used to reduce the variance of the impulse response
estimate. It is further shown that the identification time in
each case is the same as the product of gain and bandwidth of
the system to be identified divided by the product of variance
of the impulse response estimate and the output SNR(Signal to
Noise Ratio). All the three methods give a minimum variance
estimate of the unknown impulse response, as is true for an

ideal identifier, assuming that no a priori information of the
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unknown system is available.

2.5 Estimation of a Differential Eguation or a Transfer

Funetion Model

A transfer function is the frequency domain representation
of a stationary linear system showing the relation between its
input and output. It is derived from the differential equation
description of the linear syétem by assuming the initial conditions
to be zero. The estimation of a transfer function really means
the determination of the constant coefficients of differential
equation or constant parameters of the system.For a sampLed-data
case, the difference equation model is sought. The transfer
function concept is not valid,in generzl, for a time varying sys-
tem but from the adaptive control point of view, the system can
be represented by a transfer function which changes from instant
to instant with the variation in parameters which can be estimated
from time to time. However, for a monlinear system, only the diff-
erentisl equation(nonlinear) representation is possible and the
estimation of such a system is aimed at determining its coeffici-
ents. With the increasing use of state-space concepts and the
advent of the modern high-speed digital computer, the differen-
tial{or difference) equation description of the system is found

more favourable.

In the early stages of development of adaptive control, the
estimation of processes evolved in the form of parameter correct-
ion or parameter tracking by employing tracking servo loops as

an engineering solution to the overall adaotive process. Most
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2

of these schemes employ rhysical models. The estimetion is not
given a separate and distinct identity in the overall adaptive
scheme. 3Such schemes have been used for small size processes.

Parameter tracking schemes are discussed in section 2.5A.

The estimation schemes based on explicit mathematical
relations{ i.e. mathematical models) and giving results in num-
erical gquantities from the input-output record with the aid of
digital computer, began to develop a little leter. The methods
are emploved especizlly for large size, multivariable and complex
systems which can afford or justify a digital computer. The sol-
ution to the estimation problems of this class is obtained by
meang of variety 6f analytical techniques as will be seen in

section 2.5EB.

2.5A Estimstion as FParasmeter Tracking Emploving a Physical Model

The methods of this class are discussed under three separate
groups: (1) Parameter perturbation, (ii) Input signai perturbation,
(iii) Parameter tracking using Normal input-output record.

(i) Parameter Perturbation

25

In 1951,Draper and Li“~ presented a parameter perturbation

scheme for optimizing the performance of an internal combustion

26

engine. Mocgrath and Rideout® suggested that this techniques cah

be used for self-optimization of feedback control systems by
adjusting the paramters so as to minimize the mean-square-errcr

criterion. A similar system was developed independently by

27

Nightingale® 'and Taylorzs. The scheme had aroused a great deal

of interest even in Britain and Russia as is evident from the

[« 2
publications of Douce and Kingz‘, FeiﬂbaumBO, Kazakovs1 and
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VaryginSZ: The technigue is relatively‘simple and has good noise

immunity.

In this scheme, the controllable parameter is perturbed
sinusocidally to test whether or not the system performance is
optimun. The cross-correlation of the perturbation signal with
the square of the error, between the outputs of the process and
the model is then used to adjust the parameters of the process.
4s many perturkbation signals as the number of parameters are
required. Mcgrath, et. al.33pointed out the versatility of this
technique by citing the number of control situations in which

it can be profitably applied.

2, .
Foll&;ng their remarks, Rajaraman34 described a multiple-
model system for simultanecus adjustment of two parameters of
the process along the steepest descent.torobtain a self-adaptive

system which, according to AseltineBs

s is both input signal and
process adaptive. It consists of two models receiving the same
input as the process. Model I is an ideal version of the process
and will be in general of an order different from that of the
process. Model II is chosen to be of the same order as the process.
The parameter of model II is perturbed by a low freguency sinuso-
idal signal. The square of the error, between the outputs of Model
I and II, after multiplitation(with the perturbation signal) and
integration yields information to adjust the parameter. This
ensures adaptétion against input signal variations. The controller
for the process is of feedback tyvpe and its parameter is adjusted
(by a separate adaptive loop) in a similar manner, based on the

error resulting from the comparasion of outputs cof process and
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Model II. The parameter of Model II is perturbed with « different
fregquency for this adaptive loop. Tﬁe adaptive loop performg sime-
ultanecusly system parameter tracking(estimation) and its correct-
ion{adaptation). When adjustment of two parameters ié involved,

another set of two adapﬁive loops is added.

(ii) Insut Signal Perturbation

Besides parameter perturbation, simnusoidal per;urbation of
the input signal was also common in early stages of adaptive co-
ntrol. This method is also simple and has the advantage of const-
ant amplitude of test signal and negligible noise effect. In add-
ition, it can provide in general two identification signals for
each sinusoidal frequency.

Cne of the earliest papers on input signal perturbation is
by Weygandt and Pur136. It describes a system for determing the
parameters of a transfer function of the form - one divided by a
polynomial in terms of the Iaplacian variable 's'. The method is
shown to work for a polynomial of second order which involves the
tracking of two coefficients in the denominator pelynomial. A
sinusoidal perturbing signal is injetted in the normal input. The
cross-correlations of the error(between the input and output of
the same frequency) with (a) the output and (b) the output shifted
in phase by 900, are then used to track the two paramsters.

Eykhoff and Smith>’

used a dynamic model which is made to
follow the process by adjusting its parameters by cross-correlat-
ion of model output with process output. The process and the model

avre fed with the same perturbation signal.
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Smith38 devised an adaptive scheme for automatic gain con-
trol of an Autopilét. Any change in phase shift or amplitude of
the process output caused by environmental variations is detected
by feeding model output and process output to an adaptive computer
which then adjusts the gein of the Autopilot(controller) to hold
the measured amplitude or phase shift copstant.ﬁThe adaptive come-
puter is either a phase discriminator or an amplitude measuring

device, tuned to the test signal frequency.

Another paper by PerlisS® describes a technique based upon
the use of existing external signals and claims that the overall
system'’s figure of merit can be improved with such a schenme.

Smyth and Nahiéo developed a technique to track the two pa~

rameters in their adaptive scheme, based on the variations in
amplitude and phase of the output corresponding to the dither
(verturkation) signal at the imput. The scheme is an extension

to the siggal-parameter amplitude dither adaptive system by Smith3§

Itfimportant‘to note that in both the perturbation techmniqgues,
the amplitude of the test signal should be neither too large to
avoid undue distrubance to the normal working nor too small to keep

the SNR sufficiently high.

(iii) Parameter Tracking Using Normal Input-Output Record

The techniques discussed in the previous sections employing
perturbation becomes cumbersome when adjustment of many parameters
is involved. However, the general method of computing the partial
derivatives(i.e.gradients) of the performance criterion with res-

pect to each parameter has the advantage of being applicable to
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n,
many problems and ;ﬁependent of specific system configuration.

‘Margolis and Leondes4l’42

used only the normal input-output
record(rather than any kind of perturbation) for parameter track-
ing of a physical process employing a dynamic model in their dy-
namic scheme. The learning model and the physical process are
subjected to the same normal input signals. Their outputs are
compared and the resultant error is fed to the adjusting mechani-
sms which operates on an approximation to seepest descent and
adjusts the parameters of the learning model until the squeare af
the error reaches minimum. Thus the dynamic model behaves as much
like the process as possible. This information is then used in
programming the controller. The method has been tried out success=-
fully on both the first order and the second order processes with
some restriction on the input for the latter. The input must be
present all the time otherwise the error becomes zero(i.e.minimum)

and the adjusting mechanism does not operate.

Narendrz and McBride43 suggested the use of correlztion tech-
nigques to compute the partial derivatives to adjust the parameters
along the path of steepest descent in a parameter space to the

minimum error criterion.

2.58 Estimation Emploving Mathematical Models

2 number of methods which emvloy dynamic mathematical models
for estimation of transfer functiocns or differential equation
parameters are available to-day. tThey are classified in the foll-~

owing groups according to the analytical techniques employed.

(i) sStatistical Methods,
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{(ii) Quasilinearization Technigue,
{(iii) Dynamic Programming,
(iv) Estimation as a TPBV Problem, and

(v) Miscelleneous Methods.

{i) Statistical Methdds

Wiener-Kalman Filter

’f?iener44 pointed out that the natural setting of the est-
imation pfoblems in communication and control belongs to the realm
of nrobkability theory and statistics. The estimation in general
covers (i) data-smoothing or interpolation(estimation of the past
state), (ii) filtering(estimation of the current state) and (iii)
prediction{estimation of the future state). The solution of filter-
ing or prediction problems leads to the well known Wiener-Hopf
integral equation which can bé solved by spectral factorization
method. Many extensions and generalizations45 followed Wiener's
basic work. In all these works, the objective had been to obtain
the model for Wiener filter which could accomplish prediction,
separation or detection of a random signal. These methods are

45

subject to a number of limitations =~ which serdiously curtail their

usefulness to practical problems.

Kalmanésintroauce& a novel aporoach to solve the Wiener

vroblem and overcame the difficulties by using the Bode—Shannon46
representation of random processes and the "state-transition®

method of analysis of dynamic systems. Linear filtering is regard-
ed as orthogonal projection in Hilbert space. With the state tran-
sition method, a single gerivation covers a large variety of

problems: growing and infinite memory filters, stationary and
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nonstationary statistics, etc. The approach gives a nonlinear
difference{ or differential) eguation for the covariance matrix
of the optimal estimation error. This is vaguely analogous to

the Wiener-Honf equation. The solution of the eguation begins
with the first observation taken at time t,e At each later time

t, the solution of the egquation represents the covariance of the
optimal prediction error, given the observations in the interval
(to , t). Use is made of conditional probability distributions

" and expectations. The coefficients(in general, time-varying) ch-
aracterizing the optimal linear filter is obtained at once from
the covariance matrix at time t , without any further calculations.
The new formulation of the Wiener problem turns out to be the dual

45,4 :
5047 e power of the

of the noise-free optimal regulator problem
method is most apparent in theoretical investigations and in num-
erical answers to complex practical problems, with the aid of
digitai comnuters. The Kalman's solution to the Wiener problem

is popularly known as Wiener-{alman filter.

In working out an analogy for a continuous-time case,
Kalman and Bucy48 showed that the nonlinear differential eguation
for the covariance matrix of the optimal filtering error is of
Riccati tvpe which occurs in the calculus of varistions and is
closely related to the canonical form of Hamilton differential
equation., The relationship gives a c¢lus to the solution of the
Riccati equation. The solution of this Riccati type equation
completely specifies the optimal filter for either finite or
infinite smoothing intervals and stationary and non-stationary

statistics. It is concluded that this approach is better rather
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than attacking the Wiener-Hopf integral eguation directly. The
principle of duality relating rstochastic estimation and deter-
ministic control is used to the advantage in the proof of theo-
retical results.

4
Florentin‘9

used a technique conceptially much simpler than
the idea of orthogonal projection employed by Kalman and arrived
at the same recursive relations for the estimation of a state
vector when only a part of it corrupted bv noise is observable.
However, this does not directly demonstrate the filtering process
to be interpreted as a linear dynamical system. Mayneso, in his
estimation procedure, considered all the components of the state
vector as perfectly measurable. The forgoing ideas were unified
and a procedure was devised by Kumar and Sridhars1 for estimat-
ing the entire state vector and the coefficients of the differ~
ential equatioﬁ from measurements on the system inputs and the
observable outputs. Making use of some statistical concepts, the
estimate of the current state is obtained by updating the imme-
diate past estimate, as new observations are made. This seguen-
tial scheme can be very easily implemented on a digital computer.
It is proposed that the method could be used for on-line ident-

ification since the identification time is not excessively long

compared to the system time constants.

O‘Donnells2 presented a mathematically less sophisticated
derivation of the one dimensional filtering problem. The other
advantage is that the covariance matrix of the optimal estima-
tion error is obtained in the closed form, in contrast to that

in Halman's paper. It is shown that, after some finite number
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of measurements, the above covariance matrix approaches éero
and therefore no correction is provided to the estimate even if
the actual values may vary. This is undersirable and can be re-~
medied by including a disturbance term(with known statistics)
in the assumed dynamic model of the system.

The design of the optimal filter by Kalman and Eucy48

considers white noise in measurements. Many practical‘systems
exist in which some of the measurements are corrupted with colo-
ured noise, some with white noise and the rest with no noise.
Such cases are singular problems within the framework of the
Kalman-Bucy theory. The solution to this oroblem is provided by
Brygon and Johansen53. The coloured noise is congidered as the
output of an auxiliary linear dynamic system(called a "shaping
filter") with white noise inouts. With this aporoach the coloured
noise vector becomes a part of an augmented state variable vector
and the corresgonding measurements}now contain only linear comb-
inationsof the augmented state variables without noise term. Thus
the shaping filter approach makes the augmented system appear as
a system in which the measurements are partly perfect and partly
corrupted with white noise. The estimation of the states measured
perfectly is not required. The rest of the states containing

white noise are estimated using the Xalman-Bucy approach.

The solution of the Riccati type equation48 for the design
of optimal filter to give a conditional expectation of the state
is not easy. A paper by ?ark54 presents the derivation of a
minimum variance filter which vields an approximation to the

conditional expectation of the state. The filter is a model, of



the plant and controller, which is reset after every independeht
observation by a device which averages the curfent observation
with the past observations. aAfter the filter is reset to this
new average, it tracks with the plant until the next observation
when the process is repeated. The filter tracks the state so that
the statistical problem is reduced to that of determining a con-

stant in additive noise.

After HKalman and Bucy48 worked out the linear filtering
theory, suggestions were made to use this theory to find an
approximate solution to the nonlinear filtering problem by line-
arizing the nonlinear dynamics of the process and observation
function. Bucy55 showed that linearigzing the optimum nonlinear
problem leads to quite a different and probably more useful app-
roximate solution than the aﬁove procedure. This is accomplished
by representing the conditional density in terms of a functional
of the stochastic integral of various functions with respect to
the observed random process. A random partial differential equa-
tion for the conditional density is then obtained by using Ito's
random calculus. Similar work is done earlier by Wonhan?s claim~
ing that the performance of the optimal nonlinear filter is

substantially better than that of the simple Wiener filter.

H057 proved that with little manipulation, the recursive
relations derived by Bryson and Frazierss for the estimation of
a state in the presence of gaussian noise, can be transformed to
those of Kahnan45 . Some connections are then established among
the maximum likelihood estimate, the optimal filtering and the

stochastic approximation of the estimate. The conditions for
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™)
system's identifiability are given by Ho and Whalens“‘

Smoothing Estimate

Whereas Kalman gave solutions to fiftering and prediction

58,60,61 extended the results to the smooth-

problems, some aothers
ing problem. Realizing that a smoothing solution would contain
filtering subroutines, ﬁéaverGo gave a modified solution to the
filtering problem. He made use of the fact that, in the gaussian
case, 1if the loss function of a Bayes estimate is proportional
to the sguare of the magnitude of the error vector, then the op-
timum estimate is also the maximum likelihood estimate znd is the

61attacked

conditional mean of the Quantity to be estimated. Rauch
a practical smoosthing problem wherein the instantaneous position
and velocity of a satellite(after its injection into orbit) are
estimated in real time as observations are received while the
smoothed estimates of the initial conditions(position and velocity
immediately after the termination of thrust) are required for the
evaluation of zccuracy of the guidance system used during inject-
ion. For this class of problemg, a solution is found which direct-
ly relates the smoothed estimate of the state at the particular
time to the new observations., This form is more feasible computa-
tionally because it elimitates the need for storing observations
and because it allows the smoothed estimate to ke updasted immed-
iately as more observations are made. The solution is obtained
using the state transition matrix and the covariance matrix of
the estimate.

Bayesian Approach

Another statistical approach to the problem of estimation
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is based on the sssumption that the system under consideration

is Bayesisn. A system is considered Bayesian if the general str-
ucture of the plant is known and some a oriori distributicns for
the unknown parameters are availsble. Bayvesian systems may ke rare
in general statistical work but are common in control field.
Accordiﬁg to Bayes rule, the probability(a posteribri) density. of
%X given y is given as the product of the density function of y
given x and the density function of x divided by the density fun-
ction of x. Ho and Tee®? demonstrated the use of Bayes rule for
linear estimation and arrived at the closed form Wiener-Kalman
solution in gaussian noise. Basically, the approach consists in
proceeding step by step from the availble a priori probability
density functions to the a posteriori conditional density funct-

ion. Florentin63

also assumed a Bayesian system to estimate the
gain in the control path of a simple regulator, using the control
as, the probe. The aporoach becomes formidable in the licht of
computer time when the system is multi&imensioﬁal and the obser-
vation is a nonlinear function of state variables. However, it
is felt that the Eayesian approachsz offers a unified and intui-
tive viewpoint for the general problems of estimation and control.
Regression Technigue
Regression Analysis64 is a powerful statistical tool for
the determination of dynamic relationships among veriables. It
is in no way restricted to any class of functions or, except for
statistical tests of hypothesis, to any particular form of random

distribution. It involves in general the simultaneous solution of

m linear equations to determine n unknown coefficients( n<m )
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attached to n variakles. These variables need not be mutually
iﬁdependente In the estimation oroblem, the situation is similar
since the output variable(observable) is represented as a linear
combination of n controllable variables involving n unknown con-
stant coefficients(parameters). FPor a noisefree case, n observa=-
tions are sufficient to determine accurately the n parameters.
This is a simple algebraic problem. But, in practice, the obser-
vations are noisy and the observations required are more, i.e.
m=>=n , to smoothen the effect of noise. The solution is then
obtained through the use of variance of controllable variables
and covariance between cobservations' and the controllable variab-
les. Thus the regression analysis is a statistical problem. The
least squares treatment to the problem would also give the same
results. Since regression analysis involves dynamic relationships,
it can, ideally at least vroceed during the natural operation of
the process without the necessity of special inputs for performan-

ce measuring purposes.

Bishop and C‘hope65 employed this techniques to obtain inf-
ormation about constant parameters for optimal control of a mul-
tivariate nonstationary process citing an example of paper manu-
facturing. He considers a general case including nonlinearity.The
adjustment of controllers is made pefiodically at the end of every
calculation interval. a4s such the process operates open-loop during
the calculation period. Elkind, et.a1.66 avplied regression scheme
to measurements of human pilot control(time-varying) characteris-~

‘tics with digital computer simulation. They considered a model

consisting of parallel connections of filters whose impulse



43

reséénses are orthogonalized exponential functions. The model

is fed with the system input. The coefficients of linear regre-
ssion of the system output on each of the filter outputs are de-
termined. It is shown that the length of input-output record to
determine the coefficients with given variance can be estimated
with the known ststistics about regression coefficients. Another
paper67 describes the technique for estimation of a state vector
(for space vehicle orientation) which is augmented to include

68 discussed the uni~

space vehicle paremehers. Giese and MeGhee
fying ideas of least squares, regression, maximum likelihood and
Bavesian estimate and tackled the practical problems like monli-
near pendulum equation and Ballistic Vehicle atmospheric reentry
eqguation. The time taken by the computer is short enough to make

the methods practicable.

Ievin69

used the generalized least squares theory for the
estimation of pulse transfer function of a linear system from
normal operating records. The estimates of the coefficients are
obtained as the ccomponents of the eigen—&ector corresponding to
the smallest eigen-value of a matrix equation involving the sample
auto- and cross-correlation functions of the input and output

records and the covariance matrix of the corresponding noise

components.

Steiglitz and McBride70 proposed an iterative technigue
to estimate a linear system from noisy input-output samples by
minimizing the mean sqguare error between system and model outputs.

The model chosen has a transfer function which is a ratio of



44

polynomials in z~1

. Although the regression eguatiocns for the
optimal set of coefficients are highly nonlinear and difficult
to solve, it is shown that the problem can be reduced to the
recursive solution of a related linear problem. The technigue
gave signifiecant improvement over the Kalman's71 linear regre-
ssion estimate for a number of computer-simulated systems. Con-
vergence is obtained successfully within 10-20 iterations thus
saving considerable computer time. The procedure is found to be

effective for SNR less than unity, and with as few as 200 samples

of the ingut and output records.

Another filtering scheme of jterative nature for nonlinear
time varying process, due to Mowery72, is based on optimally
weighted, linear differential corrections obtained by local lin-
earization through Taylor series expansions. The set of normal
equetions obtained by minimizing the Quadratic function of errors
are nonlinear whenever the observations are nonlinear functions
of the state vector. These equations are then solved using the
linear zpproximation obtained by truncating the Taylor series
exaé?sion.about the stete variables. The filter equations thus
obtained are of a general nature and, with slight manipulation,
can be reduced to Wiener-Kalman filter. The necessary and suffi-
cient conditions which permit the use of technique for linear

system are determined by Fisher73.

Q
Smith®4 made an attempt of reviewing the techniques of
maximum likelihood, Payesian decision-making, regression analysis,
least squares and statistical filtering to show that the differ-

ences in various methods are due to differences in basice
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hvnotheses. K@rrgs suggested that the identification situations
méy be classified according to three basic "system signal" con-
figurations, which the asuthor has termed Ugtatistical", P"regre-
‘ssion” and "structural® models explaing the distinguishing fea-

tures.

(ii) gQuasilinearization Technique

Quasilinearization74'75

is the name given by HKalaba and
Bellman for a generalized Newton-Raphson method of root-finding
of a differential equation and is sometimes called the Newton-
Raphson-Kantarovich method. The quasilinearization procedure is
a general computational method for solving Multi-Point Boundary
Value Problems (MFEVP). The method has been employeﬁ76'77'78 to
identify the differential equation, linear or nonlinear, déscr-
ibing the dynamics of a process. The quasilinearization techni-
que as applied to identification problem is briefly discussed
below.
Let the process be discribed by a vector differential

equation

X = f t_ £t 2
fix , t) ty £t £t (2.1)
where x is a n-vector which also includes constant parameters
of the process to be estimated. Iet the vector x , in a noise~
free case, be observed as

y(ti) = H X(ti) i = 11 2' [ ) [ g ln (2°2)

Also

= = = P &
to - tl t2 ® [ - tn tT

where v is a n-vector and H is a nxn constant matrix.
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The identification problem is then to choose initial state
x(to) such that the solution x{t) of equagtion (2.1) satisfies
the observed values of equation (2.2). Let xb{t) be an aribit-
rary initial guess to the solution of equation (2.1). The (k+l)st

th v

approximétion is then obtained from the k ia

&,

fepy = Ely . ®) + T EG O] Gy - x) (2.3)
where J is the Jacobian matrix whose (i,j)th element is the
partial derivative of the ith component of £ with respect to
the Jth component of x. The solution of equation (2.3) is
written as

Xppq = $q +p (2.4)
where

$ is the fundamental matrix solution of equation (2.3),

p is a particular solution vector of equation (5.3) and

g is a constant vector to be determined from equation (2.2) by

substituting for x obtained from equation (2.4). The calcula-

k+l
tions are generally carried out on a digital computer and the
sequence of vectors Y will converge quardratically74 to the
disired solution.

For a noise-free case as Giscussed above, Prasannakumar

and Sridhar assumed that for the nt’h

order system, exact fit
through n arbitrarily selected observation points along the
desired trajectory would give a unique solution to the identi-
fication problem. ILavi and Strauss 79 however disproved the pre-~
sence of unigueness by citing a simple example. Generally, the

observations are corrupted with noise and the estimation of

initial state is obtained in the least sguares sense so as to
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minimize the performance index,

ro- & frtey) - H x(ti)j[“yctg - Hxtey) | (2.5)
Z .

it is suggested79 that the regression solution (i.e. when
the number of observations is more than the order of the gystem)
reduces the unigueness difficulties and smoothens the noise effect
giving an unbiased estimate. One major drawback is that the iden-
tification procedure often converges to the local minimum of the

performance index.

Chap and Stubberudso employed this technique for the est-~
mation of the current position and velocity of a low earth-orbit
satellite using range, elevation and azimuth observations from
a ground'tracking station. Another application due to Bellman,
et, a1.81,is to the "Unscrambling Problem® which seeks to deter-
mine the correspondence between every stimulus and every source

in a multivariasble biological system.

(1ii) Dynamic Programming

One of the most powerful tools being applied in the field

of optimum control is the Ballman's75'82

Dynamic programming. The
fundamental idea underlying the method is the principle of invar-
iant imbedding which reduces a very difficult or unsolvable mul-
tistage decision problem into a class of simpler, solvable probl-
ems. The multistage decision problem of optimiging is converted
to & problem of determining the solution of a recursive functional
equation by invoking the principle of optimality, which states:

An optimal policy has the property that whatever the

initial state and the initial decisions are, the
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remaining decisions must constitute an optimal policy
with regard to the state resulting from the first
decision.
This concept implies that, to solve a specific optimum decision
prgblem,‘the original problem is embedded within a family of
similar problems which are easier to solve. The dynamic progra-

mming approach is, in principle, illustrated below.

Let us consider a N-stage decision process. Iet x be a
n-dimensional state vector characterizing a physical syétem ét
any time. The transition of the state is described by the rela-
tion

e m, ) 121, 2 . o . N (2.6)

This operation yields the total output{or return) for N stages
N

RN = J-%i ri}{j, mj) (2-77)

The problem is to choose an N-stage policy, i.e. the sequenre

{znl ’ m2 v e e mN}‘, so as to maximize(or minimize)the return

Ry for the given initial state( or allocation) xl. The maximum

return of the N stages is given by

N L]
£ (x') = max {.E: r(x?, m,) (2.8)
N m,} Jj=1 3

J

The solution of this N-stage problem by simple calculus is forme
dable. However, invoking the principle of optimality, the maximun
return is readily written as

. {g x*, ml)]} (2.9)

4

fN(xl) = max {r(x . ml)

my
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Thus, by applying the principle of optimality, the N-stage deci-
sion process is reduced to a sequence of N single-stage decision
processes, thereby making it convenient to solve the optimization
problem in a systematic, iterative manner.

2,83 used the dynamic programming in conjuction

Henry Cox
with maximun likelihood approach to develop a seguential scheme
for the estimation of state variables and parameters of & nonlinear
discrete-time system in the presence of gaussian dynanic and mea-
surement noise. The state vector is augmented to include constant
parameters. The vector equation of linear system then contains
certain terms as product of two or more state variables making it
nonlinear-like. The estimation scheme discussed by Cox is in gen-
eral valid for nonlinear systems including the case just discussed.
It is possible to proceed sequentially by Bayes rule and after each
measurement obktain the a posteriori probability density function
for the current state variable. This task is easy only for linear
and simple systems. The problem of estimating the state trajectory,
given the observed sequence and the a priori distribution of the
initial state, is reduced to the problem of minimizing a functional
of the least-sguares-error type. The multistage minimization pro-
blem is then solved through dynamic programming to give a seguen-
tial procedure for estimation. The segquential procedure allows
the processing of each new observation as it cccurs and gives the
estimate of the present state by modifying the extrapolated value
of the previous estimate on the basis of current observation. The
estimation can be performed in real time on a digital computer.

The results obtained are valid for smoothing, filtering or
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prediction. The filtering or smoothing solution does not need to
store old values. The results obtained for a linear system are

84. An intuitively appea-

foumd to be similar to those of Kalman
ling approximation technique based on Taylor series expansion

is developed for producing estimates of state variables of a
nonlinear system. Using the same approach, Cox85 obtained a
general solution in cont:aous-time for the linear problem, simi-
lar to the one developed earlier by Kalman and Bucy48. The dyn-
amic programﬁing formulation leads naturally to an approximation

teéhnique for the nonlinear problem.

(iv) Estimation as a TPBV Problem

Besgides dynamic programming, an alternaﬁg approach sugges-
ted by Cox2 is to introduce ILagrange multipliers in the minimiz-
ing functional to incorporate the constraints imposed by the dy-
namic equations of the system. Setting the differential of the
modified functional to zero for minima and rearranging yvields the
necessary conditions (Euler-Lagrange equations) in the form of a

TPBV problem. This is found to be the discrete analogue of the

58. The solution of

TPBV obtained earlier by Bryson and Frazier
the TPBV probleﬁ for a linear system gives recurrence eqguations
(dependent on covariance matrix) to produce an up-to-date estimate.
Using some matrix algebra, the' results obtainéd by Cox may be
shown to be equivalent to those of Kalman84. The results are then

extended for a nonlinear problem using an approximation technique.

Sridhar and Detchmandy3 developed a seqﬁential estimation

-

- scheme based on least squares criterion by solving the TPEV
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problem using invariant imbedding. No statistical assumptions
are made concerning the nature of the input disturbances or of
the measurement errors. This is of practical importance since
in most of the practical problems, statistical description of
disturkances is absent or difficult to determine. The filter
equations obtained consider both the input and measurement dis-
turbances. Bellman, et. a1.86 obtained similar eguations consi-
dering only the measurement error but their method of derivation
is not appoticable to thig‘case. The f£ilter equations3 are some-
what similar to those obtained by Coxz. Pearson4 obtained the
discrete version of these filter equation53 using the same pri-

nciple but the logic is conceptually much different. The details

of this method are given in Appendix A.
(v) Miscelleneous Methods

Kbhr87 described a method for the determination of a non-
linear differential equation model for a physical time-invariant
system. The system is represented by a nonlinear differential
equation containing a single-value nonlinear function of a single
variable {(output) and other linear derivatives of output on left
hand side and input function on the other sides. The nonlinear
function can then be interpreted as the input function minas all
the linear terms of the differential eguations. Thus, if the input,
the output and derivatives of all required order, and the linear
coefficients are all available, the nonlinear function can be
evaluated. Analog computer simulztion may be used for this pur-
pose. The method is then extended to systems containing several

nonlinear elements. The system is assumed to have a specified
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periodic input and insignificant noise level in input and output.

In most of the published work on identification, the consi-
deration of a priori knowledge about the system structure, measu-
rement noise and time-~varying system parameters is not given suf-
ficient attention. It is shown by Zf:"erlis88 that a desireble iden-
tification scheme under these conditions is z perturbation-corr-

25,36 used but not for time-

elation process. The idea was earlier
varyving processes. Moreover, the appreach adopted here differs

from the recently published research in that the estimetion pro-
cedure is based on spectral analysis rather than on time-domain
methods. A perturbation sinusoidal signal is used along with the
normal input. An expression for mean-square identification in terms
of spectral densities of parameter variations and the measurement
noise at the output is developed to give an optimum filter transfer
function. Optimization procedures bring out the conflicting regu-
irements of filter bandwidth. That is, the kandwidth must be wi-

dened to accomodate increased parameter veriations and should

be as smell as possible to avoid high freguency measurement noise.

Stanton89'90 extended the power spectral analysis for mul-
tivariate systems and used the technigue to estimate quasilinear
transfer functions, from normal operating data, for turkoalter-
nators coperating in parallel with an interconnected power system.
The present work uses the same data for the same objective but

employing an entirely different method.

Bellman, et. al.gl introduced a new method for identifying

linear systems based on numerical inversion of ILaplace transforms.
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‘This is obtained by reducing the interval (0 - ag) of the il

gral in the definition of Laplace transform to the interval

(0 - 1) by vroper substitution. The resulting integral.is then
approximated by using a Gaussian guadrature formula. The method
employs, as required for Gaussian guadrature, irregularly spaced.

observations {assumed to be noisefree) and is extremely fast.

Most of the research work is focussed on the éstimation of
lunped-parameter systems describable by ordinary differential
equations. Relatively, a little has appeared in the Literature
on estimation of distributed parameter systems represented by
vartial differntial equations. The extension of methods for est-
mating lumped parameter systems to the case of distributed para-
meter systems was found cumbersome. Goodson and ?erdreauville93
solved the problem by reducing the partial differential equation
to algebraic equations whose solution yield the unknown distri-
buted parameters. It is assumed that .the form of the system equ-
ations is known.

In a steady-~state operation, the plant can be characterised

by a unique steady-state operator96

which maps the proper periodic
input and output. The estimation of the steady-state operator is
obtained by sarachik by emploving the steepest descent technique

for ultimate optimum control.

2,5C Estimation Schemes : Sequential Versus Nonseguential

The usual classical approach to least sguares leads to
nonsequential regressional estimation schemes. The disadvantage

of the nonsequential scheme is that, each time when additional
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Sutput observations are to be included, the entire least sguares
calculation has to be repeated. Obviously, the time required to
verform calculation even for a single interation is considerakble.
Moreover, it can not be implemented in real time.

In contrast, one major advantage of sequential estimators

is that they’z'?"4

show excellent and gquick convergence making it
suitable for on-line identification. It is the author's experience
with references (3) and (4) that this is especially true only
when the variance of noise is small as compared to the value of
parameters. In short, the sequential estimaters which do not
account for the statistics of noise in their formulation are very
sensitive to noise. Fowever, 1f the variance of the noise is large
compared to the magnitude of parameters to be estimated, exper-
ience (Appendix A} shows that the parameter being estimated does
not converge at all but keeps on roaming around its expected
value with the deviation (vaguely) proportional to the variance

of noise. In secual, the idea of using a segquential type of scheme
for estimating the parameters of turko-alternator transfer func-
tions from the normal overating input-output corrupted ky heavy
noice had to be akandoned. The present work ghows that better
results are obtained by solving prog¢gressively the TPEV problem
nonsequentially using the steevest descent technigque. Since, in

a nonsequential scheme, the entire span of assumed model output

is compared again and again with the observed output data of the
saﬁe span until the best f£it is obtained in the least squares
sense, this method takes considerable time. But this seems to be

the prise one must pay when the reliability of results is more
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important than the cost.

The next Chapter deals with the formulation of the esti-

mation problem as a TPBV problem.
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