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2.1 General
The art of automatic control is very old. In fact, it ori­

ginated with life itself as all living organisms, including human 
beings, are themselves wonderful models of automatic control sys­
tems adjusting to the environments. The automatic control in its 
early stages was developed in an empirical and a trial-and-error 
fashion as an engineering solution to the problems of industry.
The principle of feedback did not follow from the sophisticated

*

mathematical philosophy but evolved later as an analytical inter­
pretation to help understand the operation and analysis of auto­
matic control systems. The terms automatic control and feedback 
control are therefore used interchangeably. One of the earliest 
application of the principle of feedback in every day life Js a 
thermostat controlling temperature in an electric iron, in an 
oven or inside the room.

The world war II gave an impetus, by sheer necessity, to 
the development of the theory and practice of automatic control. 
Systematic mathematical procedures for analysis and design were 
developed and standardized to meet the urgent and constant mili­
tary needs. Here, the terms 'analysis* means the investigation of 
performance of a system which is already designed. The tern 
'design* is used in the sense that the system is to be found 
which will satisfy the required specifications of performance.
In general, design is a trial-and-error procedure. However, if 
there is a clear-cut mathematical procedure for going from the 
given performance specifications to the corresponding system, 
it is called synthesis.
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The problem of analysis and design of control systems can 
be tackled in three different ways. The first is the most common 
approach based upon the methods such as Nyquist plot# Bode dia­
gram, Nichol's chart and the root-locus method of Evans. This is 
often referred to as the trial-and-error procedure. The control 
engineer is given a set of some of the specifications like gain 
margin, phase margin, output impedance, rise time, settl­
ing time and peak overshoots. The system configuration including 
some standard power actuating devices and transducers is also more 
or less fixed by the general requirements. The designer's task 
then is to provide proper gain adjustment or equaliser compensa­
tion.

Another approach is the analytical design in which some 
criterion based on integrated history of the response of the entire 
system is used as a measure of performance. There are several 
performance criteria of this kind. For example, either the mini­
mization of Mean-Square-Error(MSE) or the Integral-Square-Error

0 7(ISE) may be used as suggested by Wiener and Hall . The detailed
Odiscussion on such criteria is presented by Rideout , et.al. Use 

of classical methods of calculus of variations is made to minimize 
the criterion and to obtain consequently the compensating network, 
^he system that minimizes the performance index is then said to 
be the "best* or "optimal". A typical classical feedback control 
system is illustrated in Fig. 2.1. The compensating network is 
introduced to obtain the desired output response. The function 
of the transducer is to transform the output into the same form 
as that of the input. Applicationsof these classical methods are
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limited to idealised and relatively simple feedback control sys­
tems.

During the last decade, the control theory has been invol­
ved in a period of evolutionary development in which significant 
advances have been made. The introduction of high speed digital 
computers has revolutionalized the philosophy of analysis and 
design of control systems. With the introduction of digital com­
puters for system design and analysis, the older methodology and 
tools gave way to better ones. Also, the classical approach was 
confronted by severe limitations to the design of more complex, 
multivariable and time-varying systems.

Modern trend is in the direction of optimum control. The 
limited supply of natural resources, raw materials and energy and 
the immense pressure of business competition for producing better 
and cheaper products have forced all types of industry —chemical, 
steel, automobile, food processing, aircraft, textile, machine 
tools, etc. to seek greater and greater efficiency through opti­
mum control. The businessman strives to get the maximum out of 
his investment. The plant manager tries to maximize production 
and to minimize cost. The rocket expert attempts to sent the rock­
et to the maximum height with minimum fuel, ‘^he design and oper­
ation of power plant by an engineer is also aimed at producing 
electric power with minimum cost. The weapons engineer attempts 
to design weapon-systems with maximum destructive power. During 
the last decade, the need for better controls in industrial, 
military and space applications has stimulated a great deal of 
interest in problems of optimum control and system optimization.
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Most of these complex systems fall under the scope of system ' 
engineering —which involves a co-ordinated research and develop­
ment of a certain system or a sfetup concerning several branches 
of engineering and science. Optimum design of such complex systems 
demands a computer program or an algorithm which could be process­
ed on a digital computer.

^he third approach to the design and synthesis of control 
systems evolved to meet the aforesaid requirements. It is a broad 
generalization of the second and has developed in different ways. 
The problem of optimum design of a control system may be roughly 
stated as follows. Given a plant or a process to be controlled, 
to determine the control law or an optimum control policy so that 
a set of specified performance criteria is minimized or maximized. 
The control law is an expression of the control variables as fun­
ctions of plant variables, i.e. a feedback system results. The 
optimum control law is to be generated by the optimum controller 
or by the digital computer incorporated in the control system.
'I'his concept of optimum design has developed during the last deca­
de and as such it is of ten referred to as the Modern Control 
theory.

2.2 Modern Design Approach

The advent of high speed digital computers has considerably 
influenced the trend in modern design methods. The optimization 
techniques are now evaluated not only with respect to their math- 

, matical elegance, but also in relation to their computational 
feasibility. The state space approach has both these advantages
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and as such is given an increased emphasis*

The modern design method begins with the characterization 
of the system by state variables followed by its design employing 
state-space techniques. In a general formulation, the design of 
optimum control is usually viewed as a variational problem. There 
are several possible variational methods for minimizing or maxi­
mizing a functional over a function space. The range is from cla­
ssical methods in the calculus of variations to numerical and 
successive approximation techniques of experimental or model sys­
tems. The methods * most commonly used are :

1) The Calculus of Variations —related to Euler —Lagrange 
equations,

2) The Pontryagin’s Maximum Principle — related to Hamilton 
principle,

3) The Dynamic Programming —related to Hamilton - Jacobi 
theory.

Whatever the method, the object is to find the control law that 
seeks extremum of the given fuctional of the performance indices.

The state variables describing the dynamics of a system are 
sometimes all accessible for measurement and observation. For 
linear systems with this feature, the determination of the opti­
mal control law .as a function of state variables can be worked 
out even in the presence of measurement noise. However, it happens 
qui-te frequently in engineering systems that the state variables 
are not all accessible for measurement and observation. The opti­
mal control law is then determined as a function of the best
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possible estimates of the state variables computed in an optimum 
fashion from the measurable noisy output signals. Consequently, 
the more general case involves both optimum estimation and opti­
mum control.

Since the modern control theory is evolved to deal with more 
general, complex and multivariable systems, the basic control sys­
tem configuration is markedly complicated from that of a classical 
feedback control system shown in Pig. 2.1. For example, in the 
automatic control of a boiler for an electric generating station, 
the outputs(or variables which can be measured) include the steam 
temperature, the rate of steam flow, the water level, etc. There 
are likewise several inputs(or variables which can be adjusted in 
order to realise the optimum operating conditions) including pri­
mary fuel input, water input, etc. Thus, the process is decribed 
by a diagram similar to that shown in Fig.2.2. In such a system, 
the task of the controller is typically to adjust automatically 
each of the input variables in order to realize the optimum econo­
my of operation while simultaneously maintaining each of the out­
put variables within the limits prescribed by safety considerat- 
i ons.

The matrix of transfer functions, relating the outputs with 
inputs, varies with the loading conditions of the power plant. If 
the matrix were to remain constant irrespective of the load, the 
optimum performance could he obtained by designing the controller, 
once for all, whatever may be the load condition. The optimum 
control is thus accomplished in an open-loop manner, having iden­
tified earlier the constant matrix of transfer functions. However,
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in order to realize optimum dynamic performance of the boiler, 
as the load varies over a range from the maximum value to a small 
fraction of the maximum, the transfer function matrix must be de­
termined at each operating point* Once the process is characterized 
or identified off-line, the design of controller system, although 
complicated, can be realized with a digital computer implementa­
tion. If the process-matrix variation with plant loading is thus 
known at the time of system design, the controller can consist 
simply of a pre-programmed controller(shown by dotted line in 
Fig. 2.2) characteristic as a function of the single variable, 
the load. The controller would then modify itself according to 
load variations giving optimum performance under any load cond­
ition. Here again, off-line identification is necessary. This 
type of design is possible especially when the variations in the 
process characteristics are predictable and follow a definite 
pattern. It can be classified as a well-designed optimum or ada­
ptable control system but it does not meet the definition of a

Qself-optimizing or adaptive control system. A detailed biblio­
graphy on adaptive control system is available in Reference (10). 
The need for an adaptive control system arises when the dynamic 
characteristics of a controlled system change very widely in a 
manner which is difficult or impossible to predict. As for exam­
ple, in coal-fired boilers,the process matrix changes markedly 
and unpredictably with time and hence the designer finds it 
impracticable to determine a priori the process matrix for all 
loading conditions. Under such circumstances, the controller

V

has to be adaptive, that is, it must during normal operation
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evaluate the dynamic characteristics of the system from measur­
able outputs# decide the control law and then generate an actu-
ating signal which results in satisfactory overall performance.

11Thus, the adaptive control system involves three stages s 
Identification, Decision and Actuation as shown in Fig. 2.3.
This type of scheme necessitates on-line identification of the 
transfer function matrices which are to be computed from measu­
rable inputs and outputs of the process without disturbing the 
normal operation. Both the inputs and outputs usually are corr­
upted with noise and as such the transfer function matrices are 
determined optimally to fit the given input-output data satisf­
ying a certain performance criterion. Thus, this problem inclu­
des the optimum control preceded by optimum identification.

2.3 Estimation

The problem of identifying an unknown process or a black
12box is known under different guises such as Identification , 

Estimation, Characterization, Evaluation or Measurement. The 
word " Process'* is more general and may include an engineering 
system, a biological system, an economical system or a sociolog­
ical system. In the literature on circuit Theory and Communicat­
ion Theory, the terms "IdentificationM and "Estimation*1 had been 
familiar for a long time. The recent trend of research towards 
adaptive control has brought an added significance to it. On 
many occassions, these two terms have been used synonymously.
However, depending on the a priori and the d.esired knowledge of

13the process, the distinction can be made . Identification really 
means the determination of the topology or structure of the
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process. Considering it as an absolute "Black box". On the other 
hand, estimation involves the determination of the parameter 
values of the process, assuming the topology to be known. The 
identification is therefore of a more general nature and hence 
the estimation can be considered to be a subclass of identific­
ation. For engineering purposes, the estimation is more realis­
tic since some a priori information regarding the process is 
always available. For such cases, it may be possible to derive 
an incomplete mathematical structural model from observation 
and understanding of the physical process. The missing details 
like numerical values of‘parameters can then be determined by 
a suitable estimation technique. In view of this, the word "Es­
timation" will be used in context to differential equations(or 
transfer function) model of a process. Since no structural inf­
ormation need be known, the word "Identification" is more appro­
priate in context to impulse response.

Since estimation involves collecting normal operating 
input-output data and then computing the transfer function(or 
the weighting function) by some technique, it does take some 
time. T-Jhen the process characteristics are changing faster, the 
estimation time must be shorter, if the estimation is to be of 
any subsequent use in decision and actuation. xt is therefore 
essential that the estimation time be comparable to the time- 
constants of the system14. Moreover, the normal operation of the 

plant should not be unduly disturbed during identification.
15The plant identification is not always necessary for

V)adaptive control as some criterion based on the itegrated history
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8of the response(like ITAE, ISE, etc.) of the system can be 
used to determine whether the controller adjustment is optimum 
or whether changes are required.

Most of the research work done so far in the area assumesI

the plant to have a single input and single output with either 
complete, partial or no a priori knowledge. In the early stages 
of development, the idea of adaptive control aroused so much of 
attraction, interest and curiosity that people working in the 
area did not realize the gravity of sophisticated identification 
procedures but hastily resorted to the use of simple techniques 
employing crude gadgeteering. In,the beginning, research workers 
were more inclined towards identification of impulse response, 
rather than transfer function,, restricted to linear systems only. 
Thereafter much work has been done employing variety of techni­
ques with increasing emphasis on estimation of a differential 
equation(or transfer function) model of the plant. The identi­
fication technique must be in the time domain if it is to be 
realistic from the adaptive control point of view. The techniques 
found in the literature are so diverse in principle and applica­
tion that a control enginer facing the task of identifying a 
pvocess is in a state of confusion as to what method is best 
suited for his problem. An overall review of literature and an 
investigation regarding the merits and demerits of different 
methods is very much desirable. An attempt is made in the succ­
eeding pages to review different methods of identification from 
the available literature. Several types of classifications are 
possible depending upon
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i) Whether the' system to be identified is linear or non­
linear,

ii) Whether the weighting function or the transfer funct­
ion is desired. This depends upon whether the adaptive 
scheme is based on the former or the latter,

iii) Whether the presnce of noise is considered or not. Co­
nsideration of noise is a more realistic case#

iv) Whether complete, partial or no a priori information 
regarding the noise and dynamics of the plant is avai­
lable. It is not always possible, except in rare cases, 
that nothing is known of the plant. Some a priori infor­
mation is always availble due to the familiarity with 
the plant#

v) Whether norma! input-output record or external testing 
signals are used,

vi) Whether the identification scheme is based on the con- 
tinous or sampled record of input-output,

vii) The classification can also be based on the analytical 
techniques employed. Various kinds of analytical and 
experimental methods are available.

Relatively a few articles are published on impulse response 
identification. All such papers are grouped together. The rest 
of the papers on estimation of a differential equation(or trans­
fer function) model are discussed under different groups depend­
ing upon the techniques used. The next section deals with the 
review of methods of impulse response or weighting function ide­
ntification.
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2.4 Impulse Response Identification

The dynamic characteristics of any linear system can be 
completely represented by its impulse response. This is true 
because the characteristics of a linear system does not depend 
on the form or the magnitude of the system input. Unknown linear 
systems are therefore often identified in terms of impulse respo­
nse. Moreover, the performance of a linear system can be evalu- 

1 0ated in terms of the impulse response and to accomplish self­
adaption, controllable parameters can be adjusted until the id­
entified impulse response takes the desired form. In practice, 
the output of the system is corrupted with noise and as such all 
realistic identification procedures aim at reaching the "best po­
ssible" or "optimum" estimate of impulse response of the system 
from normal noisy input-output data. The available methods can 
be subdivided into three groups s

A. Cross-correlation Identification,
B. Identification from sampled Input-Output Data, and
C. Matched Filter Identification.

2,4A Cross-correlation Identification

Most of the techniques employed so far use correlation 
functions. The cross-correlation of the input with output of the 
system is related to the auto-correlation of input through a

tconvolution integral involving the systems impulse response.
6This relation is well known as the Wiener-Hopf equation . As

17 17 18early as 1950, Wiener and Lee * pointed out that when the 
input of a system is white noise, its auto-correlation function
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is an impulse function and as such the cross-correlation funct­
ion in the 77iener-Hopf equation represents the impulse response.

16The same method was employed later by Anderson, et.al. in th­
eir identification scheme for an adaptive control of an aircraft 
pitch damper.

2„4B Identification from Sampled. Input-Output Data
5Goodman and Reswick developed in 1956 an experimental 

device, namely Delay Line Synthesizer (DLS), to obtain the 
impulse response at discrete instants by feeding to the device 
auto- and cross-correlations computed beforehand from the nor­
mal noisy input-output record of the system. In essence, the 
DLS unit performs "deconvolution“ on the Wiener-Hopf equation 
to recover the weighting function. This is discussed in greater 
details in Chapter VII.

19Levin used the least squares method for identifying the 
impulse response at discrete instants from sampled input-output 
record observed over a limited period. The measured output is 
viewed as the sum of ideal output(not observable) and random 
noise as depicted in Fig. 2.4, It is assumed that the noise has 
zero mean. The optimum impulse response is sought as that which 
minimizes the sum of the squares of errors between the observed 
output and the computed output at sampling instants. The computed 

(Vis obtained from the expression of discrete version of the con­
volution integral relating the observed input and the system's 
impulse response to be estimated. The minimization procedure 
gives rise to a set of linear equations from which the estimate
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of impulse response at discrete instants is obtained. These equ­
ations are in the form of sampled-data analog of the Wiener-Hopf 
equation# thereby showing that the method of "deconvolution " by 
Goodman and Reswick and the least squares method would give al­
most the same results. It is further shown that (a) if the noise 
is white, the least squares estimates and Markov estimates coin­
cide and are the same as the minimum variance unbiased estimates 
and (b) if the noise is white and also gaussian, then the least 
squares and Markov estimates are the same as the maximum likeli­
hood estimates and are efficient(i.e. they have minimum variance 
among all unbiased estimates).

20Kerr and Surber used the same approach as suggested by 
Levin but they went further to provide a test of the reliability 
of identification by introducing a Msufficient record length" 
criterion. Emphasis is laid on the fact that the estimation scheme 
of time-varying systems must be based on as short an operating 
record as possible, consistent with the desired degree of acc­
uracy . For short duration records, a strictly statistical desc­
ription of the input and output signals is precluded. A conflict 
of requirement arises, in fact, since it is desirable to use as 
long a record as possible for noise smoothing, but as short a 
record as possible, so that the system may be assumed to be time- 
invariant over the estimation interval. Hence, for a given rate 
of parameter variation, a given noise level and a given type of 
control signal variation, it is shown that there does exist an 
optimum record length of input and output data.
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It is assumed that the system has a finite settling time 
so as to represent the system's impulse response by a finite 
number of parameters. The precision with which the set of para­
meters can be estimated increases with the increase in the length 
of the observed record. £his type of noise smoothing is a funct­
ion of the degree of redundancy in the data, i.e. the number of 
independent output data samples relative to the number of para­
meters to be estimated. If the assumed settling time is too long, 
the apparent number of parameters to be estimated will be incre­
ased. This also increases the effective noise smoothing and-resul­
ts in poorer precision. However, if the settling time is too short 
a systematic error will be introduced into the estimates of the 
retained parameters. The best choice of settling time for a fixed 
observed record is obtained when the systematic error became of 
the same order of magnitude as the expected noise-induced estima­
tion error.

If the system is assumed to have an effective upper cut-off 
frequency f , then no significant information is lost in setting

w

the sampling interval At = (l/2fc) . If at is chosen to be smaller
then this, then a larger number of parameters will be required
for the same settling time. In addition to requiring a faster
sampling rate and a greater computer capacity, this increases the
expected error in the parameter estimates. This provides less
filtering of the noise in the output, thus increasing the effect

21of the noise energy relative to the signal energy . However,if 
At were chosen higher than (l/2fc>, sane information in the 
high frequency region would be lost thereby introducing a system-
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atic structural error.

The estimation procedure and the conclusions for the 
given statistical description of the noise are generally the 
same as those suggested by Levin. The reliability of estimate 
is shown to depend critically upon the nature of the input and 
noise. An expression for the expected integrated-squared-error 
between the actual and the estimated impulse responses is deri­
ved to indicate the degree of reliability. A "sufficient signal" 
is defined as the one for which the expected integral-squared- 
error does not exceed some specified value. It is shown that if 
the statistics of the input signal and noise are Known a priori# 
"sufficient test signal" would be obtained with a record of cer­
tain length. Thus the "sufficient test signal" criterion is tra­
nsformed in to a "sufficient record length" criterion.

2,4C Matched Filter Identification
22A different approach developed by Turin uses an estimat­

ing filter# as depicted in Fig. 2*-5# at the system output to make 
a linear minimum mean-square-error estimate of the impulse res­
ponse of the system. Such a procedure requires no multiplier# and 
the output of the filter is the impulse response as a continuous 
function of real time. The system in this case is a transmission 
medium such as ionosphere. The transmission medium characteristics 
does vary with time but it is assumed that it varies slowly and 
consequently it remains ■unchanged during the estimation period. 
Moreover# to make the problem realistic# the signal after trans­
mission through the medium is considered to be perturbed by sta­
tionary random noise. The mean-square of the error(considering
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the statistical average over the ensemble of possible noises 
and impulse responses of the medium), between the output of the 
estimating filter and the impulse response of the medium, is 
minimized by adjusting the estimating filter impulse response 
and the nature of input. Making use of the Fourier transforms, 
this gives optimum transfer function of the estimating filter 
which gives at its output the optimum impulse response of the 
medium.

Although Turin's problem arose in the field of communica­
tions and radar, the idea was applied to process identification

23for adaptive control by Lichteriburger . The method consists of 
injecting a special test signal at the input along with the re­
gular actuating signal and then passing the output through a 
correlating filter whose output gives the estimate of impulse 
response of the time-invariant system. The amplitude of the test 
signal must be small with respect to the actuating signal for 
the practical reason that the process output is not appreciably 
disturbed. In this case, the actuating signal is treated as noise 
and as such the noise power will be relatively greater than the 
test signal power. The corresponding noise in the output will 
also be quite high. The effect of output noise is reduced by 
increasing the effective duration of the test signal so as to 
increase the energy of the test signal without increasing its 
average amplitude. This is accomplished in the following manner

A train of a finite number of test pulses(as against only 
one testing pulse used by Turin) is added to the normal input 
of the linear process as shown in Fig. 2.6. The output of the
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process during each test pulse is added to the sum of all the 
previous tests in the measurement at each instant of time. This 
is accomplished by the use of delay or storage and an adder. This 
process is called coherent summation. After the last test pulse, 
the result of the summation, still a function of time, is passed 
into an estimating filter. The expected mean-square-error is then 
minimized by the choice of estimating filter, test signal, and 
number of testing signals to get the estimating filter output as 
the best estimate of process impulse response. This method does 
give better results but takes a longer time. This is unfortunate 
because one would like to have the results available as soon as 
possible from the point of view of control system performance 
and because even for slowly varying processes, error builds up 
seriously for sufficiently long measurements.

24As pointed out by Lindenlaub and Cooper , the mathematical 
similarity of the above three methods is provided by Wiener-Hopf 
equation, the solution of which becomes simpler by considering 
the input to be white noise. However, since the external noise 
enters the problem differently in each method, different techni­
ques are used to reduce the variance of the impulse response 
estimate. It is further shown that the identification time in 
each case is the same as the product of gain and bandwidth of 
the system to be identified divided by the product of variance 
of the impulse response estimate and the output SNR(Signal to 
Noise Ratio). All the three methods give a minimum variance 
estimate of the unknown impulse response, as is true for an 
ideal identifier, assuming that no a priori information of the
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unknown system is available*

2.5 Estimation of a Differential Equation or a Transfer
function Model

A transfer function is the frequency domain representation 
of a stationary linear system showing the relation between its 
input and output. It is derived from the differential equation 
description of the linear system by assuming the initial conditions 
to be zero. The estimation of a transfer function really means 
the determination of the constant coefficients of differential 
equation or constant parameters of the system.Ear a sampled-data 
case, the difference equation model is sought. The transfer 
function concept is not valid,in general,for a time varying sys­
tem but from the adaptive control point of view, the system can 
be represented by a transfer function which changes from instant 
to instant with the variation in parameters which can be estimated 
from time to time. However, for a nonlinear system, only the diff­
erential equation(nonlinear) representation is possible and the 
estimation of such a system is aimed at determining its coeffici­
ents . }?ith the increasing use of state-space concepts and the 
advent of the modern high-speed digital computer, the differen­
tial (or difference) equation description of the system is found 
more favourable.

In the early stages of development of adaptive control, the 
estimation of processes evolved in the form of parameter correct­
ion or parameter tracking by employing tracking servo loops as 
an engineering solution to the overall adaptive process. Most
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o£ these schemes employ physical models. The estimation is not 
given a separate and distinct identity in the overall adaptive 
scheme. Such schemes have been used for small size processes. 
Parameter tracking schemes are discussed in section 2.5A.

The estimation schemes based on explicit mathematical 
relations{ i.e. mathematical models) and giving results in num­
erical quantities from the input-output record with the aid of 
digital computer, began to develop a little leter. The methods 
are employed especially for large size, multivariable and complex 
systems which can afford or justify a digital computer. The sol­
ution to the estimation problems of this class is obtained by 
means of variety of analytical techniques as will be seen in 
section 2.5B.

2.5A Estimation as Parameter Tracking Employing a Physical Model

The methods of this class are discussed under three separate 
groups s (1) Parameter perturbation, (ii) Input signal perturbation, 
(iii) Parameter tracking using Normal input-output record.

(i) Parameter Perturbation
in 1951,Draper and Li presented a parameter perturbation

scheme for optimizing the performance of an internal combustion 
. 26engine. Mcgrath and Rideout suggested that this techniques cab 

be used for self-optimisation of feedback control systems by 
adjusting the paramters so as to minimize the mean-square-error
criterion. A similar system was developed independently by

07 28Nightingale and Taylor . The scheme had aroused a great deal
'l of interest even in Britain and Russia as is evident from the

2° • 30 31publications of Douce and King , FelSbaum , Kazakov and
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32Varygin l The technique is relatively simple and has good noise 
immunity.

In this scheme, the controllable parameter is perturbed
sinusoidally to test whether or not the system performance is
optimum. The cross-correlation of the perturbation signal with
the square of the error, between the outputs of the process and
the model is then used to adjust the parameters of the process.
As many perturbation signals as the number of parameters are

33required. Mcgrath, et. al. pointed out the versatility of this 
technique by citing the number of control situations in which 
it can be profitably applied.

Folloing their remarks, Rajaraman described a multiple-
model system for simultaneous adjustment of two parameters of
the process along the steepest descent to obtain a self-adaptive

35system which, according to Aseltine , is both input signal and 
process adaptive. It consists of two models receiving the same 
input as the process. Model I is an ideal version of the process 
and will be in general of an order different from that of the 
process. Model II is chosen to be of the same order as the process. 
The parameter of model II is perturbed by a low frequency sinuso­
idal signal. The square of the error, between the outputs of Model 
I and II, after multiplication(with the perturbation signal) and 
integration yields information to adjust the parameter. This 
ensures adaptation against input signal variations. The controller 
for the process is of feedback type and its parameter is adjusted 
(by a separate adaptive loop) in a similar manner, based on the 
error resulting from the comparasion of outputs of process and
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Model II. The parameter of Model II is perturbed with a different 
frequency for this adaptive loop. The adaptive loop performs sim­
ultaneously system parameter tracking(estimation) and its correct­
ion (adaptation) . When adjustment of two parameters is involved, 
another set of two adaptive loops is added.

(ii) Input Signal Perturbation

Besides parameter perturbation, sinusoidal perturbation of 
the input signal was also common in early stages of adaptive co­
ntrol. This method is also simple and has the advantage of const­
ant amplitude of test signal and negligible noise effect. In add­
ition, it can provide in general two identification signals for 
each sinusoidal frequency.

°ne of the earliest papers on input signal perturbation is 
36by Weygandt and Puri . It describes a system for determing the 

parameters of a transfer function of the form - one divided by a 
polynomial in terms of the Laplacian variable *s'. The method is 
shown to work for a polynomial of second order which involves the 
tracking of two coefficients in the denominator polynomial. A 
sinusoidal perturbing signal is injected in the normal input. The 
cross-correlations of the error(between the input and output of 
the same frequency) with (a) the output and (b) the output shifted 
in phase by 90°, are then used to track the two parameters.

37EyKhoff and Smith used a dynamic model which is made to 
follow the process by adjusting its parameters by cross-correlat­
ion of model output with process output. The process and the model 
ar-e fed with the same perturbation signal.
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Smith devised an adaptive scheme for automatic gain con­
trol of an Autopilot. Any change in phase shift or amplitude of 
the process output caused by environmental variations is detected 
by feeding model output and process output to an adaptive computer 
which then adjusts the gain of the Autopilot(controller) to hold 
the measured amplitude or phase shift constant..The adaptive com­
puter is either a phase discriminator or an amplitude measuring 
device, tuned to the test signal frequency.

39Another paper by -^erlis describes a technique based upon 
the use of existing external signals and claims that the overall 
system's figure of merit can be improved with such a scheme.

40Smyth and Rahi developed a technique to track the two pa­
rameters in their adaptive scheme, based on the variations in 
amplitude and phase of the output corresponding to the dither 
(perturbation) signal at the input. The scheme is an extension

38to the siggal-parameter amplitude dither adaptive system by Smith . 
tsIt^important' to note that in both the perturbation techniques, 

the amplitude of the test signal should be neither too large to 
avoid undue distrubance to the normal working nor too small to keep 
the SNR sufficiently high.

(iii) Parameter Tracking Using Normal Input-Output Record

The techniques discussed in the previous sections employing 
perturbation becomes cumbersome when adjustment of many parameters 
is involved. However, the general method of computing the partial 
derivatives(i.e.gradients) of -the performance criterion with res­
pect to each parameter has the advantage of being applicable to

38
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nmany problems and independent of specific system configuration.
41 4?Margolis and Leondes ' used only the normal input-output 

record(rather than any kind of perturbation) for parameter track­
ing of a physical process employing a dynamic model in their dy­
namic scheme. The learning model and the physical process are 
subjected to the same normal input signals. Their outputs are 
compared and the resultant error is fed to the adjusting mechani­
sms which operates on an approximation to deepest descent and 
adjusts the parameters of the learning model until the square of 
the error reaches minimum. Thus the dynamic model behaves as much 
like the process as possible. This information is then used in 
programming the controller. The method has been tried out success­
fully on both the first order and the second order processes with 
some restriction on the input for the latter. The input must be 
present all the time otherwise the error becomes zero(i.e.minimum) 
and the adjusting mechanism does not operate.

43Narendra and McBride suggested the use of correlation tech­
niques to compute the partial derivatives to adjust the parameters 
along the path of steepest descent in a parameter space to the 
minimum error criterion.

2.5B Estimation Employing Mathematica 1 Models

A number of methods which employ dynamic mathematical models 
for estimation of transfer functions or differential equation 
parameters are available to-day. They are classified in the foll­
owing groups according to the analytical techniques employed.

(i) Statistical Methods,
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(ii) Quasilinearization Technique,
(iii) Dynamic Programming,
(iv) Estimation as a TPBV Problem, and
(v) Miscellaneous Methods.

(i) Statistical Methods

Wiener-Kalman Filter
44Wiener pointed out that the natural setting of the est­

imation problems in communication and control belongs- to the realm 
of probability theory and statistics. The estimation in general 
covers (i) data-smoothing or interpolation(estimation of the past 
state), (ii) filtering(estimation of the current state) and (iii) 
prediction(estimation of the future state). The solution of filter­
ing or prediction problems leads to the well known Wiener-Hopf
integral equation which can be solved by spectral factorization

45method. Many extensions and generalizations followed Wiener's
basic work. In all these works, the objective had been to obtain
the model for Wiener filter which could accomplish prediction,
separation or detection of a random signal. These methods are

' 45subject to a number of limitations which seriously curtail their 
usefulness to practical problems.

45Kalman introduced a novel approach to solve the Wiener
46problem and overcame the difficulties by using the Bode-Shannon 

representation of random processes and the "state-transition"
method of analysis of dynamic systems. Linear filtering is regard­
ed as orthogonal projection in Hilbert space. with the state tran­
sition method, a single derivation covers a large variety of 
problemss growing and infinite memory filters, stationary and
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nonstationary statistics, etc. The approach gives a nonlinear 
difference{ or differential) equation for the covariance matrix 
of the optimal estimation error. This is vaguely analogous to 
the Wiener-Hopf equation. The solution of the equation begins 
with the first observation taken at time tQ. At each later time 
t, the solution of the equation represents the covariance of the 
optimal prediction error, given the observations in the interval 
(t , t). Use is made of conditional probability distributions 
and expectations. The coefficients(in general, time-varying) ch­
aracterizing the optimal linear filter is obtained at once from 
the covariance matrix at time t , without any further calculations.
The new formulation of the Wiener problem turns out to be the dual

45,47of the noise-free optimal regulator problem* ' . The power of the
method is most apparent in theoretical investigations and in num­
erical answers to complex practical problems, with the aid of 
digital computers. The Kalman's solution to the Wiener problem 
is popularly known as Wiener-Kalman filter.

In working out an analogy for a continuous-time case,
4skalman and Bucy showed that the nonlinear differential equation 

for the covariance matrix of the optimal filtering error is of 
Riccati type which occurs in the calculus of variations and is 
closely related to the canonical form of Hamilton differential 
equation. The relationship gives a clue to the solution of the 
Riccati equation. The solution of this Riccati type equation 
completely specifies the optimal filter for either finite or 
infinite smoothing intervals and stationary and non-stationary 
statistics. It is concluded that this approach is better rather
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than attacking the Wiener-Hopf integral equation directly. The 
principle of duality relating ? stochastic estimation and deter­
ministic control is used to the advantage in the proof of theo­
retical results.

aqFlorentln * used a technique conceptially much simpler than
the idea of orthogonal proj ection employed by Kalman and arrived
at the same recursive relations for the estimation of a state
vector when only a part of it corrupted by noise is observable.
However, this does not directly demonstrate the filtering process

50to be interpreted as a linear dynamical system. Mayne , in his
estimation procedure, considered all the components of the state
vector as perfectly measurable. The forgoing ideas were unified

51and a procedure was devised by Kumar and Sridhar for estimat­
ing the entire state vector and the coefficients of the differ­
ential equation from measurements on the system inputs and the 
observable outputs. Making use of some statistical concepts, the 
estimate of the current state is obtained by updating the imme­
diate past estimate, as new observations are made. This sequen­
tial scheme can be very easily implemented on a digital computer. 
It is proposed that the method could be used for on-line ident­
ification since the identification time is not excessively long 
compared to the system time constants.

52O'Donnell presented a mathematically less sophisticated 
derivation of the one dimensional filtering problem. The other 
advantage is that the covariance matrix of the optimal estima­
tion error is obtained in the closed form, in contrast to that 
in Kalman's paper. It is shown that, after some finite number
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of measurements, the above covariance matrix approaches zero 
and therefore no correction is provided to the estimate even if' 
the actual values may vary. This is undersirable and can be re­
medied by including a disturbance term(with known statistics) 
in the assumed dynamic model of the system.

48The design of the optimal filter by Kalman and Eucy 
considers white noise in measurements. Many practical systems 
exist in which some of the measurements are corrupted with colo­
ured noise, some with white noise and the rest with no noise.
Such cases are singular problems within the framework of the 
Kalman-Bucy theory. The solution to this problem is provided by 
Bryson and Johansen . The coloured noise is considered as the 
output of an auxiliary linear dynamic system(called a "shaping 
filter") with white noise inputs. With this approach the coloured 
noise vector becomes a part of an augmented state variable vector
and the corresponding measurements now contain only linear comb-

>
inationsof the augmented state variables without noise term. Thus 
the shaping filter approach makes the augmented system appear as 
a system in which the measurements are partly perfect and partly 
corrupted with white noise. The estimation of the states measured 
perfectly is not required. The rest of the states containing 
white noise are estimate! using the Kalman-Bucy approach.

48The solution of the Riccati type equation for the design
of optimal filter to give a conditional expectation of the state

54is not easy. A paper by Park presents the derivation of a 
minimum variance filter which yields an approximation to the 
conditional expectation of the state. The filter is a model, of
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the plant and controller, which is reset after every independent 
observation by a device which averages the current observation 
with the past observations. After the filter is reset to this 
new average, it tracks with the plant until the next observation 
when the process is repeated. The filter tracks the state so that 
the statistical problem is reduced to that of determining a con­
stant in additive noise.

43After Kalman and Sucy worked out the linear filtering 
theory, suggestions were made to use this theory to find an 
approximate solution to the nonlinear filtering problem by line­
arising the nonlinear dynamics of the process and observation 

55function. Bucy showed that linearizing the optimum nonlinear 
problem leads to quite a different and probably more useful app­
roximate solution than the above procedure. This is accomplished 
by representing the conditional density in terms of a functional 
of the stochastic integral of various functions with respect to 
the observed randan process. A random partial differential equa­
tion for the conditional density is then obtained by using Ito's

R6random calculus. Similar work is done earlier by Wonhanf claim­
ing that the performance of the optimal nonlinear filter is 
substantially better than that of the simple Wiener filter.

57Ho~ proved that with little manipulation, the recursive
58relations derived by Bryson and Frazier for the estimation of

a state in the presence of gaussian noise, can be transformed to 
45those of Kalman . Some connections are then established among 

the maximum likelihood estimate, the optimal filtering and the 
stochastic approximation of the estimate. The conditions for
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59system1s identifiability are given by Ho and Whalen
Smoothing Estimate
Whereas Kalman gave solutions to filtering and prediction 

problems, some others3 ' * extended the results to the smooth­
ing problem. Realizing that a smoothing solution would contain 
filtering subroutines, Weaver gave a modified solution to the 
filtering problem. He made use of the fact that, in the gaussian 
case, if the loss function of a Eayes estimate is proportional 
to the square of the magnitude of the error vector, then the op­
timum estimate is also the maximum likelihood estimate and is the 
conditional mean of the Quantity to be estimated. Rauch^ * attacked 

a practical smoothing problem wherein the instantaneous position 
and velocity of a satellite(after its injection into orbit) are 
estimated in real time as observations are received while the 
smoothed estimates of the initial conditions(position and velocity 
immediately after the termination of thrust) are required for the 
evaluation of accuracy of the guidance system used during inject­
ion. For this class of problems, a solution is found which direct­
ly relates the smoothed estimate of the state at the particular 
time to the new observations. This form is more feasible computa­
tionally because it elimitates the need for storing observations 
and because it allows the smoothed estimate to be updated immed­
iately as more observations are made. The solution is obtained 
using the state transition matrix and the covariance matrix of 
the estimate.

Bayesian Approach
Another statistical approach to the problem of estimation
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is based on the assumption that the system under consideration 
is Bayesian. A system is considered Bayesian if the general str­
ucture of the plant is known and some a priori distributions for 
the unknown parameters are available. Bayesian systems may be rate

i

in general statistical work but are common in control field.
According to Bayes rule, the probability(a posteriori) density of
x given y is given as the product of the density function of y
given x and the density function of x divided by the density fun-
ction of x. Ho and Lee demonstrated the use of Bayes rule for
linear estimation and arrived at the closed form Wiener-Kalman
solution in gaussian noise. Basically, the approach consists in
proceeding step by step from the availble a priori probability
density functions to the a posteriori conditional density funct- 

63xon. Florentin also assumed a Bayesian system to estimate the 
gain in the control path of a simple regulator, using the control 
as,the probe. The approach becomes formidable in the light of 
computer time when the system is multidimensional and the obser­
vation is a nonlinear function of state variables. However, it 
is felt that the Bayesian approach offers a unified and intui­
tive viewpoint for the general problems of estimation and control.

Regression Technique
64Regression Analysis is a powerful statistical tool for 

the determination of dynamic relationships among variables. It 
is in no way restricted to any class of functions or, except for 
statistical tests of hypothesis, to any particular form of random 
distribution. It involves in general the simultaneous solution of 
ra linear equations to determine n unknown coefficients ( n^m )
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attached to n variables. These variables need not be mutually 
independent. In the estimation problem, the situation is similar 
since the output variable(observable) is represented as a linear 
combination of n controllable variables involving n unknown con­
stant coefficients(parameters). For a noisefree case, n observa­
tions are sufficient to determine accurately the n parameters.
This is a simple algebraic problem. But, in practice, the obser­
vations are noisy and the observations required are more, i.e. 
m > n , to smoothen the effect of noise. The solution is then 
obtained through the use of variance of controllable variables 
and covariance between observations and the controllable variab­
les. Thus the regression analysis is a statistical problem. The 
least squares treatment to the problem would also give the same 
results. Since regression analysis involves dynamic relationships, 
it can, ideally at least proceed during the natural operation of 
the process without the necessity of special inputs for performan­
ce measuring purposes.

65Bishop and Chope employed this techniques to obtain inf­
ormation about constant parameters for optimal control of a mul­
tivariate nonstationary process citing an example of paper manu­
facturing. He considers a general case including nonlinearity.The 
adjustment of controllers is made periodically at the end of every 
calculation interval. As such the process operates open-loop during 
the calculation period. Elkind, et.al.^ applied regression scheme 

to measurements of human pilot control(time-varying) characteris­
tics with digital computer simulation. They considered a model 
consisting of parallel connections of filters whose impulse
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responses are orthogonalized exponential functions. The model 
is fed with the system input. The coefficients of linear regre­
ssion of the system output on each of the filter outputs are de­
termined. It is shown that the length of input-output record to 
determine the coefficients with given variance can be estimated
with the known statistics about regression coefficients. Another 

67paper describes the technique for estimation of a state vector
{for space vehicle orientation) which is augmented to include

68space vehicle parameters. Giese and MeGhee discussed the uni­
fying ideas of least squares, regression, maximum likelihood and 
Bayesian estimate and tackled the practical problems like nonli­
near pendulum equation and Ballistic Vehicle atmospheric reentry 
equation. The time taken by the computer is short enough to make 
the methods practicable.

69Levin used the generalized least squares theory for the 
estimation of pulse transfer function of a linear system from 
normal operating records. The estimates of the coefficients are 
obtained as the components of the eigen-sector corresponding to 
the smallest eigen-value of a matrix equation involving the sample 
auto- arid cross-correlation functions of the input and output 
records and the covariance matrix of the corresponding noise 
components.

70Steiglitz and McBride proposed an iterative technique 
to estimate a linear system from noisy input-output samples by 
minimizing the mean square error between system and model outputs. 
The model chosen has a transfer function which is a ratio of
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-1polynomials in z . Although the regression equations for the 
optimal set of coefficients are highly nonlinear and difficult 
to solve, it is shown that the problem can be reduced to the 
recursive solution of a related linear problem. The technique

71gave significant improvement over the Kalman's linear regre­
ssion estimate for a number of computer-simulated systems. Con­
vergence is obtained successfully within 10-20 iterations thus 
saving considerable computer time. The procedure is found to be 
effective for SNR less than unity, and with as few as 200 samples 
of the input and output records.

Another filtering scheme of iterative nature for nonlinear
72time varying process, due to Mowery , is based on optimally 

weighted, linear differential corrections obtained by local lin­
earization through Taylor series expansions. The set of normal 
equations obtained by minimizing the Quadratic function of errors 
are nonlinear whenever the observations are nonlinear functions 
of the state vector. These equations are then solved using the 
linear approximation obtained by truncating the Taylor series 
exapnsion about the state variables. The filter equations thus 
obtained are of a general nature and, with slight manipulation, 
can be reduced to Wiener-Kalman filter. The necessary and suffi­
cient conditions which permit the use of technique for linear

73system are determined by Fisher 
°4Smith made an attempt of reviewing the techniques of 

maxim-urn likelihood, Bayesian decision-making, regression analysis, 
least squares and statistical filtering to show that the differ­
ences in various methods are due to differences in basic
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95hypotheses. Iterr'' suggested that the identification situations 
may be classified according to three basic "system signal" con­
figurations, which the author has termed "statistical", "regre­
ssion" and "structural" models explaing the distinguishing fea­
tures.

(ii) Quasilinearization Technique
74 75Quasilinearization ' is the name given by Kalaba and 

Bellman for a generalized Newton-Raphson method of root-finding 
of a differential equation and is sometimes called the Newton- 
Raphson- Kantarovich method. The quasilinearization procedure is 
a general computational method for solving Multipoint Boundary 
Value Problems (MPBVP) . The method has been employed^' 77,78 tQ 

identify the differential equation, linear or nonlinear, descr­
ibing the dynamics of a process. The quasilinearization techni­
que as applied to identification problem is briefly discussed 
below.

let the process be discribed by a vector differential 
equation
X = f (x , t) t t «s tT (2.1)
where x is a n-vector which also includes constant parameters . 
of the process to be estimated. Let the vector x , in a noise- 
free case, be observed as
y(t±) = H x(t±) i = 1, 2, . , ,n (2.2)

Also
ro "* rl '~2 ' 9 * “ rn ~ rT
where y is a n-vector and H is a nxn constant matrix.
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The identification problem is then to choose initial state 
x(tQ) such that the solution x(t) of equation (2.1) satisfies 
the observed values of equations (2.2). Let x„(t) be an aribit- 
rary initial guess to the solution of equation (2.1). The (k+l)st

where
•f> is the fundamental matrix solution of equation (2.3)*
p is a particular solution vector of equation (2.3) and
q is a constant vector to be determined from equation (2.2) by
substituting for x^^ obtained from equation (2.4)• The calcula*
tions are generally carried out on a digital computer and the

74sequence of vectors x^+^ will converge quardratically to the 
disired solution.

For a noise-free case as discussed above* Prasannakumar
til .and Srxdhar assumed that for the n order system, exact fit 

through n arbitrarily selected observation points along the 
desired trajectory would give a unique solution to the identi­
fication problem. Lavi and Strausshowever disproved the pre­
sence of uniqueness by citing a simple example. Generally* the 
observations are corrupted with noise and the estimation of 
initial state is obtained in the least squares sense so as to

lullapproximation is then obtained from the k via
(2.3)

where J is the Jacobian matrix whose (i*j) element is the
1^llpartial derivative of the i component of f with respect to 

tilthe component of x. The solution of equation (2*3) is
written as

th

*k+l = #9+P (2.4)



47

.minimize the performance index,
I _

% y- |y (t±) - H xCt^ I y(t^) - H x(t^}J (2.3)
7QIt is suggested that the regression solution (i.e. when 

the number of observations is more than the order of the system) 
reduces the uniqueness difficulties and smoothers the noise effect 
giving an unbiased estimate. One major drawback is that the iden­
tification procedure often converges to the local minimum of the 
performance index.

Ohap and Stubberud^® employed this technique for the est-

mation of the current position and velocity of a low earth-orbit
satellite using range, elevation and azimuth observations from
a ground tracking station. Another application due to Bellman,

81et. al. ,is to the "Unscrambling Problem" which seeks to deter­
mine the correspondence between every stimulus and every source 
in a multivariable biological system.

(iii) Uvnamic Programming

One of the most powerful tools being applied in the field
*7 jr poof optimum control is the Hallman's ' Dynamic programming. The 

fundamental idea underlying the method is the principle of invar­
iant imbedding which reduces a very difficult or unsolvable mul­
tistage decision problem into a class of simpler, solvable probl­
ems. The multistage decision problem of optimising is converted 
to a problem of determining the solution of a recursive functional 
equation by invoking the principle of optimality, which states:

An optimal policy has the property that whatever the 
initial state and the initial decisions are, the
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remaining decisions must constitute an optimal policy 
with regard to the state resulting from the first 
decision.

This concept implies that# to solve a specific optimum decision 
problem# the original problem is embedded within a family of 
similar problems which are easier to solve. The dynamic progra­
mming approach is# in principle# illustrated below.

Let us consider a H-stage decision process. Let x be a 
n-dimensional state vector characterizing a physical system at 
any time. The transition of the state is described by the rela­
tion
x1+1 = gCx1# mi) i = 1# 2# . . . #N (2.6)

This operation yields the total output(or return) for N stages 
N

% ” rur*# rtij) (2.7)

The problem is to choose an N-stage policy# i.e. the sequence 
m^ # m2 # . . , , so as to maximize (or minimize) the return
Rjj for the given initial state ( or allocation) x^. The maximum 

return of the N stages is given by
fN(x1) = max r(x-^# m.) ]• (2.8)

-Cmj> J J
The solution of this N-stage problem by simple calculus is formi­
dable. However# invoicing the principle of optimality# the maximum 
return is readily written as
f ̂ (x1) = max \ rix1# irn^) + fn-1 tg' ^1^3” (2.9)

Tin *'
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Thus,by applying the principle of optimality, the N-stage deci­
sion process is reduced to a sequence of N single-stage decision 
processes, thereby maMng it convenient to solve the optimization 
problem in a systematic, iterative manner.

2 83Henry Cox ' used the dynamic programming in conjaction 
with maximum likelihood approach to develop a sequential scheme 
for the estimation of state variables and parameters of a nonlinear 
discrete-time system in the presence of gaussian dynamic and mea­
surement noise. The state vector is augmented to include constant 
parameters. The vector equation of linear system then contains 
certain terms as product of two or more state variables maMng it 
nonlinear-like. The estimation scheme discussed by Cox is in gen­
eral valid for nonlinear systems including the case just discussed, 
it is possible to proceed sequentially by Bayes rule and after each 
measurement obtain the a posteriori probability density function 
for the current state variable. This task is easy only for linear 
and simple systems. The problem of estimating the state trajectory, 
given the observed sequence and the a priori distribution of the 
initial state, is reduced to the problem of minimizing a functional 
of the least-squares-error type. The multistage minimization pro­
blem is then solved through dynamic programming to give a sequen­
tial procedure for estimation. The sequential procedure allows 
the processing of each new observation as it occurs and gives the 
estimate of the present state by modifying the extrapolated value 
of the previous estimate on the basis of current observation. The 
estimation can be performed in real time on a digital computer.
The results obtained are valid for smoothing, filtering or
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prediction. The filtering or smoothing solution does not need to
store old values. The results obtained for a linear system are

84found, to be similar to those of Kalman . An intuitively appea­
ling approximation technique based on Taylor series expansion
is developed for producing estimates of state variables of a

85nonlinear system. Using the same approach, Cox obtained a
general solution in continous-time for the linear problem, simi-

48lar to the one developed earlier by Kalman and Bucy . The dyn­
amic programming formulation leads naturally to an approximation 
technique for the nonlinear problem.

(iv) Estimation as a TPBV Problem
iVBesides dynamic programming, an alternate approach sugges- 

2ted by Cox is to introduce Lagrange multipliers in the minimiz­
ing functional to incorporate the constraints imposed by the dy­
namic equations of the system. Setting the differential of the 
modified functional to zero for minima and rearranging yields the 
necessary conditions(Euler-iagrange equations) in the form of a
TPBV problem. This is found to be the discrete analogue of the

58TPBV obtained earlier by Bryson and Frazier . The solution of
the TPBV problem for a linear system gives recurrence equations
(dependent on covariance matrix) to produce an up-to-date estimate.
Using some matrix algebra, the' results obtained by Cox may be

84shown to be equivalent to those of Kalman . The results are then 
extended for a nonlinear problem using an approximation technique.

3Sridhar and Detchmandy developed a sequential estimation 
' scheme based on least squares criterion by solving the TPBV
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problem using invariant imbedding. No statistical assumptions
are made concerning the nature of the input disturbances or of
the measurement errors. This is of practical importance since
in most of the practical problems, statistical description of
disturbances is absent or difficult- to determine. The filter
equations obtained consider both the input and measurement dis-

86turbances. Bellman, et. al. obtained similar equations consi­
dering only the measurement error but their method of derivation

" 3is not appticable to this case. The filter equations are some-
2 4what similar to those obtained by Cox . Pearson obtained the

3discrete version of these filter equations using the same pri­
nciple but the logic is conceptually much different. The details 
of this method are given in Appendix A.

(v) Miscelleneous Methods 
S7Kohr described a method for the determination of a non­

linear differential equation model for a physical time-invariant 
system. The system is represented by a nonlinear differential 
equation containing a single-value nonlinear function of a single 
variable(output) and other linear derivatives of output on left 
hand side and input function on the other sides. The nonlinear 
function can then be interpreted as the input function minus all 
the linear terms of the differential equations. Thus, if the input, 
the output and derivatives of all required order, and the linear 
coefficients are all available, the nonlinear function can be 
evaluated. Analog computer simulation may be used for this pur­
pose. The method is then extended to systems containing several 
nonlinear elements. The system is assumed to have a specified
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periodic input and insignificant noise level in input and output.

In most of the published work on identification, the consi­
deration of a priori knowledge about the system structure, measu­
rement noise and time-varying system parameters is not given suf-

SSficient attention. It is shown by Perils that a desirable iden­
tification scheme under these conditions is a perturbation-corr- 
elation process. The idea was earlier * used but not for time- 
varying processes. Moreover, the approach adopted here differs 
from the recently published research in that the estimation pro­
cedure is based on spectral analysis rather than on time-domain 
methods. A perturbation sinusoidal signal is used along with the 
normal input. An expression for mean-square identification in terms 
of spectral densities of parameter variations and the measurement 
noise at the output is developed to give an optimum filter transfer 
function. Optimization procedures bring out the- conflicting requ­
irements of filter bandwidth. That is, the bandwidth must be wi­
dened to accomodate increased parameter variations and should 
he as smell as possible to avoid high frequency measurement noise.

80 onStanton extended the power spectral analysis for mul­
tivariate systems and used the technique to estimate quasilinear 
transfer functions, from normal operating data, for turboalter­
nators operating in parallel with an interconnected power system. 
The present work uses the same data for the same obj ective but 
employing an entirely different method.

Bellman, et. al.^ introduced a new method for identifying 

linear systems based on numerical inversion of laplace transforms.
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This is obtained by reducing the interval (0 - css) of the il 
gral in the definition of Laplace transform to the interval 
(0-1) by proper substitution. The resulting integral is then 
approximated by using a Gaussian quadrature formula. The method 
employs, as required for Gaussian quadrature, irregularly spaced, 
observations(assumed to be noisefree) and is extremely fast.

Most of the research work is focussed on the estimation of 
lumped-pararaeter systems describable by ordinary differential 
equations. Relatively, a little has appeared in the liter at lire 
on estimation of distributed parameter systems represented by 
partial differntial equations. The extension of methods for est­
imating lumped parameter systems to the case of distributed para-

93meter systems was found cumbersome. Goodson and Perdreauville 
solved the problem by reducing the partial differential equation 
to algebraic equations whose solution yield the unknown distri­
buted parameters. It is assumed that .the form of the system equ­
ations is known.

In a steady-state operation, the plant can be characterised
96by a unique steady-state operator which maps the proper periodic 

input and output. The estimation of the steady-state operator is 
obtained by sarachik by employing the steepest descent technique 
for ultimate optimum control.

2.5C Estimation Schemes s Sequential Versus Nonsequential

The usual classical approach to least squares leads to 
nonsequential regressional estimation schemes. The disadvantage 
of the nonsequential scheme is that, each time when additional
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output observations are to be included, the entire least squares 
calculation has to be repeated. Obviously, the time required to 
perform calculation even for a single interation is considerable. 
Moreover, it can not be implemented in real time.

In contrast, one major advantage of sequential estimators 
2 3 4is that they ' ' shovr excellent and quick convergence making it 

suitable for on-line identification. It is the author's experience 
with references (3) and (4) that this is especially true only 
when the variance of noise is small as compared to the value of 
parameters. In short, the sequential estimators which do not 
account for the statistics of noise in their formulation are very 
sensitive to noise, powever, if the variance of the noise is large 
compared to the magnitude of parameters to be estimated, exper­
ience (Appendix A) shows that the parameter being estimated does 
not converge at all but keeps on roaming around its expected 
value with the deviation (vaguely) proportional to the variance 
of noise. In sequal, the idea of using a sequential type of scheme 
for estimating the parameters of turbo-alternator transfer func­
tions from the normal operating input-output corrupted by heavy 
noice had to be abandoned. The present work shows that better 
results are obtained by solving progressively the TPBV problem 
nonsequentially using the steepest descent technique. Since, in 
a nonsequential scheme, the entire span of assumed model output 
is compared again and again with the observed output data of the 
same span until the best ‘fit is obtained in the least squares 
sense, this method takes considerable time. But this seems to be 
the prise one must pay when the reliability of results is more
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important than the cost.

The next Chapter deals with the formulation of the esti­
mation problem as a TPBV problem.
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