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CHAPTER III

ESTIMATION AS A TWO POINT BOUNDARY VALUE PROBLEM

AND ITS SOLUTION BY STEEPZST DESCENT METHOD



This chapter covers the formulation of estimation problem
as a TPBV problem and its numerical solution'by using steepest

method.

2.1 Problem Statement

The problem to be considered is the estimation of initial
states and parameters of a physical system(in general, nonlinear)
from the sampled record of its input and output. The formulation
of the problem will cover in its general framework, the nroblem
of egtimation of states and parameters of turbo-alternator
transfer functions from the normal input-output record. It is
assumed that the form of the transfer function and hence the
differential eguation description of the system is known. In
part%ular, let the system be described by a vector differential

eguation of the following form
() = glx(e) , %) t, £t =ty (3.1)

The discrete-time formulation is more appropriate if the input-
output record is in sampled form and if a digital computer 1s
to be used to solve the problem. Let the discrete-time equival-

ent of equation (3.1) be
x(i + 1) = f(X(i) # i) i = 0, 1' - o ’N (352)

All inputs tH the system are assumed to be known(i.e. measured)
and are accounted for by the explicit dependance of £(x(i) , i}
on the time parameter 1 . It is further assumed that the output
is a linear combination of the unobservable states and is corr-
_upted by additive noise which may be due to random disturbances

4
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inherent in the system and imperfect measurements. The observed

output signal is
y(i) = E x@{E) + n(i) i=90,1, . . ,N (3.3)

where

X is an n-dimensional state vector augmented to include unknown
constant narameters that must be estimated,

g and £ are n-dimentional vector-valued functions,

y is an m-dimensional observation vector,

H is an mx n congtant matrix, and

n is an m-dimensional noise vector.

The vectors x, y, g and £ are given by

x(1) = colfx (1), x, (1), « « . ., x (W]. (3.4)
yi{i) = col{yl(i}, yz(i), s e e o s ym(il] {3.5)
g = col {gl ’ gZ 7 e e 9’1;] (3.6}
£ = col [, ,£,, . . , 8] (3.7)

where Y“col" denotes the column vector.

Having observed a finite sequence {y(O), vil), « . ., y(Nﬂ',
the problem is to f£ind the best estimate of the initial state

x{0). This will be obtained in the least sguares sense.

3.2 Estimetion as a TPBYV Froblem

Iet the physical system be simulated on the digital computer
by a dynamic mathematical model similar to that in eguation (3.2)

and is given by

(i +1) = £(&E), i) i

i

0' l' » . ? N (3'8}
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vhere x%(i) is an n-vector and represents a nominal trajectory
for the same imput as that measured on the vhysical gystem and
for some initial condition X(0). The computed output for the

simulated system is
v{i) = H (i) _ (3.9)

The deviation of the observed output yv(i) and the simulated

model output ¥{i) is given by the residual error

e{l)

v{i}y - v{)

1

v(i}) - H x{) i=0,1, . « o , 8 (3.10)

If the choice of #{0) were correct, the corresponding
trajectory xX{i) obtained from equation {3.8) would be the true
one and the residual error ef(i) would be either zero for no add-
itive noise at the output or as small as possible when noise is
rresent. In other words,ﬂwhen the resiéual error is minimum, the
initial state x(J) would be as close as possible to the true one.
The best vpossible estimate of x(0) will be obtained in the least

squares sense by minimizing the following functional of the errors.

N £
1= 5 elalew)]

i=0

N i
= ¥ [v@) - R afyle) - 8 X(1)] (3.11)
—

where the "prime" on the vector or matrix demotes its transpose
and Q is a symmetrical positive mx m matrix representing the

weighting factor.

The nominal trajector %(i) in equation (3.11) follows from

equation {(3.8), given x(0). Thus the minimization of functional I



in equation (3.11) constrained by ecuation (3.8) is equivalent

to minimizing the following functional

B J.‘g_ ! o~ -
I = Y [y -uEWlefr@) - 1G]+ XE) [RaEa)
3.=0
- £GR(1), 1)
(3.12)
where ')(i) is an n-dimensional vector whose elements are the

T

Lagrange multipliers and is given by
A1) = cor[N @), M@, . ., /\n(i)] (3.13)

The necesserv conditions for the minimization of equation (3.12)

*
is obtained by determining the differential of I and setting

the coefficients of all independent differentials equal to zero.

*®
The differential of I is given by

* N —~ — - ) -
A1 = ¥ {e2[y) - HEW)]Q HARG) + AN [EGEH) -
i=0
s, 0]+ X@ Eas) - e azw) ]} (3.14)
x{1i}
where £ is an nx n Jacobian matrix whose {(j , k) th element
(1)
f{k is given by
x (i)

ik &fi(i{i); i)
£ =

R(1)  AF ()

A:’&j (i+1) ‘
—— (for A sufficiently small) (3.15)
Az (i)

Rearranging the tersm on the right hand side of equation (3.13)

£ l\T ¢
AL = 22 fl2fy() - HEXW]Q E - M) £
i=0 X

x{i

+ (i-l)}ai':(i)
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N ,
+ 5 oaxaEEa) - £GW, Y

i=0

_-{X(i-l}}ai(o) + {i(m)}ai(m+1) (3.16)

In equation (3.16), the terms within the curlie brackets are
the coefficients of independent differentials. Setting these
equal to zero, the Buler-lagrange difference equations are obta-

ined. Thevy are

x{i+l) = f£(x{i), 1) i=0,1, «. . ,, N (3.17)

and

Mi-1) = £} AL + 2 H'Qy@E) - HXW] (3.18)
x{i)

i=0,l, - opN

with end conditions
A(<1) = 0 (3.19)
AM) = 0 (3.20)

The end conditicns of equations (3.192) and (3.20) are the natu-~
ral boundary conditions that must be satisfied since the both
ends x(0) and % (¥+l) are free. Also the Eunler-Lagrange equations
{3.17) and (3.18) must be satisfied for minimization of the fun-~
ctional I*. Thus the proklem of estimating the initial state

%(0) which also includes the constent varameters is reduced to
solving for x(i) satisfving ecuations (3.17), (3.18), (3.19) and
{(3.20). This is a usual Two Point Boundary Value problem. Since
all the subsequent states (i) y i =1, 2, .. . , N depend on
+the initial state x%(0) by virtue of equation (3.17), the solution

of the TPBV probklem requires to choose suitabkle X{0). The (i)
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trajectory cbiained from equation (2.17) for this x(0), when
substituted in equation (3.18), satisfieg the end conditions for

the Lagrange multipliers M's, given by equations (3.19) and (3.20).

The exact analytical solution to such problems is not known
and one has therefore to solve the problem using iterative tech-
nigues. Cox2 solved the TPEV problem by using dynamic programmiing
considering the gaussian noise. Sridhar and DetéhmandyS obtained

4
solution?%he oroblem in continuous-time emploving invariant-imbed-
ding technique without assuming any statisticéal description of
neise. Both the techniques are of sequential nature. Pearson
found a discrete-~time analog for the same. The merits and deme-
rits of the sequentiél sch.eme3’4 are discussed in section 2.5C
as evident from the results shown in Appendix A. In view of this,
the technigue developed here is of nonseguential type to suit the
problem of sstimating turbo-alternator transfer functions from
the observations heavily corrupted with noise. In the sequential
scheme, one begins with some arbitrary guess on x(0) and the
modifies successively the values of %{(0) on each iteration using
the steepest descent rule until the performance index I given by
equation (3.11) is minimiéed. The minimum of I meang that the
best fit of the simulated model output v on the observed output y

is obtained in the least squares sense. The principle of steepest
. 87 . . . . .
descent method is explained in the following section.

3.3 Solution of the TPDV Problem by Steepest Descent Method

For some initial ardbitrary choice on

R0) = col[E (0), By(0), . . , %, (0)] T {3.21)
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and for the given input, supocose that the nominal trajectory

x{i) is computed usiﬁg equation (3.17). The A{i) trajectory
obtained by substitution of these %(i) values in eguation (3.18)
may not satisfy simultaneoualf the Bboundary conditions given by
equations (3.1¢) and (3.20). In other words, if one obtains the
Ai) trajectory by sélving the equation (3.18) backwards start-
ing with {A(N) = O}, one may not end up with the other necessary
condition {A(-1) = 0¥ simultaneously. This indicates that the
assumed values of the elements of %{0) are not the trus solutions
of the TPEV probiem implying that the functionai 1* is equation
(3.13) is not minimized. If the choice of X{0) were true, both
the boundary conditions are satisfied simultaneously. This is
illustrated by the plots of El(i) and Al(i) in Fig. 3.1. If these
computed values for x(i) and A{i) are substituted in equation

(3.16),it gives
AT = - A{=1) AX(0) | {3.22)

* .
The differential AT has a nonzerc valuse sc long as the choice
of x(0) is not true and aporoaches zero as x%(0) approaches the
true value. This fact can be used to modify the initial guess

%{0) towards its true value.

Since the trajectories (i) and A(i) depend on the initial
F 4
state X{0), it follows from equation (3.12) that I is a function

of x{C), i.e.
1 = I [%0)] (3.23)

- *
The differential of I is given by

~*

aT = 1 [R(0) + 4%(0)] - TEE(0)]
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i )
= fv_(ml*hi(m (3.24)
X
where . | é
v_ I = col {Z\E ———r - 1 ] - - ? ":é"'I-"—"] (3&25)
x(0) L A%y (0) Ao (0) Axn(O) (3.2

Comparison of equations (3.22) and (3.24) yields

* N
x(0)
*
Here, the vector “Q_( )I and hence -A{-l1) represents a gradient
x40
- *
vector at a point x(0) on the surface I in the {(n+1) dimensicnal

% - - -
space formed by plotting I versus xl(O), 22(0), .« o+ x{0).

It is difficult to visualize a space of dimension greater than
three. The steepest descent97 method will be explained here with

%{0) as a two-dimensional vector, i.e.
X(0) = col [E (0, %,(0)] (3.27)

Pig. 3.2 depicts a plot of functional I" versus %, (0) and %,(0).
In fact, it is 2 projection, on {El(ﬂ), §2(0)} plane, of a three-~
dimensional surface obtained by plotting I* against il(o) and
§2(0)‘ The functional I* is shown to be minimum at Q for one
particular set of values .{il(G), QZ(Q)}. For any other set of
values, the functional I* is always higher than the minimum. The
closed curves are contours of constant I* possible for different
sets of values {il(o), §2(Oﬁ‘. One can approach the minima taking
small steps, Ax(0), along the negative gradient starting from

some arbitrary point such as @. Let this small step Ax{0) be

proportiongl to negative of the gradient difined in equation (3.26).
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Thus ' ,

A%(0) = kf-[-21)1Y t k>0

kA1) ' (3.28)

Substituting for ax(0) from equation (3.28) in equation (3.22),

one obtains
A" = x[rlean M-n)] | (3.29)

vhere k is to be chosen suitably. The steepest descent method
also involves choosing the best length of the step along the

gradient. The length AA of the chosen step ax(0) is given by

AA =.a/[ax(0))[2ax(0)] '(3.30)

which is equivalent to for a n-dimensional case

Axn =,\/ASE1(0)2+ A§2k0)2+ ¢« o e +A§En(0)2 (3.31)

The corresponding variation in performance index is given by
equation (3.22). It is desired to obtain the minima of I with
the minimum number of iterations to save computer time. The
length A A of the step should therefore be so chosen that the
variation AI* in the performance index I* is maximum negative,
i.e., minimum, Minimization of AI* in equation (3.22) with the
constraint given by equation (3.30) is equivalent to the minim-
}.zaticn of the function given by

¥ = - A1) a2 + p{an? - [sE(0)][aF(0)]} (3.32)

where /5 is the lagrange multiplier. Differentiating this with

respect to AX(0), one obtains



&%

—2¥__ . N - 2 /345 (0) (3.33)
Eksx(o)J
wvhere _
J¥ . ol o¥ , J¥ . ., S¥ 1
SBx©)] Sag 0] Sk, 0] S[2% (0] I
(3.34)

Equating this to null vector and rearranging, one gets
AR(0) = - M=1)/2p (3.35)

Substitution for A x(0) f£from equation (3.35) in equation (3.30)
vields

sa = &0 2alp (3.36)

' *
Therefore, for minimizing AI , it is necessary that

o= 5 HEDS 17 /24a (3.37)
Substitution for J3 Erom equation (3.37) in equation (3.35) gives

Ax() = Taa. AL=1)
A N (=1} X (=1}

(3.38)

Gomparison of this with the equation. (3.22) suggests positive
sign in ecquation (3.38)

AR(0) = + S3 A (=1) (3.39)
A AC=1) A (~1)

and

x = AW ' (3.40)

AN

Thus the optimum step 4x(0) is obtained.
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3.4 Computational Procedure

The theory developed in the fofgoing sections is to be used
to estimate the transfer functions of the turbo-alternator. The
form of the transfer function is assumed to be known. The transfer
function with its unknown parameters can easily be transformed
into the vector differential equation of the form given by equa-
tion (3.1). In order that the estimation scheme developed here
could be applied directly, the differential equation must be
converted to the difference equation of the form given by equation
(3.17) to obtain the numerical values of the state vector x(i)

and the Jacobian matrix f,( « It is not always easy to obtain
x{(i)

the discrete eqpivalen§ of the differential equation. Alternati-
vely, the state vector X(i) at discrete instants i = 0, 1, . .
»N may be obtained by numerical integration of the differential

equation, similar to the equation (3.1), given by
x(t) = gxlt), t) t, £t gy (3.41)

where x(t) is the nominal trajectory in continuous-time. and the

Jaccbian matrix f_( ) required in equation (3.18) may be cbtain-
x{i .

ed in the following manner. let the state vector x (i.e. X(t)) be

varied by the amount AX in the equation (3.41). Then, writing

g% for X , one obtains
S +a%) = g(E +2%, ¢ (3.42)

which simplifies to

SE + Ai >~ g(s% '] t) + Q‘Ai’{ ‘ (3‘43)
X {neglecting other terms)
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where ¢ 1s the Jacobian matrix in continuous-=time. Use of
b3

equation (3.41) in equation {(3.42) yields

AR = g_AR (3.44)
X

The solution of such a equation1

for a discrete~time case is
AR@E+1) = Pli+l , 1) AR(L) (3.45)

where ¢(i+l, i) is a state transition matrix for transition

th instant to (1+1)8t. By virtue of the

of the state X at the i
property of state transition matrix, ¢ (i+1 , i) can be obtained

from the following equation
i+l , 1) = g_ Pli+1 , 1) ;. P, i) = I (3.46)
x .

where "I" is the identity matrix. Comparing equations (3.15)

and (3.45), there results

£_ = P+, 1) (3.47)
x(i)

Thus the Jacobian matrix is 6btained. The entire computational

procedure is briefly summarized as follows:

1. Make an initial guess on the initial condition x(0).

2. Obtain the values of the nominal trajectory x(i),
i=0,1, . . ,N from either the difference equation
(3»1%), if known or from the differential equation
(3.41) by numerical integration between the sample
points. Also obtain the Jacobian matrix fi(i) at
sample points 1 =0, 1, . . ,N either from eguation

(3.15) or from equation (3.47). Store these values.

3. Compute the performance index I using equstion (3.11).
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5.

6.
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Q = 1I.

Use the values computed in (2) above to solve equation
(3.18) backwards starting with A(N) = 0 and compute
Af=1),

Modify the values of the initial condition x(0) using

equation (3.39) in the following manner

new ®(0) = old E(0) + AA A1) (3.48)

v X(=1) 2A(=1)

where AXA , representing the step-size along the nega-

tive gradient, may be chosen suitably as will be disc-
ussed lateron.

Repeat this procedure until I becomes minimum in which
case the initial state X(0) is expected to have con-

verged as close as possible to their true values.
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