CHAPTER VI

ESTIMATION OF THE THIRD ORDER CLOSED-LOQP

TRANSFER FUNCTION OF THE TURBO-ALTERNATCR
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The estimation of second order closed-loop plant failed
to give reliable results as discussed in previous chapter. An
attempt was therefore made to try out a third order model where
the governor action in the feedback loop is represented by two
time constants. The representation of the governor by two time
constants is more typical. It 81so involves a backlash nonlinea-
rity but this was neglected.

After obtaining the state variable formulation of the tr-
ansfer function, the same computational algorithm was used and
the convergence of parameters was excellent when the open-loop
plant parameters ‘?ﬁ and D' were assumed to have been known.
The experimental data used in this case was the same as that
for the second order system considered earlier. The results ob-
tained from the simulated as well as the actual data were quite

satisfactory.
6.1 State Variable Formulation

Denoting the two time constants for the governor by ‘té

and 2 (in the feedback loop shown by dotted line in Fig. 4.1),

the closed~loop transfer function is given by

1
_é_g_?.;s) _ D(1+m&s) 6.1)
AP'(s) 1+ 1 X ¢

D(1+7 s) (1+qﬂs)(1+e§s)

L+ el + wors®

- Jmp—,

D Ll + (¢ +fcg'+r~")s + (% ~g{+qa~;+~gffm)s + % 'r'y"s _}+ K
(6.2)

Using equation (4.8) in equation (6.2)
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a®'ls D*[i + (AP eM)s + (2 ety )82 ¢ v rvgS ]+ K
m ‘g ‘g mg ‘g'g ‘gm m'gg
{6.3)
where D' and XK' are related to D and XK respectively by

equations (5.4) and (5.5). 2ccording to stanton's®® estimate,

the values of D', K' , o are 0.458 p.u./ e/s8 , 2.91 p.u./ c/fs ,
2.5 secs. respectively. No definite estimate of zzé and ¢§
is available but they are expected to be around 0.5 secs. each.
The problem in this chapter is to estimate the parameters D' ,

X ; 'Zﬁ ,':é »and -y; using the same operating data &s used by
Stanton and using the estimation scheme developed in Chapter IIXI.
The estimation scheme requires the transfer function of equation
(6.3) to be transformed into state variable egquations. This will
be obtained by using computer diagram. Eguation (6.3) can be

written as

2
A.@:' a.s8 <+ a.s + a
T s AT (6.4)
bls + bzs o bas + 4

where

- 9, . = R PO | P = ° T 8,0
al tgz'é; ; az [A *r_ Y aa 1 7 bl. = D ml.gtg f

= DE(Y A gt 3 = L Gk s e = D'$K',
h2 ( m g+ - + g‘g) b3 D*( a &g m) ? b4

Dividing the numerator and denominator on the right hand side

of equation {6.4) by blss, one obtains

AQi(s) _ 1 1
L5 - 2 lb4 - (6.5)
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let
E(s) = - LEde). . (6.6)
1+ Sa st +~S§ g2 4 gﬁ g3
1 1 1
which is equivalent to
b b b
E(s) = aP'(s) - gg g1 E(s) - g; s E(s) - gi g=3 E(s)'
1 1 1 (6.7)
Use of equation (6.6) in equation (6.5) yields
a a a
a2(s) = s+ 267242573 B(e) (6.8)
1 1 1

Equations (6.7) and (6.8) can be interpreted to give the computer
diagram shown in Fig. 6.1 . Iet the outputs of integrators in

Fig. 6.1 be denoted by state variables Xy 0 X5 0 ¢ o o starting
with Xy for the last integrator and proceeding backwards. Thus,

one obtains

X = x, . (6.9)

£y = %y (6.10)
. b by by

23 = - 5I~x1 - S; X, = E;'xa + u {6.11)

and the ideal (without noise) out put 4c* is given by

a a a
o= 3 2 L
AtLS bl Xl + bl 32 + bl 33 (6.12)
where u = oap* b1 v b2 ’ b3 ' b4 r 8 . 8, a3 are

constants and Xy ¢ X, » u are functions of time. Representing

the parameters as state variables given by

x, = 1/D¢ (6.14)

5
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xg = 1/} ' (6.15)

and substituting the relevant state variables for 2y » 8,0

az » by b, b3, and b4 s equations (6.9), (6.10) and (6.11)

become
X, = X,
iz = x, | (6.19)
Ry T T ¥, xg xy (mgrglxm - GrggiegXotagx,)x, -
(x tacg¥x, )%, + U (6.20)

Noting that Xy ¢ Xg 0 Xg 0 Xq and Xy are constants, one

obtains

i4 = 0 (6.21)
is = 0 (6.22)
2, = O (6.23)
i7 = 0 (6.24)
*8 = 0 (6.25)

The output A.' in equation (6.12) now becomes

{(6.18)

AW = Xy Xg Xg Ko Xy + X, Xg (x6+ x7) X b Xy X Xg (6526)

Equation (6.26) represents the theoretical or ideal output
since it does not consider the random diturbances. Considering
the additive noise, the discretely measured output y(i) is

given by
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v) = x, () x (1) x (1) x, (1) x () + x,(d) xs(i)[ksfi)+x?5i,
x5 (1)), (1) + %, (1) %, (1) x,(1) + n(d) (6.27)

Comparison of eguation (6.27) with eguation (3.3) gives the con-

stant row vector H or H(i) given by

HI) =[x, (g (xg ()%, (1), x, (Wxg () {xg (1)4x, (1)}
x,(i)x,(1) ,0,0,0, 0, 0] (6.28)

and the state vector x(i) given by

x(1) = col [x (1) , x,(1) 4 « « o4 xg(1)] (6.29)

The aim is to estimate the initial states xICO), xzio)'o
e o o xg(o) from observations of input ufi) and output

Y(i) i=001'ooo'Nt

“9

6.2 Estimation Scheme

The best estimate of the initial states xl(O), xz(o),
c o o xS(O) will be obtained on the basis of minimization of

the performance index I given by

N
I o= X o[yl - X (DEF QK WX, (DF 1) - X WE Q).

= 2
{Xa 1)+, )%, (1) - %, ()%, (DX ()] (6.30)
This is obtained by substituting for H from eguation (6.28)
in the equation (3.11). Since the observation y(i) is scalar,

Q@ is also scalar. The expression Lx4(i)xs(i)xG(i)x7(i)x1(i) +
§4(1)i5(i){is(i}+§7(i)}§2(i) + §4(1)§5(1)§3(ii] in equation
(6.30) represents the output ¥(i) of the dynamic model simu-

lated on the digital computer. Equation (6.30) imply that the

model output ¥(i) is compared with the observed system output
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in the least Sguares sense to obtain the best values of il(i).
iz(i), « o o & ia(i) which then give the best estimates of x,(0),
£2(0), . e o ia(o) respectively. The dynamic model is repre-

sented by the following equations.

iz = §3 (6.32)
Xy = - 34 6 7(1 + xs 8)x1 - (x4 6 * x x7x x -

(x4 +x, + x7)x3 + u (6.33)
x4 = 0 (6.34)
x5 = 0 (6.35)
x =0 (6.36)
_6
xs = 0 (6.38)

with some initial conditions X,(0) , %,(0) , « . +, %5(0) and

using the same input as that of the system whose parameters are

to be estimated. Equatiocn (3.41) is in the general vector form

representing the above 8 scalar equations. The Euler-Lagrange

equations for minimization of I of equation (6.30) are given

by

) = £ [5H@, B0, ..., ZHW)] (6.39)
k=1, 2, . « , 8

and since X, , Xg i o . ., X, are constants ,

ij {i‘!'l) = ij (i} ? j = 4; 5( 6' 7' 8 » {6040)

.and
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O CO R ol VN S RS T A D
x(1) X =

x(1) x(i)

20 %, (1)%; (1)F WE, (W) [y ) - X, (1)F (1F,LIF, ().

521(1) - 524(1)5&5(5.) §6(1)+§7(i) 522(1) -

£, (1F (WF, ()] (6.41)

. (4a1) o £12
ApUs=1) = £

x(i)

M)+ £22 L 0) + ... .+ 92 A () 4

F(4) 2 (1) 8

20%, (L)% (1) & ()48, W[ vy (1) - X, (L)F; ().

X (L)X, (L)%, (1) - &, (DIX (1) K ()4, (1) %, (1) -

X, ()% WX, (1) ] (6.42)
M- = 22 A £ @) v ... 200 e
x (i) x(i) x (i)
20 %, WX (1) [y (1) - &, (WF (1)F, (1)F, QIF, (1) -
X, LIRS () R (1) + Ry (1) ®, (1) - &, (L)E, (1)F, ()]
(6.43)
A=) = 23 aw e o w el e e oW
J x(i) x(1) x(i)

j=4,25,86,7, 8., (6.44)

i=0,1, . « « N for all equations from (6.39) to (6.44). The

boundary conditions to be satisfied are

‘)k("l) = 0

)k(N) = 0 :

-y

Equations (6.39)

kgl,Z,e...8 (6045)
k=1' 2' e s @ 2 8 (6.46)

are discrete-time equivalent of equations (6.31)

to (6.38). They need not be known in the closed form when the .

values il(i), iz

(1), « - » ieti) for i =0,1, . . ,N are '
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obtained by numerical integration of equations (6.31) to (6.38).
The derivation for obtaining difference equations from differe-
ntial equations (6.31) to (6.32) and then to find Jacobian matrix
£ were too lengthy, tedious and cumbersome. These were the-
rzéé;e obtained by numerical integration. The subroutine used
for this purpose was based on the first term in Taylor's expan-
sion. The results obtained by this subroutine were almost the
same as those obtained by using AMRK subroutine. Morewnver, this
subroutine is four times faster than AMRK subroutine. The Jaco-
bian matrix elements are obtained by solving equation (3.46).
The matrix g_ needed in the equation (3.46) for %hé present
case is givengby equation (6.47) on the next page. The state
transition matrix @(i+1, i) is a 8x8 matrix and is equiva-
lent to the Jacobian matrix by equation (3.47). The computation-
al procedure followed here is the same as detailed in the pre-
vious chapter. The initial conditions X, (0), X,(0), . . .,
%Xg(0) are modified on every iteration as per the following eg-

uvation.

new Ek(O) = old xk(O) ek S
\/Z ;\ (~1)

k=1;2;00008

Ak(“l) (6048)

The step-size AA 1s taken to b2 0.1 to start with. The next
section deals with the estimation from the input-output data

obtained for a third order computer-gimulated system.
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o 1 0 0 0 0 0 o |
0 0 1 ) 0 0 0 0
36

gl 3% g3 Bt B G BT 38
X X x b4 X X X X
0 ) 0 0 0 0 0 0

g = (6.47)

% 0 0 0 ) 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 ) 0
0 0 0 0 0 0 0 )

where

31 _ - == - = .

g:'i = - x4x6x7(1 + xsxs)

32 _ - = - - = .

gﬁ = - (XX, + XX, +XX,)

33 _ - - - .

g’? = - (x4+x6+x7) :

b4

gt = E2RQ +EFIE - R+ EIR, - F, i

= 67 5eg’ 1 6 7'%2 3 7

3 ot e== =

% L LEE O +ERFEIR - (R + R IR, -F 3

gi = 4*7 5%g’ ¥y 7 4'%9 3

37 o LZ2FEQ+EEIR - (R, +RIR -R. 3

952 = 4% 57g’*1 4 6 %2 3 !

38 mz=== )
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6.3 Estimstion from Input-Output Record of a Computer.- Simul-
ated Svstem Similar to the Third Order Closed-loop Plant

The third order transfer function represented by differen-
tial equations (6.18) to (6.25) was simulated on the digital co-
mputer. The true output given by equation (6.27) excluding the
noise term, for i = 0 to 99 (i.e. 100 measurements), was com-
puted from equations (6.18) to k6,25) using sihusoidal input
u{i) = 1.0 sin(0.125 i) and with initial conditions x, (0)
= 1,0, x2(0)1= 0.5 -, x3(0) = 0,125 , x4(0) = 0.5 , xs(o) =
2.0, x6(0) = 2,0 , x7(0) = 2.0 and x,(0) = 3.0 . Random
numbers having their values within % 0.05 were added to this
output while considering the case of additive noise. The method
déscribed in case II(a) of chapter III was used to take care of
mean of noise. Several expériments were made and their results
are summarized below.

(1) The first trial for estimation was begun with initial
guesses of initial conditions 10 % off from their true values
and considering no noise with the output. In the process of con-
vergence, it was observed that §4(0) overshooted considerably
and did not converge to its true value. This created difficulty
for other initial states to converge to their true values. The
performance index did not decrease further beyvond this stage.
The results are shown in Fig. 6.2 and Table 6.1 . The computer
time for this program was about 5 minutes for 60 iterations.
{2) The difficulty in convergence was avoided by keeping
§4(0) and X, (0) constants to their true values as if they

were known, so that while working with the experimental data,
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§4(0) and ¥.(0) may be assumed to have been known from the
results of open-loop plant estimation. %hen §4(0) and 25(0)
were kept constants to their true values 0.5 and 2.0 resp-
ectively, the problem reduced to the estimation of six initial
states excluding 24(0) and QS(O) < Instead of making an
entirely new program for this new situation, the same program
was used with computation of >E(i) and ks(i) neglected and
by keeping }4(1) and As(i) equal to zero throughout. The
results of estimation without considering noise are shown in
Fig. 6.3 and Table 6.2, Fig. 6.4 and Table 6,3, Fig. 6.5 and

Table 6.4 for different initial guesses.

TABLE 6.1

©) x,(0),%,(0) x,(0) x5(0) x5(0) x,(0) xg(0)

—nmm—um——a---;--n—mu———.w-—‘.——--m-wn

True values 1.00 0.50 0.125 0.50 2.00 2.00 2.00 3.00
Initial guess* 0.90 0.45 0.10 0.45 1.80 1.80 1.80 2.70
Final results* 0.958 0,517 0.115 0.663 1.772 1.933 1.933 2.621
* No Noise

TABLE 6.2

"xl(O) (0) x3(0) X, (0) xs(O) xG(O) %q (0) xB(O)

ﬁn—-”m--m«-——mﬂnn— . R WD em e R GO e A wae

Without Noises .
True values 1.00 0, SQ 0.125 0, 50 2. 00 2.00 2.00 3.00
Initial guess 0.90 0.45 0.10 0. 50 2. 00 1.80 1.80 2.70
Final results 1.053 0.445 0.088 0.50 2.00 2.016 2.016 2.931
* Kept constants
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TABLE 6.3

x, (0) x,(0) x,(0) x,(0) x5(0) x,(0) x,(0) xg(0)

e ame R e G MR M R T MR WD Gne W MO TR SR WER TR M MR I W MR O R am T8 O WR e o

Without Noise:

True values  1.00 0.50 0.125 0.50 2,00 2.00 2.00 3.00

Initial guess 0.50 0.50 0.50 o.so: 2.00" 0.50 0.50 0.50

Final results 0.994 0,311 0.042 0.50 2.00* 1.896 1.896 3.116
* Kept constants

TABLE 6.4

{

xlgo) x2(0) x3(0) xé(O) xs(O) xG(O) x7(0) x8(0)

A W B TR e e G e O TR e G A G MO N A D W G me YA el W el G KIR oM W e o

Without Noise:

True values 1.0 0.5 0.125 0.50 2.00 2.00 2.00 3.00
Initial guess 1.0 1.0 1.0 0.50" 2.00° 1.0 1.0 1.0
Final results 1.092 0.259 0.771 0.50" 2.00" 2.05 2.05 2.888
* Rept constants

The computer time taken to obtain the results shown in
Table 6.3 and Table 6.4 was about 3 minutes for about 100 iter-
ations. Some experiments were done for estimation starting with
arbitrary initial guesses for all initial states as done in
experiment (1) of section 6.3 and then varying §4(0) (when I
did not decrease furthe£ and got stuck) alone towards minimizing
the performance index I. and:then gbing back to‘&egular compii-~
tational algorithm. This brought the initial state §4(0) towards

true value and overcame the trouble in convergence posed by over-

shobting of i4(0). Such experiments were also done for second
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order system in Chapter IV . This methcd worked well but the

computer time taken was enormous.

B.4 Estimation from Actual Input and Qutput Data

Before starting with the estimation from actual input and
output, some experiments similar to those in section 6.3 were
made for estimation using the actual input (insiead of sinusoidal
as was used in the previous section) and the corresponding out-
put of the simulated system considering 100 measurements. The
results regarding convergence were as good as those in section
6.3 , when the states §4(0) and ES(O) were kept constants
to their true values. Having obtained confidence that the esti-
mator works for both sinuscidal as well as actual input of ran-
dom nature, the technigque was tried using actual input and act-
ual output data.

Both the input and output data were treated for h.f. filt-
ering with fc = 1.0 ¢/s, thus reducing the number of input and
output measurements to 600. As discussed in Chapter 1V, h.f.
filtering with £ = 2.0 ¢/s could have been better from accu-
racy point of view but this was deliberately avoided as this wo-
uld increase the number of measurements to 1200 and hence the
computer time. The initial states x4(0) and xs(o) represen-
ting the reciprocals of time constant ?hl and damping coeffi-
cient D* for the open loop plant were assumed to be constant
at the values 0.25 and -2.158 (Table 4.3) respectively,
obtained earlier for open-loop plant estimation. Three hundred
measurements were used to estimate the rest of the initial states

(i.e. xl(O), xz(O), x3(0), xG(O), x7(0) and xB(O))o Since
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the sampling interval for the actual data was 1.0 second, the
integration subroutine having integration step of 0.01 sec. was
regquired to be called 100 times in order to reach the next samp-
ling instant. This involved a lot of computat.fon0 The convergence
was observed to be excellent as was evident from smooth decrease
in performance index I on.every iteration but each iteration
took about two minutes. It waé observed that no significant
difference in the results was found by taking the integration
step of 0.1 secs This required to CALL the integration sub-
routine 10 times only to integrate over 1 second of time. This
reduced the computer time considerably. The results obtained f£rom
the experimental input-output data of the turbo-alternator are

shown in Table G.5'.

TABLE 6.5

xl(O) xz(O)(xa(O) 34(0) xs(O) x6(0) x7(0) xs(O)

M een G0 e IO WS e Nl WA G e e oM @ ) e G0 ol e e K GW HO me Y e e s WO R e

* *
Il’li‘tial guess 1.0 1.0 loo 0025 "'...0158 160 1.0 1.0

* *
Final results -19.2 0.708 0.694 0.25 -2.158 2.373 2.373 -3,.232
* Kept constant

Referring to equations (6.15), (6.16) and (6.17), the

estimates of zé . T8 and K' are given by

g
vy = 1/%,(0) = 1/2.373 = 0.42 (6.49)
T = 1/x,(0) = 1/2.373 = 0.42 (6.50)
K’ - x8(0) = -30232 (6051)

‘Using equation (5.5), one obtains
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1200 K'/10%

=
i

= - (1200 x 3.232)/10%
- 0.388 (6.52)

]

The results of estimation are in close agreement with expecta-

tions.
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