
CHAPTER VI

ESTIMATION OF THE THIRD ORDER CLOSED-LOOP 
TRANSFER FUNCTION OF THE TJIRBO-ALTERNATOR



136

The estimation of second order closed-loop plant failed 
to give reliable results as discussed in previous chapter. An 
attempt was therefore made to try out a third order model where 
the governor action in the feedback loop is represented by two 
time constants. The representation of the governor by two time 
constants is more typical. It also involves a backlash nonlinea­
rity but this was neglected.

After obtaining the state variable formulation of the tr­
ansfer function, the same computational algorithm was used and 
the convergence of parameters was excellent when the open-loop 
plant parameters ^ and D* were assumed to have been known. 
The experimental data used in this case was the same as that 
for the second order system considered earlier. The results ob­
tained from the simulated as well as the actual data were quite 
satisfactory.

6.1 State Variable Formulation

Denoting the two time constants for the governor by
and -y” (in the feedback loop shown by dotted line in Fig. 4.1),

¥
the closed-loop transfer function is given by

___1 ___
ASM
ap' (s)

DU+2-s) ra1 K1 * DTi+tST u+^Jslm g g
i + (7r*+^,)s +

(6.1)

'gg gg
d j i + (<r +r’t^,)s + {% r,+W+*'V )s* + r r*-Tr«s3]+ k L ra °g g m g g^g Lg m m g § J

(6.2)
Using equation (4.8) in equation (6.2)
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where D '

1 + (r'+yjs + tV's'g g g g
D-[l + <V^ls + <V*+^+^,s2 * Vg*gs j+ K'

(6.3)
and K* are related to D and K respectively by

90equations (5.4) and (5.5). According to Stanton's estimate#
the values of D1 , K' # are 0.458 p.u./ c/s # 2.91 p.u./ c/s ,m
2.5 secs, respectively• No definite estimate of oc* and y"9 9
is available but they are expected to be around 0.5 secs. each. 
The problem in this chapter is to estimate the parameters D* ,
K* , vand Yg using the same operating data as used by
Stanton and using the estimation scheme developed in Chapter III. 
The estimation scheme requires the transfer function of equation 
(6.3) to be transformed into state variable equations. This will 
be obtained by using computer diagram. Equation (6.3) can be 

written as

A 8 (8 ) Ap* (s)
a,s + a,s + a.-.....rj

hjS3 + b2s2 + b^s + b4 (6 « 4 )

where
. i ,-jig‘g a. ■Y *

Lg Lg

b„ = d *(rm g m g 'g^g

b. D»? .>« „ «
m g g t

D* (y + y+r ) t b. « D'+K‘, g g m 4

Dividing the numerator and denominator on the right hand side
of equation (6.4) by b,s # one obtains

All* (si
AP'(s

"1

^ s-1 ♦ ^ s-2 + p. s-3bl bl bl
b

^ «■& s*”1 + s"2 + r~ s*
bl bl bl

(6.5)
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Let 
B (s) b,

4. —&>
AP«(B)

s \•§* r*3* a + Jk (6.6)

which is equivalent to
E(s) =» AP'(s) - s"1 E(s) - s"2 B(s) - s“3 E(s)

bl bl bl (6.7)

Use of equation (6.6) in equation (6.5) yields

A&l* (s) fr ^ |9bl
^ a"2 + ^ s“3} E(s)
b (6.8)

Equations (6.7) and (6.8) can be interpreted to give the computer 
diagram shown in Fig. 6.1 . Let the outputs of integrators in 
Fig. 6.1 be denoted by state variables x^ , x2 , ... starting 
with x^ for the last integrator and proceeding backwards. Thus, 
one obtains

X1 * x2
x2 - x3

b4 b3 b4
b^ X1 ” b^ x2 “ b^ x3 + U

and the ideal (without noise) out:put acA* is given by 
a_ a_ a*bjx3

(6.9)

(6.10) 

(6.11)

(6.12)
where u Ap b„ , bq , b, , b^ , # a2 » a„ are1 ' 2 ' 3 r “4 ' ~1 ' ~2 ' “3
constants and x^ , x2 # u are functions of time. Representing
the parameters as state variables given by

*4

x»

1/fZm
1/D’

(6.13)

(6.14)
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x - 1/r* (6.15)6 g
x_ = 1/r" (6.16)7
xg * K* (6.17)

and substituting the relevant state variables for , a^ » 
a3 # b^ , b2 , bg, and b^ # equations (6.9), (6.10) and (6.11) 
become

*i = x2 (6.18)

Xg * Xg (6.19)
*3 ” ” X4 x6 K7 ̂14‘x5X8^x1 " ^X4X64'3£6X7+X7X4^X2 ~

(x-*x*+x_)x0 + u (6.20)4 6 7 3
Noting that x^ , Xg , Xg $ x^ and Xg are constants, one
obtains
x4 * 0 (6.21)

*5=0 (6.22)
*g * 0 (6.23)

x? = 0 (6.24)

*g = 0 (6.25)

The output a6$ in equation (6.12) now becomes 

A&y « x4 Xg Xg Xj Xj + X4 Xg (Xg+ Xj) Xg+ X4 Xg Xg (6 £26)

Equation (6.26) represents the theoretical or ideal output 
since it does not consider the random diturbances. Considering 
the additive noise, the discretely measured output y(i) is 
given by
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y(i) = x4(i) Xg<i) Xg(i) x7(i) (i) + x4(i) x5(i)[xg(i)+;7 : ,

x7(i)jx2 <i) + x4(i) x5<i) XgCi) + n<i) (6.27)

Comparison of equation (6.27) with equation (3.3) gives the con­
stant row vector H or H(i) given by

H(i) [x4 (i)xg (i)x6 (i)x7 (i) # x4(i)x5(i)£xg(i)+x7(i)^- # 

x4(i)xg(i) , 0 , 0 # 0 # 0 # o] (6.28)

and the state vector x(i) given by
x(i) » col [xj^ (i) , x2(i) # • . . w xg(i) J (6.29)

The aim is to estimate the initial states x^ (0)# x2(0) , 
. . . , Xg(0) frcan observations of input u(i) and output 
y(i) * i ® 0, If ... iN .

6.2 Estimation Scheme
The best estimate of the initial states x^(0)# x2(0)#

• . . , Xg(0) will be obtained on the basis of minimization of 
the performance index Z given by
I = 21 G £y(i) - x4(i)x5Ci)Ig(DEjU)*^ (i) - x4(i)xg(i).

i-0 2
{x6(i) +x7(i)^x2(i) - x4(i)xg(i)x3(i)J (6.30)

This is obtained by substituting for H from equation (6.28) 
in the equation (3.11). Since the observation y(i) is scalar#

(i )x7
x4(i)xg(i)(xg(i)+x7(i)}x2(i) + x4 (i)5g (i)x3 (i)J in equation

(6.30) represents the output y(i) of the dynamic model simu­
lated on the digital computer. Equation (6.30) imply that the 
model output y(i) is compared with the observed system output

Q is also scalar. The expression I x4(i)x. (i)xg
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in the least squares sense to obtain the best values of (i), 
x2(i)» • • • $ Xg(i) which then give the best estimates of x^(0), 
XjiO), . . . , Xg{0) respectively. The dynamic model is repre­
sented by the following equations.

x.

X

X, s X4X6X7 (1 + XgXgiXj - (x^Xg + XgX? + X^X^JXg

X4

(x4 + Xg + X^JXg + u

*
mm

X

0

0

(6.31)

(6.32)

(6.33)

(6.34)

(6.35)

(6.36)
6

x? = 0 (6.37)
•
xg = 0 (6.38)

with some initial conditions 2^(0) , ^(O) , . . . , xg(0) and 
using the same input as that of the system whose parameters are 
to be estimated. Equation (3.41) is in the general vector form 
representing the above 8 scalar equations. The Euler-Lagrange 
equations for minimization of I of equation (6.30) are given 
by
x^i+1) = f^JxjCi) , x2(i) , . . . , Xg(i) J (6.39)

k 85 X § 2, m « $ 8
ana since x^ 0 ^ * * . , are constants ,
x. (14*1) = x. (i) t j * 4, 5, 6, 7, 8 • (6.40)

. and
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\U~D * f11 A. (i) + f21 A0(i) + . . . , + f81 Ar(i) + 
x(i) x(i) x(i)

2 Q x4(i)xg (i)Xg (Dxyd) [y(i) - x4 (i) xg (i) Xg (i) x7 (i).

x^Ci) - x4(i)x5 (i) x6 (i) +x7 (i) x2 <i) -

x4(i)x5 (i)x3 (i)^ (6.41)

A0(i—1) * f^2 X. (i) + £22 A_ (i) + . . . . t f82 A_(i) +
2 x(i) 1 x(i) 2 x(i) 8

2 Qx4(l)xg (i)[x6(i)+x7 (i)}[y(i) - x4(i)xg (i).

Xg(i)x7(Dxj^ (i) - x4^i)x5(i) Xg(i)+x7(i) x2(i) - 

x4(i)5g (Dxg (i)] (6.42)

X (i-1) = f13 A. (i) + f23 X,(i) + . . . . + f83 xm
3 x(i) 1 x(i) 2 x(i)

2Q x4(i)xg (i) [y (i) - x4(i)x5(i)xg(i)x7(i)x1(i) -

x4(i)x5 (i) Xg(i) + x?(i) x2(i) - x4(i)xg(i)x3(i)J

(6.43)
X (1-1) a £1J A, (i) + f2j X,(i) + . . . . + f 8J AoCi)
3 x(i) 1 x(i) 2 JE(i) 8

j = 4, 5, 6, 7, 8 . (6.44)

i = 0, 1, . . . ,N for all equations from (6.39) to (6.44)• The 

boundary conditions to be satisfied are

>^(-1) = 0 ? k = 1, 2, ... , 8 (6.45)

>k(H) =0 ; k = 1, 2.........8 (6.46)

Equations (6.39) are discrete-time equivalent of equations (6.31) 
to (6.38). They need not be known in the closed form when the , 

values x^(i)# x2 (i) # . • , Xg(i) for i * 0# 1# . . ,33 are
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obtained by numerical integration of equations (6.31) to (6.38). 
The derivation for obtaining difference equations from differe­
ntial equations (6.31) to (6.32) and then to find Jacobian matrix

refore obtained by numerical integration. The subroutine used 
for this purpose was based on the first term in Taylor's expan­
sion. The results obtained by this subroutine were almost the 
same as those obtained by using AMRK subroutine. Moreover, this 
subroutine is four tiroes faster than AMRK subroutine. The Jaco­
bian matrix elements are obtained by solving equation (3.46). 
^he matrix g needed in the equation (3.46) for the present
case is given by equation (6.47) on the next page. The state 
transition matrix $(i+l, i) is a 8x8 matrix and is equiva­
lent to the Jacobian matrix by equation (3.47)• The computation­
al procedure followed here is the same as detailed in the pre­
vious chapter. The initial conditions x^(0), x2(0), . . . , 
Xg(O) are modified on every iteration as per the following eq­
uation.

f
x(i)

were too lengthy, tedious and cumbersome. These were the-

(6.48)

The step-size aA is taken to be 0.1 to start with. The next 
section deals with the estimation from the input-output data 
obtained for a third order computer-simulated system.
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6.3 Estimation from Input-Output Record of a Computer— Simul­
ated System Similar to the Third Order Closed-loop Plant

The third order transfer function represented by differen­
tial equations (6.18) to (6.25) was simulated on the digital co­
mputer. The true output given by equation (6.27) excluding the 
noise term, for i = 0 to 99 (i.e. 100 measurements), was com­
puted from equations (6.18) to (6.25) using sinusoidal input 
u(i) = 1.0 sin(0.125 i) and with initial conditions x.^ (0)
- 1.0 , x2(0)/* 0.5 , x3(0) « 0.125 , x4(0) - 0.5 , xg(0) *
2.0 , Xg(0) * 2.0 , x?(0) - 2.0 and xQ(0) « 3.0 . Randan 
numbers having their values within ± 0.05 were added to this 
output while considering the case of additive noise. The method 
described in case II (a) of chapter III was used to take care of 
mean of noise. Several experiments were made and their results 
are summarized below.
(1) The first trial for estimation was begun with initial 
guesses of initial conditions 10 % off from their true values 
and considering no noise with the output. In the process of con­
vergence, it was observed that x^(0) overshooted considerably 
and did not converge to its true value. This created difficulty 
for other initial states to converge to their true values. The 
performance index did not decrease further beyond this stage.
The results are shown in Fig. 6.2 and Table 6.1 . The computer 
time for this program was about 5 minutes for 60 iterations.
(2) The difficulty in convergence was avoided by keeping 
s4(0) and Xg(0) constants to their true values as if they 
were known, so that while working with the experimenta1 data,
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x4 (0) and (0) may be assumed to have been known from the 
results of open-loop plant estimation. When x4(0) and Xg (0) 
were kept constants to their true values 0.5 and 2.0 resp­
ectively, the problem reduced to the estimation of six initial 
states excluding x4(0) and Xg(0) . Instead of making an 
entirely new program for this new situation, the same program 
was used with computation of (i) and (i) neglected and 
by keeping ^4(i) and (i) equal to zero throughout. The 
results of estimation without considering noise are shown in 
Fig. 6.3 and Table 6.2, Fig. 6.4 and Table 6.3, Fig. 6.5 and 
^able 6.4 for different initial guesses.

TABLE 6.1

Xj^ (0) x2 (0) 3X3(0) x4(0) Xg (0) Xg(0) Xy (0) Xg(0)

&True values 1.00 0.50 0.125 0.50 2.00 2.00 2.00 3.00
AInitial guess 0.90 0.45 0.10 0.45 1.80 1.80 1.80 2.70

Final results 0.958 0.517 0.115 0.663 1.772 1.933 1.933 2.621
* No Noise

TABLE 6.2

x^ (0) X2<0) X3 (0) X4(0) Xg(0)

V

O 
1

***yot Xy(0) Xg (0)

Without Noise*
True values 1.00 o.sp 0.125 0.50 2.00 2.00 2.00 3.00
Initial guess 0.90 0.45 0.10 0.50 2.00* 1.80 1.80 2.70* it

2.016 2.931Final results 1.053 0.445 0.088 0.50 2.00 2.016
* Kept constants
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TABLE 6.3

(0) x2(0) x3(0) x4(0) Xg (0) x6(0) x^ (0) Xg (0)

Without Noise:
True values 1.00 0.50 0.125 0.50 2.00 2.00 2.00 3.00
Initial guess 0.50 0.50 0.50 *0.50 *2.00 0.50 0.50 0.50
Final results 0.994 0.311 0.042 0.50 2.00* 1.896 1.896 3.116
* Kept constants

TAB IS 6.
{

.4
-

Xj (0) x2(0) M
IW i o t

X «*
**

1 O
 

%*
»•
»

Xg(0) Xg(0) ac?(0) Xg (0)

Without Noise:
True values 1.0 0.5 0.125 0.50 2.00 2.00 2.00 3.00
Initial guess 1.0 1.0 1.0 *0.50 *2.00 1.0 1.0 1.0
Final results 1.092 0.259 0.771 0.50* 2.00* 2.05 2.05 2.888
* Kept constants

The computer time taken to obtain the results shown in 
Table 6.3 and Table 6.4 was about 3 minutes for about 100 iter­
ations. Some experiments were done for estimation starting with 
arbitrary initial guesses for all initial states as done in 
experiment (1) of section 6.3 and then varying x4(0) (when I

■vdid not decrease further and got stuck) alone towards minimizing 
the performance index X- and.then g&Lng back to regular compu­
tational algorithm. This brought the initial state x^(0) towards 
true value and overcame the trouble in convergence posed by over­
shooting of x4(0). Such experiments were also done for second
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order system in Chapter IV . This method worked well but the 
computer time taken was enormous.

6.4 Estimation from Actual Input and Output Data

Before starting with the estimation from actual input and 
output, some experiments similar to those in section 6.3 were 
made for estimation using the actual input (instead of sinusoidal 
as was used in the previous section) and the corresponding out­
put of the simulated system considering 100 measurements. The 
results regarding convergence were as good as those in section 
6.3 , when the states x^(0) and Xg(0) were kept constants 
to their true values. Having obtained confidence that the esti­
mator works for both sinusoidal as well as actual input of ran­
dan nature, the technique was tried using actual input and act­
ual output data.

Both the input and output data were treated for h.f. filt­
ering with fe = 1.0 c/s, thus reducing the number of input and 
output measurements to 600. As discussed in Chapter IV, h.f. 
filtering with f = 2.0 c/s could have been better from accu­
racy point of view but this was deliberately avoided as this wo­
uld increase the number of measurements to 1200 and hence the 
computer time. The initial states x^ (0) and xg (0) represen­
ting the reciprocals of time constant and damping coeffi­
cient D* for the open loop plant were assumed to be constant 
at the values 0.25 and -2.158 (Table 4.3) respectively, 
obtained earlier for open-loop plant estimation. Three hundred 
measurements were used to estimate the rest of the initial states 
(i.e. x^ (0), x2(0), Xg (0), x6(0), Xy (0) and xg(0)). Since
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the sampling interval for the actual data was 1.0 second, the 
integration subroutine having integration step of 0.01 sec. was 
required to be called 100 times in order to reach the next samp­
ling instant• This involved a lot of computation. The convergence 
was observed to be excellent as was evident from smooth decrease 
in performance index I on every iteration but each iteration 
took about two minutes. It was observed that no significant 
difference in the results was found by taking the integration 
step of 0.1 sec* This required to CALL the integration sub­
routine 10 times only to integrate over 1 second of time. This 
reduced the computer time considerably. The results obtained from 
the experimental input-output data of the turbo-alternator are 
shown in Table 0.5';,

TABLE 6.5

Xj (0) x2(0) x3(0) x4(0) x5(0) Xg(0) x7(0) xg(0)
* *Initial guess 1.0 1.0 1.0 0.25 -2.158 1.0 1.0 1.0

Final results -19.2 0.708 0.694 0.25 -2.158 2.373 2.373 -3.232 
* Kept constant

Referring to equations (6*15), (6.16) and (6.17), the
estimates of r * , v" and K* are given by 9 9

II l/x6(0) = 1/2.373 - 0.42 (6.49)
,-y II
u<3 l/x? (0) » 1/2.373 * 0.42 (6.50)

K* = x8(0) = -3.232 (6.51)

Using equation (5.5), one obtains
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X =» 1200 K'/104
= - (1200 x 3.232)/104

= - 0.388 (6.52)

The results of estimation are in close agreement with expecta­
tions
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