LIST OF FIGURES

FIG. NO.	TITLE	PAGE NO.
1.1	Ailanthus excelsa tree.	8
1.2	Ailanthus excelsa showing flowering twig, fruits and	8
	flower.	
1.3	Structures of quassinoids from Ailanthus excelsa.	12
1.4	Structures of Steroid and Triterpenoid from Ailanthus excelsa.	13
1.5	Structure of Alkaloids from Ailanthus excelsa.	13
1.6	Structures of phenolics from Ailanthus excelsa	14
1.7	Flowers of Butea monosperma	19
1.8	Butea monosperma leaves, flowers and fruit.	19
1.9	Structure of Isobutrin and butrin from Butea flowers	21
2.1	Annexin/Phosphatidyl Serine in early stages of Apoptosis	49
2.2	Distribution of cells after staining with Annexin V and PI	50
2.3	Catheter setting for haemodynamic measurements	53
2.4	SoftEdge ^{m} – Myocyte Cell Length Recording via Digital Imaging	55
3.1	XY-Scatters for <i>in vitro</i> studies on different extracts of Ailanthus leaves.	62
3.2	Total phenolic content in successive and total extracts of Ailanthus leaves.	63
3.3	Effect of Ailanthus extracts on endogenous antioxidant enzymes in ISO induced myocardial infarction.	67
3.4	Effect of Ailanthus extracts on serum cardiac and liver marker enzymes.	67
3.5	Effect of Ailanthus extracts on body weight of rats during treatment	70
3.6	Effect of Ailanthus extracts on Heart weight/body weight ratio during treatment.	70
3.7	Histopathological examination of mice organs for studying the effects of single dose administration of Ailanthus leaves extracts.	71
3.9	Effect of various concentration of AEEA on percentage viability of H9c2 cells at different time period	74
3.10	Effect of H_2O_2 on percentage viability of AEEA pretreated H9c2 cell.	75
3.11	Flow activated cytometric analysis of H9c2 cells pretreated	78

	with different concentration of AEEA and challenged with	
	H_2O_2 and Xanthine-xanthine oxidase after loading with	
	different molecular probes.	
3.12	Confocal images of H9c2 cells loaded with different	78
	molecular probes showing the effect of AEEA on $\mathrm{H_2O_2}$ and	
	Xanthine-xanthine oxidase induced stress.	
3.13	TLC showing nature of compounds in different extracts of	80
	leaves of Ailanthus excelsa	
3.14	Quantification of quercetin in different extracts of	84
	Ailanthus leaves by HPTLC.	
3.15	Calibration plot for standard apigenin	85
3.16	HPTLC fingerprinting for various extracts of Ailanthus	87
	leaves	
3.17	Chromatograms- for total methanol and successive	91
	methanol extracts, scanned at 254, 366 and 520nm (after	
	treatment with DPPH reagent in methanol)	
3.18	XY-Scatters for in vitro studies on different extracts of	94
	Ailanthus root bark.	
3.19	Percentage phenolics present in different extracts of Root	96
	bark of Ailanthus excelsa.	
3.20	TLC plate showing Alkaloidal fraction of root bark	96
3.21	XY- Scatters for in vitro studies on alkaloidal fraction of	97
	Ailanthus root bark (AFRB).	
3.22	Microscopic photographs of visceral organs of mice	98
	administered with a single oral dose of extract	
	(2000mg/kg body weight).	
3.23	Effect of AECHL on complete blood count in rats	99
3.24	Effect of AECHL (5mg/kg b.w, p.o.) on serum levels of	103
	bilirubin, uric acid cortisol and creatinine in rats.	
3.25	Effect of AECHL (5mg/kg b.w, p.o.) on serum levels of	103
	GOT, GPT, ALKP, CKMB, LDH and brain dopamine (brain	
	homogenate) in rats.	
3.26	Effect of AECH on cardiovascular properties of rat heart	105
3.27	Electrocardiogram of rat treated with Chloroform extract	109
	of Ailanthus root bark (AECHL)	
3.28	Photomicrographs showing the effect of AECHL on rat	110
	organs (Stained with H & E)	
3.29	TLC Plates showing different extracts of Ailanthus root	110
	bark.	

3.30	TLC Chromatogram of AFRB run in different solvent	113
	system and scanned at 254, 366 nm and 520nm.	
3.31	Structure of AECHL-1 with its mass fragments	117
3.32	Structure for AECHL-2 and its mass fragments	120
3.33	Effect of various concentration of AECHL-1 on percentage	122
	viability of H9c2 cells at different time period	
3.33	Annexin-V and PI staining of the H9c2 cells treated with	123
	AECHL-1 for 48hrs.	
3.34	Mechanical properties of ventricular myocytes of 2-3 days	126
	old infants	
3.35	Effect of Ionomycin on intracellular calcium levels in H9c2	129
	cell lines	
3.36	Effect of AECHL-1 on intracellular calcium levels in H9c2	130
	cell lines	
3.37	Phase contrast images of H9c2 cells showing the effect of	135
	AECHL-1. Fig-10 (G-r)	
3.38	Confocal images of H9c2 cells loaded with different	135
	molecular probes showing the effect of AECHL-1 after	
	loading with different molecular probes.	
3.39	Flow activated cytometric analysis of H9c2 cells pretreated	136
	with different concentration of AECHL-1 after loading with	
	different molecular probes.	
3.40	Effect of AECHL-1 on DNA distribution in different phases	139
	of cell cycle of PC3 cells	
3.41	Cell cycle arrest with AECHL-1 (PI) 48hrs Treatment	140
3.42	Effect of AECHL-1 on PC3, MDA-MB and B16 cell lines at	145-146
	different time interval	
3.43	Effect of AECHL-1 on DNA distribution in different phases	148
	of cell cycle of PC3 cells	
3.44	Effect of AECHL-1 on DNA distribution in different phases	149
	of cell cycle of MDA-MB cells	
3.45	Effect of AECHL-1 on DNA distribution in different phases	151
	of cell cycle of B16 cells	
2.46	Effect of AECHL-1 and Cis-platin on tumor volume in C57	153
	mice	
3.47	Effect of AECHL-1 on tumor weight to body weight ratio	154
3.48	Effect of AECHL-1 on body weight of mice	155
3.49	C57 mice bearing solid tumor	156
3.50	Tumors isolated from mice	156

3.51	Microscopic examination of liver, heart, kidney, pancreas,	156
	spleen and tumors from, control, AECHL-1 and cis-platin	
	treated group.	
3.52	Western blot analysis of proteins isolated from animal	161
	tumors	
3.53	Effect of various concentration of AECHL-2 on %-viability	163
	of H9c2 cells at different time period	
3.54	Annexin-V and PI staining of the H9c2 cells treated with	164
	AECHL-2 for 48hrs.	
3.55	Effect of AECHL-2 on generation of ROS in H9c2 cells	168
	after loading with specific molecular probes	
3.56	Microscopic slides shoeing effect of AECHL-2 on different	168
	organs in C57 mice	
3.57	Phase contrast photos showing effect of AECHL-2 on H9c2	168
	cells	
3.58	Flow activated cytometric analysis of H9c2 cells pretreated	169
	with different concentration of AECHL-2 after loading with	
	different molecular probes	
3.59	Effect of AECHL-2 on Intra-cellular calcium level	171
3.60	Contractile properties of ventricular myocytes from 2-3	175
	days old infants.	
3.61	Estimation of AECHL-2 in different extracts of Ailanthus	178
	root bark	
3.62	Linearity plot for AECHL-2 by Spectrofluorometric method	179
3.63	Total phenolic content in different extracts of Butea	183
	flowers	
3.64	XY- Scatters for in vitro studies on different extracts of	184
	Butea flowers	
3.65	Effect of Butea extracts on endogenous antioxidant	189
	enzymes in ISO induced myocardial infarction.	
3.66	Effect of Butea extracts on serum cardiac and liver	189
	marker enzymes.	
3.67	Effect of Butea extracts on body weight of rats during	192
	treatment.	
3.68	Effect of Butea extracts on Heart weight/body weight ratio	192
	during treatment.	
369	Histopathology of heart and liver showing effect of Butea	194
	flower extracts in ISO induced myocardial and liver	
	damage.	

3.70	Effect of Butea extracts on serum lipid profile.	196
3.71	Effect of various concentration of BFEA on percentage	198
	viability of H9c2 cells at different time period	
3.72	Effect of H_2O_2 on %- viability of BFEA pretreated H9c2	199
	cell.	
3.73	Confocal images of H9c2 cells loaded with different	202
	molecular probes showing the effect of BFEA on H_2O_2 and	
	Xanthine-xanthine oxidase induced stress.	
3.74	Flow activated cytometric analysis of H9c2 cells pretreated	202
	with different concentration of BFEA and challenged with	
	H_2O_2 and Xanthine-xanthine	
3.75	Effect of BFEA on H ₂ O ₂ induced stress in H9c2 cell lines	202
3.76	Quantification of BFEA-1in different extracts of Butea	205
	flowers by HPTLC.	
3.77	TLC chromatogram for ethyl acetate fraction of B.	206
	monosperma flowers in ethyl acetate: formic acid: glacial	
	acetic acid: water (14.28:1.42:1.42:2.85 v/v)	
3.78	chromatogram for ethyl acetate fraction of B. monosperma	207
-	flowers in chloroform: acetone: formic acid	
	(14.85:3.36:1.78 v/v)	
3.79	HPTLC Chromatogram for different extracts and fractions	208
	of Butea flowers scanned at 366 (A-D), 254 (E-H) and	
	520nm (I-L)-after treatment with anisaldehyde sulphuric	
	acid reagent	
3.80	TLC showing for different extracts of B. monosperma	209
3.81	XY- Scatters for in vitro studies on BM1 from butea	211
	flowers.	
3.82	Effect of BM1 on endogenous antioxidant enzymes in ISO	215
	induced myocardial infarction	
3.83	Effect of BM1 on serum cardiac and liver marker enzymes	215
3.84	Effect of BM1 on body weight of rats during treatment	216
3.85	Effect of BM1 on Heart weight/body weight ratio during	217
	treatment.	
3.86	Effect of addition of shifts reagent on UV absorption	221
	spectra of BM	
3.87	Structure of BM	222
3.88	Effect of various concentration of BM on percentage	223
	viability of H9c2 cells at different time period	
3.99	Effect of H_2O_2 on %- viability of BM pretreated H9c2 cell	225
A		

,

3.90	Flow activated cytometric analysis of H9c2 cells pretreated	228
	with different concentration of BM and challenged with	
	H_2O_2 and Xanthine-xanthine oxidase after loading with	
	different molecular probes.	
3.91	Confocal images of H9c2 cells loaded with different	228
	molecular probes showing the effect of BM on H_2O_2 and	
	Xanthine-xanthine oxidase induced stress.	
3.92	Effect of BM on H_2O_2 induced stress in $H9c2$ cell lines-	228
	Phase contrast images.	
3.93	Estimation of BM in various extracts of Butea flowers	230
3.94	HPTLC- chromatogram for BM1	232