Table of Figures

TITLE	PAGE No.
Figure 1.1 The different fates of protein after synthesis	1
Figure 1.2: Structure of 26S proteasome	4
Figure 1.3 Ubiquitin dependent targeted protein degradation.	7
Figure 1.4: SMASh system for targeted protein degradation	9
Figure 1.5 Biosynthesis pathway of polyamines	10
Figure 1.6 Structure of human ODC. The structure of mouse ODC resembles human ODC closely.	11
Figure 1.7 Regulation of Ornithine decarboxylase and its antizyme	13
Figure 1.8 (A) Pairwise sequence alignment of human and yeast ODC (uniprot) (B) Structural comparison of yeast ODC and human ODC	15
Figure 1.9 (A) NMR structure of rat antizyme fragment (87 to 227 residues) (PDB ID: 1ZO0) (B) Pairwise sequence alignment of rat and yeast antizyme	18
Figure 1.10 The mechanism of +1 Frmaeshifting for synthesis full length antizyme	19
Figure 1.11 Double mutant cycle analysis of ODC: Az interface	21
Figure 1.12 ODC chimeric fusion as a vehicle for targeted protein degradation (Matsuzawa et al., 2005)	23
Figure 1.13 Schematic representation of degrons position on yeast and mouse ODCs	24
Figure 2.1 Sequence homology of human and yeast ODC. In human ODC sequence, pink color indicate helix and yellow color indicates β-sheet.	27
Figure 2.2 Vector map of pET30a. Restriction sites used to insert DNA sequences encoding degrons	30
Figure 2.3 Strategy for purification of His-tagged peptides by Ni-NTA affinity chromatography	32
Figure 2.4 PCR amplicons of different fragments of ODCs representing degrons by using gene specific primers.	34
Figure 2.5 Confirmation of all constructs cloned in this study.	36

Figure 2.6 SDS-PAGE gel representing the expression and purification of degron peptides	37
Figure 2.7 Far UV CD spectra of the peptides $N\alpha/\beta$, α/β and N50	38
Figure 2.8 Far UV circular dichroism spectra of peptides AzBE (A), mODC (B), AzBE+mODC (C), N50+mODC (D), and α/β+mODC (E)	42
Figure 2.9 Guanidine hydrochloride denaturation curve of degron peptides of ODCs	44
Figure 2.10 Fluorescence emission spectra of peptides of ODCs after denaturation with urea	45
Figure 2.11 Fluorescence Resonance Energy Transfer (FRET) of degrons of ODCs	47
Figure 2.12 Homology modeling of peptides representing degrons of ODCs	49
Figure 2.13(A) AGADIR calculations carried out on the entire sequence of N50 sliding a windowof 7 residues. (B) The sequences with helical propensity in N50 is shown. (C)Wheel diagramof the peptide '31YYKDGETLHNLLLELKNN48', showing amphipathic nature.	51
Figure 3.1 Comparison of yeast and mouse ODC and pictorial representation of yODC and mODC degrons and their chimeric protein	55
Figure 3.2 The vector map of pUG35 and pUG46 plasmids	59
Figure 3.3 Confirmation of chimeric constructs Nα/β-yEGFP, α/β-yEGFP and N50- yEGFP.	63
Figure 3.4 Confirmation of chimeric constructs Ura3-yEGFP, Nα/β-Ura3-yEGFP, and N50-Ura3-yEGFP.	64
Figure 3.5 Monitoring of steady state level of yEGFP and degrons-yEGFP fusion.	65
Figure 3.6 Degradation of yEGFP tagged with N50, α/β and N α/β with time, monitored in the presence and absence of (i) antizyme and (ii) cycloheximide.	68
Figure 3.7 Effect of MG132 on the degradation of chimeric protein tagged with N50, α/β and N α/β .	68
Figure 3.8: The rate of degradation of yEGFP after being tagged with N50, α/β and N α/β with time.	69
Figure 3.9 Fluorescence microscopic studies of degrons-yEGFP chimeric constructs.	70
Figure 3.10 Western blot analysis of degradation of β -galactosidase, N50- β -galactosidase and N α/β - β -galactosidase in presence and absence of MG132.	71

Figure 3.11 Effect of MG132 and antizyme (OAz1) on the degradation of chimeric proteins Ura3-GFP, N50-Ura3-GFP and N α/β -Ura3-GFP.	72
Figure 3.12 Effect of antizyme on the degradation of proteins tagged with the peptides N50, α/β and N α/β .	74
Figure 3.13 Confirmation of chimeric constructs yEGFP-CmODC and N α/β -yEGFP-CmODC.	75
Figure 3.14 Monitoring steady state levels of yEGFP, yEGFP-CmODC and Nα/β-yEGFP-CmODC fusions.	77
Figure 3.15 Effect of MG132 on the degradation of yEGFP, yEGFP-CmODC and N α/β -yEGFP-CmODC fusions	78
Figure 3.16 Effect of antizyme on the degradation of yEGFP, yEGFP-CmODC and N α/β -yEGFP-CmODC fusions	79
Figure 4.1 Schematic representation of strategy to find evolutionary correlation between ODC and Antizyme proteins	85
Figure 4.2 Distance calculation for full length ODC and Antizyme protein sequences of several organisms with respect to human.	87
Figure 4.3 Compare length of ODC (A) and Antizyme (B) sequence for several organisms with respect to human	88
Figure 4.4 Distance calculation for ODC and Antizyme (domain) protein sequences of several organisms with respect to human.	89
Figure 4.5 Distance calculation for higher organisms ODC and Antizyme (domain) protein sequences with respect to human.	90
Figure 4.6 Distance calculation for fungus and yeast ODC and Antizyme (domain) protein sequences with respect to <i>S.pombe</i> .	91