### **CHAPTER - 5**



### RESULTS, ANALYSIS, CONCLUSIONS AND RECOMMENDATIONS

### 5.1 General

To determine head loss through laterals and outlets of ITK MIS, laboratory experiments were conducted. Based on the experimental data regression equations were developed. F factor was determined for ITK MIS for 20 mm diameter of lateral. The relationship between inlet pressure & microtube discharge and length of microtube was developed to determine length of microtube and is presented in this chapter.

To determine the cost effectiveness and yield response of MIS and ITK MIS, summer groundnut and cauliflower were raised on these systems. After obtaining yield data, Internal Rate of Return (IRR) was calculated for the combinations of crop spacings, irrigation depths and irrigation systems for summer groundnut and cauliflower.

Internal rate of return for the years 2005, 2006 and 2007 are discussed in this chapter. Analysis of variance is carried out to analyze the effects of crop spacings, irrigation depths and irrigation systems on yield and IRR, and are presented here.

### 5.2 Results

Results of indoor ITK MIS laboratory work and field experimental work carried out are either presented earlier in Chapter 4 or presented here.

### 5.2.1 Indoor ITK MIS laboratory work

### Friction head loss in ITK MIS

The head losses through length segments of laterals and minor head losses at outlets were determined and presented in chapter 4 along with the data Tables. Tables 4.11 to 4.28 contain data and analysis for 12 mm lateral -4 mm, 5 mm, & 6 mm diameter and 0.15 m, 0.30 m, 0.45 m, 0.60 m, 0.75 m, & 0.90 m long polytube respectively (In each length of polytube 27 tables of 1 MT 1.0-0.30, 1 MT 1.0-0.60, 1 MT 1.0-0.90, 1 MT 1.2-0.30, 1 MT 1.2-0.60, 1 MT 1.2-0.90, 1 MT 1.5-0.30, 1 MT 1.5-0.60, 1 MT 1.5-0.90 and similarly for 2 MT, 3 MT and 4 MT) and are given in enclosed DVD.

### N.B. MT-Microtube

1 MT 1.0-0.30 stands for 1 microtube having 1 mm diameter and 0.30 m length...

4 MT 1.5 - 0.90 stands for 4 microtubes having 1.5 mm diameter and 0.90 m length....

Tables 4.29 to 4.46 contain data and analysis for 16 mm lateral – 4 mm, 5 mm, & 6 mm diameter and 0.15 m, 0.30 m, 0.45 m, 0.60 m, 0.75 m, & 0.90 m long polytube respectively and are given in enclosed DVD.

Tables 4.47 to 4.70 contain data and analysis for 20 mm lateral – 4 mm, 5 mm, 6 mm, & 7 mm diameter and 0.15 m, 0.30 m, 0.45 m, 0.60 m, 0.75 m, & 0.90 m long polytube respectively and are given in enclosed DVD.

### Minor head loss at outlets by regression analysis

Minor head loss at all eight outlets are determined for 20 mm, 16 mm, & 12 mm diameter of lateral. Regression equations are developed as per no. of microtubes attached to micromanifold for each lateral.

Table 5.1 gives regression equations for minor head loss at outlets of 20 mm lateral for 1 microtube.

Tables 5.2, 5.3, & 5.4 give regression equations for minor head loss at outlets of 20 mm lateral for 2, 3, & 4 microtubes respectively and are given in enclosed DVD.

Table 5.5 gives regression equations for minor head loss at outlets of 16 mm lateral for 1 microtube.

Tables 5.6 & 5.7 give regression equations for minor head loss at outlets of 16 mm lateral for 2 & 3 microtubes respectively and are given in enclosed DVD.

Table 5.8 gives regression equations for minor head loss at outlets of 12 mm lateral for 1 microtube.

Tables 5.9 & 5.10 give regression equations for minor head loss at outlets of 12 mm lateral for 2 & 3 microtubes respectively and are given in enclosed DVD.

### Head loss through polytubes

Table 5.11 gives regression equations to determine head loss through polytube attached to 20 mm lateral at various outlets for 1 microtubes attached with micromanifold.

Tables 5.12, 5.13 & 5.14 give regression equations to determine head loss through polytube attached to 20 mm lateral at various outlets for 2, 3 & 4 microtubes attached with micromanifold respectively and are given in enclosed DVD.

Table 5.15 contains regression equations to determine head loss through polytube attached to 16 mm lateral at various outlets for 1 microtube attached with micromanifold.

Tables 5.16 & 5.17 contain regression equations to determine head loss through polytube attached to 16 mm lateral at various outlets for 2, 3 microtubes attached with micromanifold respectively and are given in enclosed DVD.

Table 5.18 contains regression equations to determine head loss through polytube attached to 12 mm lateral at various outlets for 1 microtube attached with micromanifold.

Tables 5.19 & 5.20 contain regression equations to determine head loss through polytube attached to 12 mm lateral at various outlets for 2 & 3 microtubes attached with micromanifold respectively and are given in enclosed DVD.

Notations used in regression equations to determine minor head loss are as follows:

hf<sub>i</sub>\* = Head loss at outlet on lateral, m

Q<sub>i</sub> = Discharge through various length segments of lateral, m<sup>3</sup>/sec

q<sub>i</sub> = Discharge measured at the end of micro tube in each set, m<sup>3</sup>/sec

pi = Pressure measured on both sides of polytube on lateral, mwc

Notations used in regression equations to determine head loss through polytube are as follows:

hp<sub>i</sub> = Head loss through polytube, m

dp<sub>i</sub> = Diameter of polytube, mm

lp<sub>i</sub> = Length of polytube, m

| Outlet | Model for determining minor head                                                                     | Summary of preparation and validation of model |             |            |  |
|--------|------------------------------------------------------------------------------------------------------|------------------------------------------------|-------------|------------|--|
| No.    | losses                                                                                               | Particular                                     | Model       |            |  |
|        |                                                                                                      |                                                | Preparation | Validation |  |
|        |                                                                                                      | D                                              | 1.02        | 1.06       |  |
|        | $hf_1 = 23708.668q_1 + 456.509Q_1 +$                                                                 | R <sup>2</sup>                                 | 0.65        | 0.66       |  |
| 1      | 0.008p <sub>1</sub> - 0.270                                                                          | r                                              | 0.81        | 0.81       |  |
|        |                                                                                                      | R.M.S.E.                                       | 0.11        | 0.11       |  |
|        |                                                                                                      | D                                              | 0.98        | 0.99       |  |
| 2      | $hf_2 = 21600.82q_2 + 326.139Q_2$ -                                                                  | $R^2$                                          | 0.64        | 0.62       |  |
| 2      | 0.00447p <sub>3</sub> - 0.121                                                                        | r                                              | 0.80        | 0.78       |  |
|        |                                                                                                      | R.M.S.E.                                       | 0.08        | 0.08       |  |
|        |                                                                                                      | D                                              | 1.02        | 1.01       |  |
| 2      | $hf_3 = 16860.59q_3 + 299.050Q_3 + 0.00282p_5 - 0.111$                                               | R <sup>2</sup>                                 | 0.51        | 0.51       |  |
| 3      |                                                                                                      | r                                              | 0.72        | 0.71       |  |
|        |                                                                                                      | R.M.S.E.                                       | 0.09        | 0.09       |  |
|        |                                                                                                      | D                                              | 1.00        | 0.99       |  |
|        | hf <sub>4</sub> = 4287.696q <sub>4</sub> + 104.3026Q <sub>4</sub> -<br>0.00740p <sub>7</sub> + 0.085 | R <sup>2</sup>                                 | 0.34        | 0.36       |  |
| 4      |                                                                                                      | r                                              | 0.58        | 0.60       |  |
|        |                                                                                                      | R.M.S.E.                                       | 0.06        | 0.06       |  |
|        |                                                                                                      | D                                              | 1.01        | 1.01       |  |
| E      | $hf_5 = 3205.918q_5 + 232.99Q_5 - 0.000933p_9 - 0.0263$                                              | R <sup>2</sup>                                 | 0.60        | 0.59       |  |
| 5      |                                                                                                      | r                                              | 0.78        | 0.77       |  |
|        |                                                                                                      | R.M.S.E.                                       | 0.05        | 0.05       |  |
|        |                                                                                                      | D                                              | 1.01        | 1.02       |  |
| 6      | hf <sub>6</sub> = 459.340q <sub>6</sub> + 246.007Q <sub>6</sub> -                                    | R <sup>2</sup>                                 | 0.43        | 0.45       |  |
| 0      | 0.000784p <sub>11</sub> - 0.0239                                                                     | r                                              | 0.65        | 0.67       |  |
|        |                                                                                                      | R.M.S.E.                                       | 0.07        | 0.07       |  |
|        |                                                                                                      | D                                              | 1.34        | 1.10       |  |
| 7      | hf <sub>7</sub> = 13952.54q <sub>7</sub> + 180.51Q <sub>7</sub> -                                    | R <sup>2</sup>                                 | 0.55        | 0.55       |  |
|        | 0.00187p <sub>13</sub> - 0.09123                                                                     | r                                              | 0.74        | 0.74       |  |
|        |                                                                                                      | R.M.S.E.                                       | 0.05        | 0.05       |  |
|        |                                                                                                      | D                                              | 1.21        | 1.14       |  |
| 0      | hf <sub>8</sub> = 13982.48q <sub>8</sub> + 172.65Q <sub>8</sub> -                                    | R <sup>2</sup>                                 | 0.45        | 0.47       |  |
| °      | 0.00122p <sub>15</sub> - 0.0895                                                                      | r                                              | 0.67        | 0.69       |  |
|        |                                                                                                      | R.M.S.E.                                       | 0.06        | 0.06       |  |

## Table 5.1: Regression Equations for Minor Head Loss at Outlets of20 mm Lateral for 1 Microtube

.

| Outlet | Model for determining minor head                                         | Summary of preparation and<br>validation of model |             |            |  |
|--------|--------------------------------------------------------------------------|---------------------------------------------------|-------------|------------|--|
| No.    | losses                                                                   | Particular                                        | Model       |            |  |
|        |                                                                          |                                                   | Preparation | Validation |  |
|        |                                                                          | D                                                 | 1.03        | 1.03       |  |
| 4      | $hf_1 = -1661.25q_1 - 22955.24Q_1 +$                                     | R <sup>2</sup>                                    | 0.43        | 0.42       |  |
| 1      | 0.1791p <sub>1</sub> +0.722                                              | r                                                 | 0.66        | 0.65       |  |
|        | · · ·                                                                    | R.M.S.E.                                          | 0.09        | 0.09       |  |
|        |                                                                          | D                                                 | 1.04        | 1.05       |  |
| 2      | $\Pi_2 = -1082.5q_2 - 38356.4Q_2 + 2.86E-$                               | R <sup>2</sup>                                    | 0.49        | 0.48       |  |
| 2      | $101p_3 + 1.214$                                                         | r                                                 | 0.70        | 0.69       |  |
|        |                                                                          | R.M.S.E.                                          | 0.10        | 0.10       |  |
|        |                                                                          | D                                                 | 1.00        | 0.99       |  |
| 2      | $hf_3 = 2490.90q_3 + 148.50Q_3 - 4.41E$                                  | R <sup>2</sup>                                    | 0.04        | 0.03       |  |
| 3      | 03p₅ + 0.1402                                                            | r                                                 | 0.20        | 0.18       |  |
|        |                                                                          | R.M.S.E.                                          | 0.05        | 0.05       |  |
|        |                                                                          | D                                                 | 0.98        | 0.97       |  |
|        | hf <sub>4</sub> = 4463.33q <sub>4</sub> - 811.79Q <sub>4</sub> - 7.16E-  | $R^2$                                             | 0.20        | 0.15       |  |
| 4      | 03p <sub>7</sub> + 0.1873                                                | r                                                 | 0.45        | 0.38       |  |
|        |                                                                          | R.M.S.E.                                          | 0.08        | 0.08       |  |
|        |                                                                          | D                                                 | 1.03        | 0.97       |  |
| E      | $hf_5 = -17528.3q_5 - 4470.6Q_5 + 1.86E - 02p_9 + 0.388$                 | R <sup>2</sup>                                    | 0.28        | 0.36       |  |
| Э      |                                                                          | r                                                 | 0.53        | 0.60       |  |
|        |                                                                          | R.M.S.E.                                          | 0.08        | 0.07       |  |
|        |                                                                          | D                                                 | 0.99        | 0.95       |  |
| G      | hf <sub>6</sub> = - 594.11q <sub>6</sub> - 34.479Q <sub>6</sub> - 1.21E- | R <sup>2</sup>                                    | 0.04        | 0.03       |  |
| 0      | 03p <sub>11</sub> + 0.0598                                               | r                                                 | 0.21        | 0.19       |  |
|        |                                                                          | R.M.S.E.                                          | 0.04        | 0.03       |  |
|        |                                                                          | D                                                 | 1.01        | 0.99       |  |
| -      | $hf_7 = 31084.0q_7 + 4743.6Q_7 - 3.32E$                                  | R <sup>2</sup>                                    | 0.16        | 0.21       |  |
| 1      | 02p <sub>13</sub> - 0.1447                                               | r                                                 | 0.40        | 0.46       |  |
|        |                                                                          | R.M.S.E.                                          | 0.03        | 0.02       |  |
|        |                                                                          | D ·                                               | 1.00        | 1.00       |  |
| 0      | hf <sub>8</sub> = 19932.7q <sub>8</sub> + 2578.9Q <sub>8</sub> - 1.85E-  | R <sup>2</sup>                                    | 0.05        | 0.06       |  |
| o      | 02p <sub>15</sub> - 0.0580                                               | r                                                 | 0.22        | 0.24       |  |
|        |                                                                          | R.M.S.E.                                          | 0.03        | 0.03       |  |

## Table 5.5: Regression Equations for Minor Head Loss at Outlets of16 mm Lateral for 1

| Outlet | Model for determining minor head                                 | Summary of preparation and validation of model |             |            |  |
|--------|------------------------------------------------------------------|------------------------------------------------|-------------|------------|--|
| No.    | losses                                                           | Particular                                     | Model       |            |  |
|        |                                                                  |                                                | Preparation | Validation |  |
|        |                                                                  | D                                              | 1.01        | 0.99       |  |
|        | $hf_1 = 2012.01q_1 + 972.55Q_1 - 0.0010p_1$                      | R <sup>2</sup>                                 | 0.22        | 0.17       |  |
| 1      | + 0.0445                                                         | r                                              | 0.47        | 0.41       |  |
|        |                                                                  | R.M.S.E.                                       | 0.04        | 0.04       |  |
|        |                                                                  | D                                              | 1.00        | 1.00       |  |
|        | $hf_2 = 1513.90q_2 + 887.25Q_2 - 0.0009p_3$                      | R <sup>2</sup>                                 | 0.27        | 0.18       |  |
| 2      | + 0.0560                                                         | r                                              | 0.52        | 0.42       |  |
|        |                                                                  | R.M.S.E.                                       | 0.03        | 0.03       |  |
|        |                                                                  | D                                              | 1.00        | 1.01       |  |
| 2      | $hf_3 = -428.73q_3 + 403.45Q_3 - 0.0002p_5$                      | $R^2$                                          | 0.07        | 0.07       |  |
| 3      | + 0.0893                                                         | r                                              | 0.27        | 0.27       |  |
|        |                                                                  | R.M.S.E.                                       | 0.03        | 0.03       |  |
|        |                                                                  | D                                              | 1.00        | 0.99       |  |
|        | $hf_4 = 3443.4q_4 + 492.01Q_4 +$                                 | R <sup>2</sup>                                 | 0.04        | 0.07       |  |
| 4      | 0.000050p <sub>7</sub> + 0.0826                                  | r                                              | 0.21        | 0.26       |  |
|        |                                                                  | R.M.S.E.                                       | 0.06        | 0.05       |  |
|        |                                                                  | D                                              | 1.00        | 1.02       |  |
|        | $hf_5 = 2493.20q_5 + 713.55Q_5 - 0.00246p_9 + 0.0710$            | R <sup>2</sup>                                 | 0.24        | 0.24       |  |
| 1 3    |                                                                  | r                                              | 0.49        | 0.49       |  |
|        |                                                                  | R.M.S.E.                                       | 0.03        | 0.03       |  |
|        |                                                                  | D                                              | 1.00        | 1.00       |  |
| 6      | $hf_6 = 3455.11q_6 + 621.01Q_6 -$                                | R <sup>2</sup>                                 | 0.31        | 0.30       |  |
| 0      | 0.0026p <sub>11</sub> + 0.0723                                   | r                                              | 0.55        | 0.55       |  |
|        |                                                                  | R.M.S.E.                                       | 0.02        | 0.02       |  |
|        |                                                                  | D                                              | 1.00        | 0.99       |  |
| 7      | $hf_7 = 4034.14q_7 + 640.05Q_7 -$                                | R <sup>2</sup>                                 | 0.30        | 0.30       |  |
| 1      | 0.0026p <sub>13</sub> + 0.0720                                   | r                                              | 0.55        | 0.55       |  |
|        |                                                                  | R.M.S.E.                                       | 0.02        | 0.02       |  |
|        |                                                                  | D                                              | 1.00        | 1.00       |  |
| 0      | hf <sub>8</sub> = 2482.17q <sub>8</sub> + 320.97Q <sub>8</sub> - | R <sup>2</sup>                                 | 0.18        | 0.27       |  |
| 0      | 0.00213p <sub>15</sub> + 0.0878                                  | r                                              | 0.42        | 0.52       |  |
|        |                                                                  | R.M.S.E.                                       | 0.01        | 0.01       |  |

## Table 5.8: Regression Equations for Minor Head Loss at Outlets of12 mm Lateral for 1 Microtube

| Table 5.11: Regression | <b>Equations for Head</b> | d Loss through Polytube |
|------------------------|---------------------------|-------------------------|
| attached to 20 mm L    | ateral at Various O       | utlets for 1 Microtube  |

| Outlet<br>No. | Model for determining head losses<br>through polytube | Summary of preparation and validation of model |             |            |  |
|---------------|-------------------------------------------------------|------------------------------------------------|-------------|------------|--|
|               |                                                       | Particular Mod                                 |             | lel        |  |
|               |                                                       |                                                | Preparation | Validation |  |
|               |                                                       | D                                              | 0.98        | 1.01       |  |
|               | $hp_1 = -0.099 lp - 0.184 dp +$                       | $R^2$                                          | 0.34        | 0.31       |  |
| 1             | 92125.391q - 0.166                                    | r                                              | 0.58        | 0.56       |  |
|               | •                                                     | R.M.S.E.                                       | 0.29        | 0.28       |  |
|               |                                                       | D                                              | 0.99        | 0.99       |  |
|               | $hp_2 = 0.111 lp - 8.461 dp + 81287.327 d$            | $\mathbb{R}^2$                                 | 0.47        | 0.45       |  |
| 2             | - 0.164                                               | r                                              | 0.69        | 0.67       |  |
|               |                                                       | R.M.S.E.                                       | 0.19        | 0.19       |  |
|               |                                                       | D                                              | 1.00        | 1.02       |  |
| -             | $hp_3 = 0.127 lp - 21.996 dp +$                       | R <sup>2</sup>                                 | 0.49        | 0.46       |  |
| 3             | 75113.998q - 0.059                                    | r                                              | 0.70        | 0.68       |  |
|               | • • • •                                               | R.M.S.E.                                       | 0.18        | 0.19       |  |
|               |                                                       | D                                              | 0.98        | 0.99       |  |
| 4             | hp₄ = 0.152lp - 30.786dp +<br>67216.900q + 0.026      | R <sup>2</sup>                                 | 0.48        | 0.44       |  |
| 4             |                                                       | r                                              | 0.69        | 0.66       |  |
| •             | ,                                                     |                                                | 0.17        | 0.19       |  |
|               |                                                       | D                                              | 1.00        | 0.96       |  |
| 5             | hp₅ = 0.138lp - 22.442dp +<br>59202.547q + 0.030      | $R^2$                                          | 0.47        | 0.45       |  |
| 5             |                                                       | r                                              | 0.69        | 0.67       |  |
|               |                                                       | R.M.S.E.                                       | 0.16        | 0.16       |  |
|               |                                                       | D                                              | 0.99        | 1.01       |  |
| 6             | $hp_6 = 0.141 lp - 8.511 dp + 48761.921 q$            | $\mathbb{R}^2$                                 | 0.56        | 0.58       |  |
|               | - 0.012                                               | r                                              | 0.75        | 0.76       |  |
|               |                                                       | R.M.S.E.                                       | 0.12        | 0.11       |  |
|               |                                                       | D                                              | 0.98        | 0.99       |  |
| .7            | hp <sub>7</sub> = 0.048lp - 12.664dp +                | $\mathbb{R}^2$                                 | 0.53        | 0.53       |  |
|               | 44511.406q + 0.037                                    | r                                              | 0.73        | 0.73       |  |
|               |                                                       | R.M.S.E.                                       | 0.11        | 0.12       |  |
|               |                                                       | D                                              | 0.99        | 1.00       |  |
| 8             | hp <sub>8</sub> = - 0.044lp - 12.752dp +              | R <sup>2</sup>                                 | 0.36        | 0.34       |  |
|               | 29314.528q + 0.124                                    | r                                              | 0.60        | 0.58       |  |
|               |                                                       | R.M.S.E.                                       | 0.11        | 0.11       |  |

## Table 5.15: Regression Equations for Head Loss through Polytubeattached to 16 mm Lateral at Various Outlets for 1 Microtube

| Outlet   | Model for determining minor head                 | Summary of preparation and validation of model |             |            |  |
|----------|--------------------------------------------------|------------------------------------------------|-------------|------------|--|
| No       |                                                  | Particular                                     | Moc         | lel        |  |
|          | 100000                                           |                                                | Preparation | Validation |  |
| <u> </u> |                                                  | D                                              | 0.99        | 1.01       |  |
|          | $hp_4 = 0.01527 lp_2 - 0.6227 dp_2 + 15100 dp_3$ | $\mathbb{R}^2$                                 | 0.47        | 0.48       |  |
| 1        | - 0.0074                                         | r                                              | 0.69        | 0.69       |  |
|          |                                                  | R.M.S.E.                                       | 0.04        | 0.04       |  |
| [        |                                                  | D                                              | 1.00        | 1.01       |  |
|          | $hp_2 = 0.0172 lp + 2.5971 dp + 16400 dp$        | R <sup>2</sup>                                 | 0.51        | 0.48       |  |
| 2        | - 0.0416                                         | r                                              | 0.71        | 0.70       |  |
|          |                                                  | R.M.S.E.                                       | 0.04        | 0.04       |  |
|          |                                                  | D                                              | 1.00        | 0.99       |  |
|          | $hp_3 = 0.01602lp + 3.1006dp + 19000q$           | R <sup>2</sup>                                 | 0.56        | 0.55       |  |
| 3        | - 0.0570                                         | r                                              | 0.75        | 0.74       |  |
|          |                                                  | R.M.S.E.                                       | 0.04        | 0.04       |  |
|          |                                                  | D                                              | 1.00        | 1.00       |  |
|          | hp₄ = 0.013lp + 3.521dp +<br>20431.043q - 0.066  | R <sup>2</sup>                                 | 0.60        | 0.63       |  |
| 4        |                                                  | r                                              | 0.77        | 0.79       |  |
|          |                                                  | R.M.S.E.                                       | 0.04        | 0.04       |  |
|          |                                                  | D                                              | 1.01        | 1.06       |  |
| E        | hp₅ = 0.010lp + 4.788dp +<br>21148.548q - 0.076  | R <sup>2</sup>                                 | 0.61        | 0.60       |  |
| 5        |                                                  | r                                              | 0.78        | 0.77       |  |
|          |                                                  | R.M.S.E.                                       | 0.04        | 0.04       |  |
|          |                                                  | D                                              | 1.00        | 1.00       |  |
| 6        | $hp_6 = 0.016lp + 9.990dp + 22599.14q$           | R <sup>2</sup>                                 | 0.63        | 0.64       |  |
| 0        | - 0.105                                          | r                                              | 0.79        | 0.80       |  |
|          |                                                  | R.M.S.E.                                       | 0.04        | 0.04       |  |
|          | · · ·                                            | D                                              | 0.99        | 0.97       |  |
| 7        | $hp_7 = 0.016lp + 10.501dp +$                    | R <sup>2</sup>                                 | 0.62        | 0.62       |  |
|          | 23679.77q - 0.112                                | r                                              | 0.79        | 0.79       |  |
|          |                                                  | R.M.S.E.                                       | 0.04        | 0.04       |  |
|          |                                                  | D                                              | 0.99        | 1.00       |  |
| Q        | $hp_8 = 0.015 lp + 11.471 dp +$                  | R <sup>2</sup>                                 | 0.57        | 0.56       |  |
|          | 21131.22q - 0.100                                | r                                              | 0.75        | 0.75       |  |
|          |                                                  | R.M.S.E.                                       | 0.04        | 0.04       |  |

e

.

### Table 5.18: Regression Equations for Head Loss through Polytubeattached to 12 mm Lateral at Various Outlets for 1 Microtube

| Outlet | Model for determining minor head                  | Summary of preparation and<br>validation of model |             |            |  |
|--------|---------------------------------------------------|---------------------------------------------------|-------------|------------|--|
| No.    | losses                                            | Particular                                        | Model       |            |  |
|        |                                                   |                                                   | Preparation | Validation |  |
|        |                                                   | D                                                 | 1.01        | 0.99       |  |
| 1      | $hp_1 = 0.90 lp - 570.83 dp + 380454.54 q$        | R <sup>2</sup>                                    | 0.36        | 0.35       |  |
|        | + 2.64                                            | r                                                 | 0.60        | 0.59       |  |
|        |                                                   | R.M.S.E.                                          | 1.15        | 1.18       |  |
|        |                                                   | D                                                 | 0.99        | 0.98       |  |
| 0      | hp <sub>2</sub> = 1.4691lp - 187.41dp +           | $R^2$                                             | 0.33        | 0.34       |  |
| 2      | 393176.48 + 0.4055                                | r                                                 | 0.57        | 0.59       |  |
|        |                                                   | R.M.S.E.                                          | 1.05        | 1.04       |  |
|        |                                                   | D                                                 | 0.98        | 0.95       |  |
| ~      | hp₃ = 0.963lp + 266.11dp +<br>352271.24q - 1.896  | $R^2$                                             | 0.39        | 0.41       |  |
| 3      |                                                   | r                                                 | 0.62        | 0.64       |  |
|        |                                                   | R.M.S.E.                                          | 0.95        | 0.94       |  |
|        |                                                   | D                                                 | 0.98        | 0.99       |  |
| 4      | hp₄ = 0.944lp + 267.643dp +<br>328155.42q - 1.897 | $R^2$                                             | 0.40        | 0.41       |  |
| 4      |                                                   | r                                                 | 0.63        | 0.64       |  |
|        |                                                   | R.M.S.E.                                          | 0.85        | 0.83       |  |
|        |                                                   | D                                                 | 0.99        | 0.97       |  |
| F      | hp₅ = 1.312lp - 241.94dp +                        | $\mathbb{R}^2$                                    | 0.24        | 0.21       |  |
| 5      | 361201.15q + 0.612                                | r                                                 | 0.49        | 0.46       |  |
|        |                                                   | R.M.S.E.                                          | 1.14        | 1.16       |  |
|        |                                                   | D                                                 | 0.96        | 1.00       |  |
| e      | $hp_6 = 1.737 lp + 57.46 dp + 342744.58 d$        | R <sup>2</sup>                                    | 0.39        | 0.38       |  |
| 0      | - 1.421                                           | r                                                 | 0.62        | 0.62       |  |
|        |                                                   | R.M.S.E.                                          | 0.78        | 0.79       |  |
|        |                                                   | D                                                 | 1.05        | 0.87       |  |
| 7      | $hp_7 = 1.629 lp + 11.59 dp + 393498.46 q$        | R <sup>2</sup>                                    | 0.26        | 0.28       |  |
| 7      | - 1.570                                           | r                                                 | 0.51        | 0.53       |  |
|        |                                                   | R.M.S.E.                                          | 1.16        | 1.07       |  |
|        |                                                   | D                                                 | 1.02        | 1.02       |  |
| 0      | $hp_8 = 0.541 lp - 45.804 dp +$                   | R <sup>2</sup>                                    | 0.19        | 0.16       |  |
| ð      | 144621.608q - 0.029                               | r                                                 | 0.44        | 0.40       |  |
|        |                                                   | R.M.S.E.                                          | 0.50        | 0.56       |  |

### F factor for ITK MIS

F factor is determined for 20 mm lateral for various diameters and lengths of polytubes.

Table 5.21 gives F factor for 20 mm lateral – 4 mm dia and 0.15 m long polytube for 2, 3, and 4 microtubes for various inlet pressures.

Table 5.22 illustrates F factor for 20 mm lateral - 4 mm dia and 0.30 m long polytube for 2, 3, and 4 microtubes for various inlet pressures and is given in enclosed DVD.

Table 5.23 shows F factor for 20 mm lateral -4 mm dia and 0.45 m long polytube for 2, 3, and 4 microtubes for various inlet pressures and is given in enclosed DVD.

Table 5.24 gives F factor for 20 mm lateral – 4 mm dia and 0.60 m long polytube for 2, 3, and 4 microtubes for various inlet pressures and is given in enclosed DVD..

Table 5.25 illustrates F factor for 20 mm lateral -4 mm dia and 0.75 m long polytube for 2, 3, and 4 microtubes for various inlet pressures and is given in enclosed DVD.

Table 5.26 shows F factor for 20 mm lateral – 4 mm dia and 0.90 m long polytube for 2, 3, and 4 microtubes for various inlet pressures and is given in enclosed DVD.

|               | F factor |        |              |       |              |       |  |
|---------------|----------|--------|--------------|-------|--------------|-------|--|
| No.of Outlets | 2 micr   | otubes | 3 microtubes |       | 4 microtubes |       |  |
|               | 12       | 7.5    | 15           | 8     | 15.5         | 10    |  |
|               | mwc      | mwc    | mwc          | mwc   | mwc          | mwc   |  |
| 1             | 1.000    | 1.022  | 1.000        | 1.000 | 1.000        | 1.000 |  |
| 2             | 0.657    | 0.532  | 0.623        | 0.550 | 0.794        | 0.707 |  |
| 3             | 0.487    | 0.401  | 0.472        | 0.421 | 0.662        | 0.597 |  |
| 4             | 0.394    | 0.328  | 0.388        | 0.348 | 0.581        | 0.530 |  |
| 5             | 0.334    | 0.281  | 0.333        | 0.300 | 0.526        | 0.483 |  |
| 6             | 0.292    | 0.248  | 0.294        | 0.266 | 0.484        | 0.448 |  |
| 7             | 0.260    | 0.222  | 0.265        | 0.240 | 0.452        | 0.420 |  |
| 8             | 0.236    | 0.203  | 0.242        | 0.220 | 0.426        | 0.398 |  |
| 9             | 0.216    | 0.187  | 0.223        | 0.203 | 0.404        | 0.379 |  |
| 10            | 0.200    | 0.173  | 0.208        | 0.190 | 0.385        | 0.362 |  |
| 11            | 0.186    | 0.162  | 0.195        | 0.178 | 0.369        | 0.348 |  |
| 12            | 0.175    | 0.153  | 0.183        | 0.168 | 0.355        | 0.336 |  |
| 13            | 0.164    | 0.144  | 0.174        | 0.159 | 0.342        | 0.325 |  |
| 14            | 0.156    | 0.137  | 0.165        | 0.152 | 0.331        | 0.315 |  |
| . 15          | 0.148    | 0.131  | 0.158        | 0.145 | 0.321        | 0.306 |  |
| 16            | 0.141    | 0.125  | 0.151        | 0.139 | 0.311        | 0.298 |  |
| 17            | 0.135    | 0.120  | 0.145        | 0.133 | 0.303        | 0.291 |  |
| 18            | 0.129    | 0.115  | 0.139        | 0.128 | 0.295        | 0.284 |  |
| 19            | 0.124    | 0.111  | 0.134        | 0.124 |              | 0.278 |  |
| 20            | 0.120    | 0.107  | 0.129        | 0.120 |              | 0.272 |  |
| 21            | 0.115    | 0.103  | 1            | 0.116 | <u> </u>     | 0.266 |  |
| 22            | 0.111    | 0.100  |              | 0.113 |              | 0.261 |  |
| 23            | 0.108    | 0.097  |              | 0.109 |              | 0.257 |  |
| 24            | 0.105    | 0.094  |              | 0.106 |              | 0.252 |  |
| 25            | 0.101    | 0.092  |              | 0.103 |              | 0.248 |  |
| 26            | 0.098    | 0.089  |              | 0.101 |              | 0.244 |  |
| 27            | 0.096    | 0.087  |              | 0.098 |              | 0.240 |  |
| 28            | 0.093    | 0.085  |              | 0.096 |              | 0.236 |  |
| 29            | 0.091    | 0.083  |              | 0.094 |              | 0.233 |  |
| 30            | 0.089    | 0.081  |              | 0.092 |              | 0.230 |  |
| 31            | 0.086    | 0.079  |              | 0.090 |              | 0.227 |  |
| 32            | 0.084    | 0.077  |              | 0.088 |              | 0.224 |  |
| 33            | 0.083    | 0.076  |              | 0.086 |              | 0.221 |  |
| 34            | 0.081    | 0.074  |              | 0.084 |              | 0.218 |  |
| 35            | 0.079    | 0.072  |              | 0.083 |              | 0.216 |  |
| 36            | 0.077    | 0.071  |              | 0.081 |              | 0.213 |  |
| 37            | 0.076    | 0.070  |              | 0.080 |              | 0.211 |  |
| 38            | 0.074    | 0.068  |              | 0.078 |              | 0.208 |  |
| 39            | 0.073    | 0.067  |              | 0.077 |              | 0.206 |  |
| 40            | 0.072    | 0.066  |              | 0.076 |              | 0.204 |  |
| . 41          | 0.070    | 0.065  |              | 0.075 |              | 0.202 |  |
| 42            | 0.069    | 0.064  |              | 0.073 |              | 0.200 |  |
| 43            | 0.068    | 0.063  |              | 0.072 |              | 0.198 |  |
| 44            | 0.067    | 0.062  |              | 0.071 |              | 0.196 |  |
| 45            | 0.066    | 0.061  |              | 0.070 |              | 0.194 |  |

Table 5.21: F factor for 20 mm Lateral – 4 mm dia and 0.15 m longPolytube

|               | F factor     |       |                                         |       |                                        |         |  |
|---------------|--------------|-------|-----------------------------------------|-------|----------------------------------------|---------|--|
| No.of Outlets | 2 microtubes |       | 3 microtubes                            |       | 4 microtubes                           |         |  |
|               | 12           | 7.5   | 15                                      | 8     | 15.5                                   | 10      |  |
| 46            | 0.065        | 0.060 |                                         | 0.069 |                                        | 0.192   |  |
| 47            | 0.064        | 0.059 |                                         | 0.068 |                                        | 0.191   |  |
| 48            | 0.063        | 0.058 |                                         | 0.067 |                                        |         |  |
| 49            | 0.062        | 0.057 |                                         | 0.066 |                                        |         |  |
| 50            |              | 0.057 |                                         | 0.065 |                                        |         |  |
| 51            |              | 0.056 |                                         | 0.064 |                                        |         |  |
| 52            |              | 0.055 |                                         | 0.064 |                                        |         |  |
| 53            |              | 0.054 |                                         | 0.063 |                                        |         |  |
| 54            |              | 0.054 |                                         | 0.062 |                                        |         |  |
| 55            |              | 0.053 |                                         | 0.061 |                                        |         |  |
| 56            |              | 0.052 |                                         | 0.061 |                                        |         |  |
| 57            |              | 0.052 |                                         | 0.060 |                                        |         |  |
| 58            | 1            | 0.051 |                                         | 0.059 |                                        |         |  |
| 59            | 1            | 0.050 |                                         | 0.059 |                                        |         |  |
| 60            |              | 0.050 |                                         | 0.058 | *******                                |         |  |
| 61            |              | 0.049 | · _ · · · · · · · · · · · · · · ·       | 0.057 |                                        |         |  |
| 62            | 1            | 0.049 |                                         | 0.057 | ··········                             |         |  |
| 63            | 1            | 0.048 | *************************************** | 0.056 |                                        |         |  |
| 64            | 1            | 0.048 |                                         | 0.055 |                                        | 1       |  |
| 65            |              | 0.047 |                                         | 0.055 |                                        |         |  |
| 66            | 9            | 0.047 |                                         | 0.054 |                                        |         |  |
| 67            |              | 0.046 |                                         | 0.054 |                                        |         |  |
| 68            | +            | 0.046 |                                         | 0.053 |                                        | -       |  |
| 69            |              | 0.045 |                                         | 0.053 |                                        |         |  |
| 70            |              | 0.045 |                                         | 0.052 |                                        |         |  |
| 71            | 1            | 0.044 |                                         | 0.052 |                                        |         |  |
| 72            |              | 0.044 |                                         | 0.051 |                                        |         |  |
| 73            |              | 0.043 |                                         | 0.051 |                                        |         |  |
| 74            |              | 0.043 |                                         | 0.050 |                                        |         |  |
| 75            | 1            | 0.043 |                                         | 0.050 |                                        |         |  |
| 76            | 1            | 0.042 |                                         | 0.050 |                                        |         |  |
| 77            |              | 0.042 |                                         | 0.049 |                                        |         |  |
| 78            |              | 0.041 |                                         | 0.049 |                                        |         |  |
| 79            | 1            | 0.041 | <u></u>                                 | 0.048 | ······································ |         |  |
| 80            |              | 0.041 |                                         | 0.048 |                                        | 1       |  |
| 81            |              | 0.040 | ······································  | 0.047 |                                        | 1       |  |
| 82            | 1            | 0.040 |                                         | 0.047 |                                        | 1       |  |
| 83            | 1            | 0.040 |                                         | 0.047 |                                        |         |  |
| 84            |              | 0.039 |                                         | 0.046 |                                        |         |  |
| 85            |              | 0.039 |                                         | 0.046 |                                        | +       |  |
| 86            |              | 0.039 |                                         | 0.046 |                                        |         |  |
| 87            |              | 0.038 |                                         | 0.045 |                                        | · · · · |  |
| 88            |              | 0.038 |                                         |       |                                        | 1       |  |
| 89            | 1            | 0.038 |                                         |       |                                        | 1       |  |
| 90            |              | 0.038 |                                         | -     |                                        | +       |  |
| 91            | 1            | 0.037 |                                         |       |                                        | +       |  |
| 92            |              | 0.037 |                                         |       |                                        | +       |  |

Table 5.27 gives F factor for 20 mm lateral – 5 mm dia and 0.15 m long polytube for 2, 3, and 4 microtubes for various inlet pressures.

Table 5.28 illustrate F factor for 20 mm lateral -5 mm dia and 0.30 m long polytube for 2 , 3, and 4 microtubes for various inlet pressures and is given in enclosed DVD.

Table 5.29 shows F factor for 20 mm lateral - 5 mm dia and 0.45 m long polytube for 2 , 3, and 4 microtubes for various inlet pressures and is given in enclosed DVD.

Table 5.30 gives F factor for 20 mm lateral - 5 mm dia and 0.60 m long polytube for 2 , 3, and 4 microtubes for various inlet pressures and is given in enclosed DVD.

Table 5.31 illustrate F factor for 20 mm lateral – 5 mm dia and 0.75 m long polytube for 2, 3, and 4 microtubes for various inlet pressures and is given in enclosed DVD.

Table 5.32 shows F factor for 20 mm lateral - 5 mm dia and 0.90 m long polytube for 2 , 3, and 4 microtubes for various inlet pressures and is given in enclosed DVD.

Table 5.33 gives F factor for 20 mm lateral - 6 mm dia and 0.15 m long polytube for 2, 3, and 4 microtubes for various inlet pressures.

Table 5.34 illustrate F factor for 20 mm lateral – 6 mm dia and 0.30 m long polytube for 2, 3, and 4 microtubes for various inlet pressures and is given in enclosed DVD.

|                | F factor |        |         |         |                                    |          |  |
|----------------|----------|--------|---------|---------|------------------------------------|----------|--|
| No of Outlate  | 2 micr   | otubes | 3 mic   | rotubes | 4 micı                             | rotubes  |  |
| NO. OF OUTIETS | 15       | 10     | 13.5    | 5.5     | 15.5                               | 10.5     |  |
|                | mwc      | mwc    | mwc     | mwc     | mwc                                | mwc      |  |
| 1              | 1.000    | 1.010  | 1.001   | 1.001   | 1.010                              | 1.000    |  |
| 2              | 0.633    | 0.774  | 0.657   | 0.657   | 0.623                              | 0.805    |  |
| 3              | 0.501    | 0.657  | 0.549   | 0.533   | 0.515                              | 0.684    |  |
| 4              | 0.424    | 0.584  | 0.484   | 0.459   | 0.451                              | 0.609    |  |
| 5              | 0.373    | 0.534  | 0.438   | 0.409   | 0.406                              | 0.557    |  |
| 6              | 0.336    | 0.496  | 0.404   | 0.373   | 0.373                              | 0.518    |  |
| 7              | 0.307    | 0.466  | 0.378   | 0.344   | 0.347                              | 0.487    |  |
| 8              | 0.285    | 0.442  | 0.356   | 0.317   | 0.326                              | 0.461    |  |
| 9              | 0.266    | 0.421  | 0.338   | 0.308   | 0.309                              | 0.440    |  |
| 10             | 0.250    | 0.403  | 0.323   | 0.293   | 0.294                              | 0.422    |  |
| 11             | 0.237    | 0.388  | 0.309   | 0.280   | 0.281                              | 0.406    |  |
| 12             | 0.225    | 0.375  | 0.298   | 0.269   | 0.270                              | 0.392    |  |
| 13             | 0.215    | 0.363  | 0.287   | 0.259   | 0.260                              | 0.379    |  |
| 14             | 0.206    | 0.352  | 0.278   | 0.250   | 0.251                              | 0.368    |  |
| 15             | 0.198    | 0.342  | 0.270   | 0.242   | 0.243                              | 0.358    |  |
| 16             | 0.191    | 0.334  | 0.262   | 0.234   |                                    | 0.349    |  |
| 17             | 0.184    | 0.325  | 0.255   | 0.228   |                                    | 0.341    |  |
| 18             | 0.178    | 0.318  | 0.249   | 0.221   |                                    | 0.333    |  |
| 19             | 0.173    | 0.311  | 0.243   | 0.216   | L                                  | 0.326    |  |
| 20             | 0.168    | 0.305  | 0.237   | 0.211   |                                    | 0.319    |  |
| 21             | 0.163    | 0.299  | 0.232   | 0.206   |                                    | 0.313    |  |
| 22             | 0.159    | 0.293  | 0.228   | 0.201   |                                    | 0.307    |  |
| 23             | 0.155    | 0.288  | 0.223   | 0.197   |                                    | 0.302    |  |
| 24             | 0.151    | 0.283  | 0.219   | 0.193   |                                    | 0.297    |  |
| 25             |          | 0.278  | 0.215   | 0.189   |                                    | 0.292    |  |
| 26             |          | 0.274  | 0.211   | 0.186   |                                    | 0.287    |  |
| 27             | L        | 0.270  | 0.208   | 0.183   |                                    | 0.283    |  |
| 28             |          | 0.266  | 0.205   | 0.180   |                                    | 0.279    |  |
| 29             |          | 0.262  | 0.201   | 0.177   |                                    | 0.275    |  |
|                |          | 0.259  | 0.198   | 0.174   |                                    | 0.271    |  |
| 31             |          | 0.255  | 0.196   | 0.171   |                                    | 0.268    |  |
| 32             |          | 0.252  | 0.193   | 0.168   | Multure contraction and the second | 0.264    |  |
| 33             |          | 0.249  | 0.190   | 0.166   |                                    | 0.261    |  |
| 34             |          | 0.246  | 0.188   | 0.164   |                                    | 0.258    |  |
| 35             |          | 0.243  |         | 0.161   |                                    | 0.255    |  |
| 36             |          | 0.240  |         | 0.159   |                                    | 0.252    |  |
| 37             |          | 0.238  | <u></u> | 0.157   |                                    |          |  |
| 38             | L        | 0.235  |         | 0.155   |                                    |          |  |
| 39             | L        |        |         | 0.153   |                                    |          |  |
| 40             | <u> </u> |        |         | 0.152   |                                    | L        |  |
| 41             | L        |        |         | 0.150   |                                    | <u> </u> |  |
| 42             | L        |        |         | 0.148   |                                    |          |  |
| 43             |          |        |         | 0.146   |                                    |          |  |
| 44             |          |        |         | 0.145   |                                    |          |  |
| 45             |          |        |         | 0.143   |                                    |          |  |

### Table 5.27: F Factor for 20 mm Lateral – 5 mm Dia and 0.15 m Long Polytube

|                | F factor     |     |              |       |              |      |  |  |
|----------------|--------------|-----|--------------|-------|--------------|------|--|--|
| No. of Outlots | 2 microtubes |     | 3 microtubes |       | 4 microtubes |      |  |  |
| No.of Outlets  | 15           | 10  | 13.5         | 5.5   | 15.5         | 10.5 |  |  |
|                | mwc          | mwc | mwc          | mwc   | mwc          | mwc  |  |  |
| 46             |              |     |              | 0.142 |              |      |  |  |
| 47             |              |     |              | 0.140 |              |      |  |  |
| 48             |              |     |              | 0.139 |              |      |  |  |
| 49             |              |     |              | 0.138 |              |      |  |  |
| 50             |              |     |              | 0.136 |              |      |  |  |
| 51             |              |     |              | 0.135 |              |      |  |  |
| 52             |              |     |              | 0.134 |              |      |  |  |
| 53             |              |     |              | 0.133 |              |      |  |  |
| 54             |              |     |              | 0.131 |              |      |  |  |
| 55             | T            |     |              | 0.130 |              |      |  |  |
| 56             |              |     |              | 0.129 |              |      |  |  |
| 57             |              |     |              | 0.128 |              |      |  |  |
| 58             |              |     |              | 0.126 |              |      |  |  |
| 59             |              |     |              | 0.125 |              |      |  |  |
| 60             |              |     |              | 0.124 |              | •    |  |  |
| 61             |              |     |              | 0.123 |              |      |  |  |
| 62             | _            |     |              | 0.123 |              |      |  |  |
| 63             |              |     |              | 0.122 |              |      |  |  |
| 64             |              |     |              | 0.121 |              |      |  |  |
| 65             |              |     |              | 0.120 |              |      |  |  |
| 66             |              |     |              | 0.119 |              |      |  |  |
| 67             |              |     |              | 0.118 |              |      |  |  |
| 68             |              |     |              | 0.117 |              |      |  |  |
| 69             |              |     |              | 0.116 |              |      |  |  |

•

.

.

.

|               | F factor |        |              |       |              |       |  |
|---------------|----------|--------|--------------|-------|--------------|-------|--|
| No.of Outlets | 2 micr   | otubes | 3 microtubes |       | 4 microtubes |       |  |
|               | 15.50    | 14.00  | 12.00        | 5.00  | 13.00        | 9.75  |  |
|               | mwc      | mwc    | mwc          | mwc   | mwc          | mwc   |  |
| · 1           | 0.990    | 0.980  | 1.002        | 1.020 | 1.002        | 1.004 |  |
| 2             | 0.743    | 0.723  | 0.821        | 0.631 | 0.887        | 0.652 |  |
| 3             | 0.642    | 0.614  | 0.728        | 0.512 | 0.736        | 0.507 |  |
| 4             | 0.580    | 0.548  | 0.622        | 0.441 | 0.644        | 0.423 |  |
| 5             | 0.535    | 0.501  | 0.551        | 0.393 | 0.581        | 0.369 |  |
| 6             | 0.502    | 0.465  | 0.499        | 0.358 | 0.534        | 0.329 |  |
| 7             | 0.475    | 0.437  | 0.459        | 0.331 | 0.498        | 0.299 |  |
| 8             | 0.453    | 0.415  | 0.427        | 0.309 | 0.468        | 0.275 |  |
| 9             | 0.434    | 0.396  | 0.401        | 0.291 | 0.443        | 0.256 |  |
| 10            | 0.418    | 0.379  | 0.378        | 0.275 | 0.422        | 0.239 |  |
| 11            | 0.404    | 0.365  | 0.359        | 0.262 | 0.404        | 0.225 |  |
| 12            | 0.392    | 0.352  | 0.343        | 0.250 | 0.388        | 0.214 |  |
| 13            | 0.381    | 0.341  | 0.328        | 0.240 | 0.374        | 0.203 |  |
| 14            | 0.371    | 0.331  | 0.315        | 0.231 | 0.362        | 0.194 |  |
| 15            | 0.362    | 0.322  | 0.304        | 0.223 | 0.350        | 0.186 |  |
| 16            | 0.353    | 0.314  | 0.293        | 0.216 | 0.340        | 0.179 |  |
| 17            | 0.346    | 0.306  | 0.284        | 0.209 | 0.331        | 0.172 |  |
| 18            | 0.339    | 0.300  | 0.275        | 0.203 | 0.322        | 0.166 |  |
| 19            | 0.332    | 0.293  | 0.267        | 0.198 | 0.314        | 0.160 |  |
| 20            | 0.326    | 0.287  | 0.260        | 0.192 | 0.307        | 0.155 |  |
| 21            | 0.321    | 0.282  | 0.253        | 0.188 |              | 0.151 |  |
| 22            | 0.315    | 0.276  | 0.247        | 0.183 |              | 0.146 |  |
| 23            | 0.310    | 0.271  | 0.241        | 0.179 |              | 0.142 |  |
| 24            | . 0.306  | 0.267  | 0.235        | 0.175 |              | 0.139 |  |
| 25            |          | 0.263  | 0.230        | 0.171 |              | 0.135 |  |
| 26            |          | 0.258  | 0.225        | 0.168 |              | 0.132 |  |
| 27            |          | 0.255  | 0.221        | 0.165 |              | 0.129 |  |
| 28            |          | 0.251  |              | 0.162 |              | 0.126 |  |
| 29            |          | 0.247  |              | 0.159 |              | 0.123 |  |
| 30            |          | 0.244  |              | 0.156 |              | 0.121 |  |
| 31            |          | 0.241  |              | 0.153 |              | 0.118 |  |
| 32            |          | 0.238  |              | 0.151 |              | 0.116 |  |
| 33            |          | 0.235  |              | 0.149 |              | 0.114 |  |
| 34            |          | 0.232  |              | 0.146 |              | 0.112 |  |
| 35            |          | 0.229  |              | 0.144 |              | 0.110 |  |
| 36            |          | 0.227  |              | 0.142 |              | 0.108 |  |
| 37            |          | 0.224  |              | 0.140 | •            | 0.106 |  |
| 38            |          | 0.222  |              | 0.138 |              | 0.104 |  |
| 39            |          | 0.220  |              | 0.136 |              | 0.102 |  |
| 40            |          | 0.217  |              | 0.135 |              | 0.101 |  |
| 41            |          | 0.215  |              | 0.133 |              | 0.099 |  |
| 42            |          | 0.213  |              | 0.131 |              | 0.098 |  |
| 43            |          | 0.211  |              | 0.130 |              | 0.096 |  |
| 44            | 1        | 0.209  |              | 0.128 |              | 0.095 |  |

### Table 5.33: F Factor for 20 mm Lateral – 6 mm dia and 0.15 m long Polytube

|                 |        |        | F fa   | ctor                                  |        |         |
|-----------------|--------|--------|--------|---------------------------------------|--------|---------|
| No.of Outlets   | 2 micr | otubes | 3 micr | rotubes                               | 4 micı | rotubes |
|                 | 15.50  | 14.00  | 12.00  | 5.00                                  | 13.00  | 9.75    |
|                 | mwc    | mwc    | mwc    | mwc                                   | mwc    | mwc     |
| 45              |        | 0.207  |        | 0.127                                 |        | 0.094   |
| 46              |        | 0.206  |        | 0.125                                 |        | 0.092   |
| 47              |        | 0.204  |        | 0.124                                 |        | 0.091   |
| 48              |        | 0.202  |        | 0.122                                 |        | 0.090   |
| 49              |        | 0.200  |        | 0.121                                 |        | 0.089   |
| 50              |        | 0.199  |        | 0.120                                 |        | 0.088   |
| 51              |        | 0.197  |        | 0.119                                 |        | 0.087   |
| 52              |        | 0.196  |        | 0.118                                 |        | 0.086   |
| 53              |        | 0.194  |        | 0.116                                 |        | 0.085   |
| 54              | ·      | 0.193  |        | 0.115                                 |        | 0.084   |
| 55              |        | 0.191  |        | 0.114                                 |        | 0.083   |
| 56              |        | 0.190  |        | 0.113                                 |        | 0.082   |
| 57              |        | 0.189  |        | 0.112                                 |        | 0.081   |
| 58              |        | 0.187  |        | 0.111                                 |        |         |
| 59              |        | 0.186  |        | 0.110                                 |        |         |
| 60              |        | 0.185  |        |                                       |        |         |
| 61              |        | 0.184  |        |                                       |        |         |
| 62              |        | 0.182  |        | · · ·                                 | 1      |         |
| <sup>°</sup> 63 |        | 0.181  |        |                                       |        |         |
| 64              |        | 0.180  |        |                                       |        |         |
| 65              |        | 0.179  |        |                                       |        |         |
| 66              |        | 0.178  |        |                                       |        |         |
| 67              |        | 0.177  |        | 1                                     |        |         |
| 68              |        | 0.176  |        |                                       |        |         |
| 69              |        | 0.175  |        |                                       |        |         |
| 70              |        | 0.174  |        |                                       |        |         |
| 71              |        | 0.173  |        |                                       |        |         |
| 72              |        | 0.172  |        |                                       |        |         |
| 73              |        | 0.171  |        |                                       |        |         |
| 74              |        | 0.170  |        | · · · · · · · · · · · · · · · · · · · |        |         |
| 75              |        | 0.169  |        | 1                                     |        |         |
| 76              |        | 0.168  |        | 1                                     |        |         |
| 77              | 1      | 0.167  |        | 1                                     |        |         |
| 78              |        | 0.166  |        |                                       |        |         |
| 79              |        | 0.166  |        |                                       |        |         |

.

.

Table 5.35 shows F factor for 20 mm lateral – 6 mm dia and 0.45 m long polytube for 2, 3, and 4 microtubes for various inlet pressures and is given in enclosed DVD.

Table 5.36 gives F factor for 20 mm lateral - 6 mm dia and 0.60 m long polytube for 2 , 3, and 4 microtubes for various inlet pressures and is given in enclosed DVD.

Table 5.37 illustrate F factor for 20 mm lateral - 6 mm dia and 0.75 m long polytube for 2 , 3, and 4 microtubes for various inlet pressures and is given in enclosed DVD.

Table 5.38 shows F factor for 20 mm lateral - 6 mm dia and 0.90 m long polytube for 2 , 3, and 4 microtubes for various inlet pressures and is given in enclosed DVD.

Table 5.39 gives F factor for 20 mm lateral -7 mm dia and 0.15 m long polytube for 2, 3, and 4 microtubes for various inlet pressures.

Table 5.40 illustrate F factor for 20 mm lateral -7 mm dia and 0.30 m long polytube for 2, 3, and 4 microtubes for various inlet pressures and is given in enclosed DVD.

Table 5.41 shows F factor for 20 mm lateral -7 mm dia and 0.45 m long polytube for 2, 3, and 4 microtubes for various inlet pressures and is given in enclosed DVD.

Table 5.42 gives F factor for 20 mm lateral -7 mm dia and 0.60 m long polytube for 2, 3, and 4 microtubes for various inlet pressures and is given in enclosed DVD.

|               | F factor |        |        |        |          |          |  |  |
|---------------|----------|--------|--------|--------|----------|----------|--|--|
| No of Outlate | 2 micr   | otubes | 3 micr | otubes | 4 micr   | otubes   |  |  |
|               | 15       | 6      | 10     | 5      | 15       | 10       |  |  |
|               | mwc      | mwc    | mwc    | mwc    | mwc      | mwc      |  |  |
| 1             | 1.011    | 0.980  | 0.991  | 1.020  | 1.002    | 1.010    |  |  |
| 2             | 0.816    | 0.651  | 0.626  | 0.728  | 0.869    | 0.689    |  |  |
| 3             | 0.683    | 0.517  | 0.501  | 0.581  | 0.710    | 0.543    |  |  |
| .4            | 0.601    | 0.440  | 0.427  | 0.496  | 0.616    | 0.459    |  |  |
| 5             | 0.545    | 0.388  | 0.378  | 0.438  | 0.551    | 0.403    |  |  |
| 6             | 0.503    | 0.350  | 0.341  | 0.396  | 0.504    | 0.362    |  |  |
| 7             | 0.470    | 0.321  | 0.314  | 0.364  | 0.467    | 0.331    |  |  |
| 8             | 0.443    | 0.297  | 0.291  | 0.338  | 0.437    | 0.306    |  |  |
| 9             | 0.421    | 0.278  | 0.273  | 0.316  | 0.412    | 0.286    |  |  |
| 10            | 0.402    | 0.262  | 0.258  | 0.298  | 0.391    | 0.269    |  |  |
| 11            | 0.385    | 0.248  | 0.244  | 0.283  | 0.373    | 0.254    |  |  |
| <u>12</u>     | 0.371    | 0.236  | 0.233  | 0.270  | 0.357    | 0.241    |  |  |
| 13            | 0.358    | 0.226  | 0.223  | 0.258  | 0.343    | 0.230    |  |  |
| 14            | 0.347    | 0.217  | 0.214  | 0.248  | 0.331    | 0.221    |  |  |
| 15            | 0.336    | 0.208  | 0.206  | 0.238  | 0.320    | 0.212    |  |  |
| 16            | 0.327    | 0.201  | 0.199  | 0.230  | 0.310    | 0.204    |  |  |
| 17            | 0.318    | 0.194  | 0.192  | 0.222  | 0.301    | 0.197    |  |  |
| 18            | 0.310    | 0.188  | 0.186  | 0.215  | 0.292    | 0.190    |  |  |
| 19            | 0.303    | 0.182  | 0.181  | 0.209  | 0.284    | 0.184    |  |  |
| 20            | 0.296    | 0.177  | 0.176  | 0.203  | 0.277    | 0.179    |  |  |
| 21            | 0.290    | 0.172  | 0.171  | 0.198  | 0.271    | 0.174    |  |  |
| 22            | 0.284    | 0.168  | 0.167  | 0.193  | 0.264    | 0.169    |  |  |
| 23            | 0.279    | 0.164  | 0.163  | 0.188  | 0.259    | 0.165    |  |  |
| 24            | 0.273    | 0.160  | 0.159  | 0.184  | 0.253    | 0.161    |  |  |
| 25            |          | 0.156  | 0.155  | 0.180  |          | 0.157    |  |  |
| 26            |          | 0.153  | 0.152  | 0.176  |          | 0.154    |  |  |
| 27            |          | 0.150  | 0.149  | 0.172  |          | 0.150    |  |  |
| 28            |          | 0.146  | 0.146  | 0.169  |          | 0.147    |  |  |
| 29            |          | 0.144  | 0.143  | 0.165  |          | 0.144    |  |  |
| 30            |          | 0.141  | 0.140  | 0.162  |          | 0.141    |  |  |
| 31            |          | 0.138  | 0.138  | 0.159  |          | 0.139    |  |  |
| 32            |          | 0.136  | 0.136  | 0.157  |          | 0.136    |  |  |
| 33            |          | 0.134  | 0.133  | 0.154  |          | 0.134    |  |  |
| 34            |          | 0.131  | 0.131  | 0.151  |          | 0.131    |  |  |
| 35            |          | 0.129  | 0.129  | 0.149  |          | 0.129    |  |  |
| 36            |          | 0.127  | 0.127  | 0.147  |          | 0.127    |  |  |
| 37            |          | 0.125  | 0.125  | 0.145  |          | 0.125    |  |  |
| 38            |          | 0.123  | 0.123  | 0.142  |          | 0.123    |  |  |
| 39            |          | 0.121  | 0.122  |        |          |          |  |  |
| 40            |          | 0.120  | 0.120  |        |          |          |  |  |
| 41            |          | 0.118  | 0.118  |        |          |          |  |  |
| 42            |          | 0.116  | 0.117  |        |          |          |  |  |
| 43            |          | 0.115  | 0.115  |        |          |          |  |  |
| 44            |          | 0.113  | 0.114  |        | <u> </u> | <u> </u> |  |  |

# Table 5.39: F factor for 20 mm Lateral – 7 mm dia and 0.15 m longPolytube

| Υμικά του διατικού μεταλογικού μεταλογικού μεταλογικού μεταλογικού μεταλογικού μεταλογικού μεταλογικού μεταλογ<br>Η προγματικού μεταλογικού μεταλογικού μεταλογικού μεταλογικού μεταλογικού μεταλογικού μεταλογικού μεταλογικού μ |        |        | F fa   | ctor   |        |                     |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|--------|--------|--------|---------------------|--|--|--|--|--|
| No of Outlote                                                                                                                                                                                                                     | 2 micr | otubes | 3 micr | otubes | 4 micr | otubes<br>10<br>mwc |  |  |  |  |  |
| NO.OF OUTIETS                                                                                                                                                                                                                     | 15     | 6      | 10     | 5      | 15     | 10                  |  |  |  |  |  |
|                                                                                                                                                                                                                                   | mwc    | mwc    | mwc    | mwc    | mwc    | mwc                 |  |  |  |  |  |
| 45                                                                                                                                                                                                                                |        |        | 0.112  |        |        |                     |  |  |  |  |  |
| 46                                                                                                                                                                                                                                |        |        | 0.111  |        |        |                     |  |  |  |  |  |
| 47                                                                                                                                                                                                                                |        |        | 0.110  |        |        |                     |  |  |  |  |  |
| 48                                                                                                                                                                                                                                |        |        | 0.108  |        |        |                     |  |  |  |  |  |
| 49                                                                                                                                                                                                                                |        |        | 0.107  |        |        |                     |  |  |  |  |  |
| 50                                                                                                                                                                                                                                |        |        | 0.106  |        |        |                     |  |  |  |  |  |
| 51                                                                                                                                                                                                                                |        |        | 0.105  |        |        |                     |  |  |  |  |  |
| 52                                                                                                                                                                                                                                |        |        | 0.104  |        |        |                     |  |  |  |  |  |

Table 5.43 illustrates F factor for 20 mm lateral – 7 mm dia and 0.75 m long polytube for 2, 3, and 4 microtubes for various inlet pressures and is given in enclosed DVD.

Table 5.44 shows F factor for 20 mm lateral -7 mm dia and 0.90 m long polytube for 2, 3, and 4 microtubes for various inlet pressures and is given in enclosed DVD.

Development of the relationship between inlet pressure and microtube discharge and length of microtubes and inlet pressure.

The relationship between inlet pressures and discharge through microtubes are established.

Table 5.45 gives inlet pressure vs microtube discharges of various diameter and lengths of microtube for 20 mm lateral -4 mm dia and 0.15 m long polytube -2 microtubes.

Table 5.46 indicates inlet pressure- microtube discharge regression equations for various diameter and length of microtubes for 20 mm lateral -4 mm dia and 0.15 m long polytube -2 microtubes.

Table 5.47 gives microtube length - inlet pressure regression equations for various diameter of microtubes for 20 mm lateral -4 mm dia and 0.15 m long polytube -2 microtubes

### Table 5.45: Inlet Pressure Vs Microtube Discharges of Various Diameter and Length of Microtubes

|            | Avg. Discharges of One Microtube, Iph |       |       |       |       |       |       |       |       |  |
|------------|---------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|--|
| <b>P</b> 2 | 1.5-                                  | 1.5-  | 1.5-  | 1.2-  | 1.2-  | 1.2-  | 1.0-  | 1.0-  | 1.0-  |  |
| 1 6        | 0.30                                  | 0.60  | 0.90  | 0.30  | 0.60  | 0.90  | 0.30  | 0.60  | 0.90  |  |
| Mwc        | lph                                   | lph   | lph   | lph   | lph   | lph   | lph   | lph   | lph   |  |
| 15.50      | 23.52                                 | 19.58 | 16.46 | 21.12 | 18.03 | 14.78 | 19.92 | 16.93 | 13.94 |  |
| 14.83      | 23.13                                 | 19.25 | 16.19 | 20.73 | 17.70 | 14.51 | 19.53 | 16.60 | 13.67 |  |
| 14.15      | 22.54                                 | 18.75 | 15.78 | 20.14 | 17.19 | 14.10 | 18.94 | 16.10 | 13.26 |  |
| 13.48      | 22.15                                 | 18.42 | 15.51 | 19.75 | 16.86 | 13.83 | 18.55 | 15.77 | 12.99 |  |
| 12.80      | 21.71                                 | 18.04 | 15.19 | 19.31 | 16.48 | 13.51 | 18.11 | 15.39 | 12.67 |  |
| 12.60      | 21.47                                 | 17.84 | 15.03 | 19.07 | 16.27 | 13.35 | 17.87 | 15.19 | 12.51 |  |
| 12.40      | 21.32                                 | 17.71 | 14.92 | 18.92 | 16.15 | 13.24 | 17.72 | 15.06 | 12.40 |  |
| 12.20      | 21.08                                 | 17.51 | 14.76 | 18.68 | 15.94 | 13.08 | 17.48 | 14.86 | 12.24 |  |
| 12.00      | 20.69                                 | 17.18 | 14.48 | 18.29 | 15.61 | 12.80 | 17.09 | 14.53 | 11.96 |  |
| 11.73      | 20.39                                 | 16.93 | 14.28 | 17.99 | 15.35 | 12.60 | 16,79 | 14.28 | 11.76 |  |
| 11.45      | 20.25                                 | 16.80 | 14.17 | 17.85 | 15.23 | 12.49 | 16.65 | 14.15 | 11.65 |  |
| 11.18      | 20.10                                 | 16.68 | 14.07 | 17.70 | 15.10 | 12.39 | 16.50 | 14.02 | 11.55 |  |
| 10.90      | 19.86                                 | 16.47 | 13.90 | 17.46 | 14.89 | 12.22 | 16.26 | 13.82 | 11.38 |  |
| 10.45      | 18.73                                 | 15.51 | 13.11 | 16.33 | 13.93 | 11.43 | 15.13 | 12.86 | 10.59 |  |
| 10.00      | 17.45                                 | 14.43 | 12.22 | 15.05 | 12.84 | 10.54 | 13.85 | 11.77 | 9.70  |  |
| 9.60       | 17.12                                 | 14.14 | 11.98 | 14.72 | 12.55 | 10.30 | 13.52 | 11.49 | 9.46  |  |
| 9.20       | 16.97                                 | 14.02 | 11.88 | 14.57 | 12.42 | 10.20 | 13.37 | 11.37 | 9.36  |  |
| 8.78       | 16.82                                 | 13.89 | 11.78 | 14.42 | 12.30 | 10.10 | 13.22 | 11.24 | 9.26  |  |
| 8.35       | 16.68                                 | 13.77 | 11.67 | 14.28 | 12.17 | 9.99  | 13.08 | 11.11 | 9.15  |  |
| 7.93       | 16.53                                 | 13.64 | 11.57 | 14.13 | 12.04 | 9.89  | 12.93 | 10.99 | 9.05  |  |
| 7.50       | 16.44                                 | 13.56 | 11.51 | 14.04 | 11.96 | 9.83  | 12.84 | 10.91 | 8.99  |  |
| 7.00       | 16.20                                 | 14.14 | 12.96 | 13.80 | 12.43 | 11.04 | 12.60 | 11.34 | 10.08 |  |
| 6.50       | 15.96                                 | 13.93 | 12.77 | 13.56 | 12.22 | 10.85 | 12.36 | 11.12 | 9.89  |  |
| 6.00       | 15.62                                 | 13.63 | 12.50 | 13.22 | 11.91 | 10.58 | 12.02 | 10.82 | 9.62  |  |
| 5.50       | 14.87                                 | 12.95 | 11.90 | 12.47 | 11.22 | 9.98  | 11.27 | 10.14 | 9.02  |  |
| 5.00       | 14.11                                 | 12.27 | 11.29 | 11.71 | 10.52 | 9.37  | 10.51 | 9.46  | 8.41  |  |
| 4.50       | 13.69                                 | 11.89 | 10.95 | 11.29 | 10.13 | 9.03  | 10.09 | 9.08  | 8.07  |  |
| 4.00       | 12.81                                 | 11.09 | 10.25 | 10.41 | 9.31  | 8.33  | 9.21  | 8.29  | 7.37  |  |
| 3.50       | 11.74                                 | 10.13 | 9.39  | 9.34  | 8.32  | 7.47  | 8.14  | 7.33  | 6.51  |  |
| 2.25       | 10.54                                 | 9.05  | 8.43  | 8.14  | 7.23  | 6.51  | 6.94  | 6.25  | 5.55  |  |
| 1.00       | 11.04                                 | 8.30  | 8.83  | 8.64  | 7.67  | 6.91  | 7.44  | 6.70  | 5.95  |  |
| 6.80       | 17.92                                 | 15.69 | 14.33 | 15.52 | 13.99 | 12.41 | 14.32 | 12.89 | 11.45 |  |
| 5.00       | 15.06                                 | 13.56 | 12.95 | 12.66 | 11.76 | 10.89 | 11.46 | 10.66 | 9.85  |  |
| 4.00       | 12.66                                 | 11.33 | 10.89 | 10.26 | 9.50  | 8.82  | 9.06  | 8.42  | 7.79  |  |

20 mm dia Lateral -4 mm dia and 0.15 m long Polytube – 2 Microtubes

N.B. 1.5 - 0.30: 1.5 mm diameter and 0.30 m long microtube

1.2 - 0.60: 1.2 mm diameter and 0.60 m long microtube

Table 5.46: Inlet Pressure- Microtube Discharge Regression Equationsfor Various Diameter and Lengths of Microtube20 mm dia Lateral -4 mm dia and 0.15 m long Polytube – 2 Microtube

| Diameter of microtube | Length of microtube | Inlet Pressure-<br>discharge<br>equations | R²    | Estimated pressure for various discharges, mwo |        |
|-----------------------|---------------------|-------------------------------------------|-------|------------------------------------------------|--------|
| Mm                    | m                   |                                           |       | 15 lph                                         | 10 lph |
| 1.5                   | 0.3                 | P2= 0.0052q <sup>2.5684</sup>             | 0.892 | 5.45                                           | 1.92   |
| 1.5                   | 0.6                 | P2= 0.0059q <sup>2.6836</sup>             | 0.915 | 8.45                                           | 2.85   |
| 1.5                   | 0.9                 | P2 = 0.0028q <sup>3.1192</sup>            | 0.786 | 13.05                                          | 3.68   |
| 1.2                   | 0.3                 | P2= 0.0215q <sup>2.1867</sup>             | 0.898 | 8.02                                           | 3.30   |
| 1.2                   | 0.6                 | P2 = 0.0197q <sup>2.3391</sup>            | 0.883 | 11.10                                          | 4.30   |
| 1.2                   | 0.9                 | P2= 0.0153q <sup>2.6044</sup>             | 0.822 | 17.69                                          | 6.15   |
| 1.0                   | 0.3                 | P2= 0.0432q <sup>1.9925</sup>             | 0.902 | 9.52                                           | 4.25   |
| 1.0                   | 0.6                 | P2= 0.0385q <sup>2.1517</sup>             | 0.886 | 13.06                                          | 5.46   |
| 1.0                   | 0.9                 | P2= 0.0351q <sup>2.3441</sup>             | 0.838 | 20.05                                          | 7.75   |

### Table 5.47: Microtube Length - Inlet Pressure Regression Equations for Various Diameter of Microtube

20 mm dia Lateral - 4mm dia and 0.15 m long Polytube - 2 Microtubes

| Diameter of<br>microtube | Microtube Length vs Inlet Pressure   |                |                                      |                |  |  |  |  |  |  |
|--------------------------|--------------------------------------|----------------|--------------------------------------|----------------|--|--|--|--|--|--|
| Mm                       | 15 lph 10 lph                        |                |                                      |                |  |  |  |  |  |  |
|                          | L                                    | R <sup>2</sup> | L                                    | R <sup>2</sup> |  |  |  |  |  |  |
| 1.5                      | L <sub>1.5</sub> = 0.0733P2 - 0.0888 | 0.9587         | L <sub>1.5</sub> = 0.2906P2 - 0.2943 | 0.9613         |  |  |  |  |  |  |
| 1.2                      | L <sub>1.2</sub> =0.0598P2- 0.1758   | 0.9643         | L <sub>1.2</sub> = 0.1861P2- 0.3593  | 0.9677         |  |  |  |  |  |  |
| 1.0                      | $L_{1.0} = 0.0568P2 - 0.2396$        | 0.9685         | $L_{1.0} = 0.1564P2 - 0.4119$        | 0.9718         |  |  |  |  |  |  |

Tables 5.48 to 5.95 give inlet pressure vs microtube discharges of various diameter and length of microtubes, regression equations for inlet pressuremicrotube discharge for various diameter and length of microtube, and regression equations for microtube length - inlet pressure for various diameter of microtubes for 20 mm lateral - 4 mm polytube and 0.30 m, 0.45 m, 0.60 m, 0.75 m, & 0.90 m length of polytubes considering 2,3 and 4 microtubes respectively and are given in enclosed DVD.

Table 5.96 gives inlet pressure vs microtube discharges of various diameter and lengths of microtube for 20 mm lateral – 5 mm dia and 0.15 m long polytube – 2 microtubes. Table 5.97 indicates inlet pressure- microtube discharge regression equations for various diameter and length of microtubes for 20 mm lateral -5 mm dia and 0.15 m long polytube -2 microtubes.

. . . . .

Table 5.98 gives microtube length - inlet pressure regression equations for various diameter of microtubes for 20 mm lateral -5 mm dia and 0.15 m long polytube -2 microtubes

Tables 5.99 to 5.143 present inlet pressure vs microtube discharges of various diameter and length of microtubes, regression equations for inlet pressure- microtube discharge for various diameter and length of microtubes, and regression equations for microtube length - inlet pressure for various diameter of microtubes for 20 mm lateral - 5 mm polytube and 0.30 m, 0.45 m, 0,60 m, 0.75 m, & 0.90 m length of polytubes considering 2,3 and 4 microtubes respectively and are given in enclosed DVD.

## Table 5.96: Inlet Pressure Vs Microtube Discharges of Various Diameterand Length of Microtubes

20 mm Lateral - 5 mm dia and 0.15 m Long Polytube - 2-Microtubes

|       | Avg. Discharges of One Microtube, Iph |        |        |        |        |        |        |        |        |  |
|-------|---------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--|
| P2    | 1.5-30                                | 1.5-60 | 1.5-90 | 1.2-30 | 1.2-60 | 1.2-90 | 1.0-30 | 1.0-60 | 1.0-90 |  |
| mwc   | lph                                   | lph    | lph    | lph    | lph    | lph    | lph    | lph    | lph    |  |
| 15.00 | 21.50                                 | 18.27  | 15.05  | 19.10  | 16.23  | 13.37  | 17.90  | 15.21  | 12.53  |  |
| 14.75 | 21.41                                 | 18.19  | 14.98  | 19.01  | 16.15  | 13.30  | 17.81  | 15.13  | 12.46  |  |
| 14.50 | 21.26                                 | 18.07  | 14.88  | 18.86  | 16.03  | 13.20  | 17.66  | 15.01  | 12.36  |  |
| 14.25 | 21.02                                 | 17.86  | 14.71  | 18.62  | 15.82  | 13.03  | 17.42  | 14.80  | 12.19  |  |
| 14.00 | 20.87                                 | 17.74  | 14.61  | 18.47  | 15.70  | 12.93  | 17.27  | 14.68  | 12.09  |  |
| 13.75 | 20.63                                 | 17.53  | 14.44  | 18.23  | 15.49  | 12.76  | 17.03  | 14.47  | 11.92  |  |
| 13.50 | 20.48                                 | 17.41  | 14.34  | 18.08  | 15.37  | 12.66  | 16.88  | 14.35  | 11.82  |  |
| 13.25 | 20.24                                 | 17.20  | 14.17  | 17.84  | 15.16  | 12.49  | 16.64  | 14.14  | 11.65  |  |
| 13.00 | 20.00                                 | 17.00  | 14.00  | 17.60  | 14.96  | 12.32  | 16.40  | 13.94  | 11.48  |  |
| 12.75 | 19.85                                 | 16.87  | 13.90  | 17.45  | 14.83  | 12.22  | 16.25  | 13.81  | 11.38  |  |
| 12.50 | 19.70                                 | 16.75  | 13.79  | 17.30  | 14.71  | 12.11  | 16.10  | 13.69  | 11.27  |  |
| 12.00 | 19.56                                 | 16.62  | 13.69  | 17.16  | 14.58  | 12.01  | 15.96  | 13.56  | 11.17  |  |
| 11.50 | 19.17                                 | 16.29  | 13.42  | 16.77  | 14.25  | 11.74  | 15.57  | 13.23  | 10.90  |  |
| 11.00 | 18.63                                 | 15.84  | 13.04  | 16.23  | 13.80  | 11.36  | 15.03  | 12.78  | 10.52  |  |
| 10.50 | 18.24                                 | 15.51  | 12.77  | 15.84  | 13.47  | 11.09  | 14.64  | 12.45  | 10.25  |  |
| 10.00 | 17.62                                 | 14.97  | 12.33  | 15.22  | 12.93  | 10.65  | 14.02  | 11.91  | 9.81   |  |
| 9.50  | 17.47                                 | 14.85  | 12.23  | 15.07  | 12.81  | 10.55  | 13.87  | 11.79  | 9.71   |  |
| 9.00  | 17.32                                 | 14.72  | 12.12  | 14.92  | 12.68  | 10.44  | 13.72  | 11.66  | 9.60   |  |
| 8.50  | 17.17                                 | 14.60  | 12.02  | 14.77  | 12.56  | 10.34  | 13.57  | 11.54  | 9.50   |  |
| 8.00  | 16.88                                 | 14.34  | 11.81  | 14.48  | 12.30  | 10.13  | 13.28  | 11.28  | 9.29   |  |
| 7.50  | 16.49                                 | 14.01  | 11.54  | 14.09  | 11.97  | 9.86   | 12.89  | 10.95  | 9.02   |  |
| 7.00  | 16.10                                 | 14.49  | 12.88  | 13.70  | 12.33  | 10.96  | 12.50  | 11.25  | 10.00  |  |
| 6.50  | 15.71                                 | 14.14  | 12.57  | 13.31  | 11.98  | 10.65  | 12.11  | 10.90  | 9.69   |  |
| 6.00  | 14.93                                 | 13.44  | 11.95  | 12.53  | 11.28  | 10.03  | 11.33  | 10.20  | 9.07   |  |
| 5.50  | 14.18                                 | 12.76  | 11.34  | 11.78  | 10.60  | 9.42   | 10.58  | 9.52   | 8.46   |  |
| 5.00  | 13.42                                 | 12.08  | 10.74  | 11.02  | 9.92   | 8.82   | 9.82   | 8.84   | 7.86   |  |
| 4.50  | 12.82                                 | 11.53  | 10.25  | 10.42  | 9.37   | 8.33   | 9.22   | 8.29   | 7.37   |  |
| 4.00  | 12.21                                 | 10.99  | 9.77   | 9.81   | 8.83   | 7.85   | 8.61   | 7.75   | 6.89   |  |
| 3.50  | 11.45                                 | 10.31  | 9.16   | 9.05   | 8.15   | 7.24   | 7.85   | 7.07   | 6.28   |  |
| 3.00  | 10.24                                 | 9.21   | 8.19   | 7.84   | 7.05   | 6.27   | 6.64   | 5.97   | 5.31   |  |
| 2.50  | 9.31                                  | 8.38   | 7.45   | 6.91   | 6.22   | 5.53   | 5.71   | 5.14   | 4.57   |  |
| 2.00  | 8.39                                  | 7.55   | 6.71   | 5.99   | 5.39   | 4.79   | 4.79   | 4.31   | 3.83   |  |
| 1.50  | 7.46                                  | 6.94   | 6.42   | 5.06   | 4.71   | 4.36   | 3.86   | 3.59   | 3.32   |  |
| 1.00  | 6.36                                  | 5.91   | 5.47   | .3.96  | 3.68   | 3.40   | 2.76   | 2.56   | 2.37   |  |

## Table 5.97: Inlet Pressure- Microtube Discharge Regression Equationsfor Various Diameter and Length of Microtubes20 mm Lateral - 5 mm dia and 0.15 m Long Polytube - 2-Microtubes

| Diameter of<br>microtube | Length of microtube | Pressure-<br>discharge<br>equation | R²    | Estimated pressure for various discharges, mwc |      |
|--------------------------|---------------------|------------------------------------|-------|------------------------------------------------|------|
| mm                       | m                   |                                    |       | 20                                             | 10   |
| 1.5                      | 0.3                 | P2 = 0.017q <sup>2.198</sup>       | 0.994 | 9.31                                           | 4.65 |
| 1.5                      | 0.6                 | P2 = 0.014q <sup>2.393</sup>       | 0.987 | 10.68                                          | 5.34 |
| 1.5                      | 0.9                 | P2 = 0.010q <sup>2.679</sup>       | 0.966 | 12.56                                          | 6.28 |
| 1.2                      | 0.3                 | P2 = 0.080q <sup>1.751</sup>       | 0.989 | 11.12                                          | 5.56 |
| 1.2                      | 0.6                 | P2 = 0.076q <sup>1.871</sup>       | 0.983 | 12.78                                          | 6.39 |
| 1.2                      | 0.9                 | $P2 = 0.070q^{2.041}$              | 0.966 | 15.06                                          | 7.53 |
| 1.0                      | 0.3                 | P2 = 0.176q <sup>1.509</sup>       | 0.983 | 12.40                                          | 6.20 |
| 1.0                      | 0.6                 | P2 = 0.178q <sup>1.596</sup>       | 0.976 | 14.26                                          | 7.13 |
| 1.0                      | 0.9                 | P2 = 0.177q <sup>1.717</sup>       | 0.960 | 16.78                                          | 8.39 |

## Table 5.98: Microtube Length - Inlet Pressure Regression Equations for Various Diameter of Microtubes 20 mm Lateral 5 mm dia and 0.45 m lange Deletations

| mm Lateral - 5 mm dia an | d 0.15 m long Po | olytube - 2 Microtubes |
|--------------------------|------------------|------------------------|
|--------------------------|------------------|------------------------|

| Diameter of<br>microtube | Press                              | ure -Leng      | th Equations                       |                                           |  |  |
|--------------------------|------------------------------------|----------------|------------------------------------|-------------------------------------------|--|--|
| mm                       | 20 lph                             |                | 10 lph                             | R <sup>2</sup><br>0.992<br>0.991<br>0.992 |  |  |
|                          | L                                  | R <sup>2</sup> | L                                  | R <sup>2</sup>                            |  |  |
| 1.5                      | L <sub>1.5</sub> = 0.183P2 - 1.385 | 0.991          | L <sub>1.5</sub> = 0.365P2 - 1.381 | 0.992                                     |  |  |
| 1.2                      | L <sub>1.2</sub> =0.151P2 - 1.361  | 0.991          | L <sub>1.2</sub> = 0.302P2 - 1.361 | 0.991                                     |  |  |
| 1.0                      | L <sub>1.0</sub> =0.136P2 - 1.368  | 0.992          | L <sub>1.0</sub> = 0.271P2 - 1.368 | 0.992                                     |  |  |

Table 5.144 gives inlet pressure vs microtube discharges of various diameter and lengths of microtube for 20 mm lateral -6 mm dia and 0.15 m long polytube -2 microtubes.

Table 5.145 indicates inlet pressure- microtube discharge regression equations for various diameter and length of microtubes for 20 mm lateral -6 mm dia and 0.15 m long polytube -2 microtubes.

Table 5.146 gives microtube length - inlet pressure regression equations for various diameter of microtubes for 20 mm lateral - 6 mm dia and 0.15 m long polytube - 2 microtubes

Tables 5.147 to 5.197 present inlet pressure vs microtube discharges of various diameter and length of microtubes, regression equations for inlet pressure- microtube discharge for various diameter and length of microtubes, and regression equations for microtube length - inlet pressure for various diameter of microtubes for 20 mm lateral - 6 mm polytube and 0.30 m, 0.45 m, 0,60 m, 0.75 m, & 0.90 m length of polytubes considering 2,3 and 4 microtubes respectively and are given in enclosed DVD

Table 5.198 gives inlet pressure vs microtube discharges of various diameter and lengths of microtube for 20 mm lateral – 7 mm dia and 0.15 m long polytube – 2 microtubes.

Table 5.199 indicates inlet pressure- microtube discharge regression equations for various diameter and length of microtubes for 20 mm lateral -7 mm dia and 0.15 m long polytube -2 microtubes.

Table 5.200 gives microtube length - inlet pressure regression equations for various diameter of microtubes for 20 mm lateral -7 mm dia and 0.15 m long polytube -2 microtubes

| Avg. Discharges of One Microtube, lph |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 1.5-30                                | 1.5-60                                                                                                                                                                                                                                                           | 1.5-90                                                                                                                                                                             | 1.2-30                                                                                                                                                                                                                                                                                            | 1.2-60                                                                                                                                                                                                                                                                                                                                                                                                 | 1.2-90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0-30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.0-60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0-90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| lph                                   | lph                                                                                                                                                                                                                                                              | lph                                                                                                                                                                                | lph                                                                                                                                                                                                                                                                                               | lph                                                                                                                                                                                                                                                                                                                                                                                                    | lph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | lph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | lph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | lph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| 46.32                                 | 39.37                                                                                                                                                                                                                                                            | 32.42                                                                                                                                                                              | 43.92                                                                                                                                                                                                                                                                                             | 37.33                                                                                                                                                                                                                                                                                                                                                                                                  | 30.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 42.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 36.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 29.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| 47.37                                 | 40.26                                                                                                                                                                                                                                                            | 33.16                                                                                                                                                                              | 44.97                                                                                                                                                                                                                                                                                             | 38.22                                                                                                                                                                                                                                                                                                                                                                                                  | 31.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 43.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 37.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| 42.69                                 | 36.29                                                                                                                                                                                                                                                            | 29.88                                                                                                                                                                              | 40.29                                                                                                                                                                                                                                                                                             | 34.25                                                                                                                                                                                                                                                                                                                                                                                                  | 28.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 39.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 33.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 27.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| 40.62                                 | 34.53                                                                                                                                                                                                                                                            | 28.43                                                                                                                                                                              | 38.22                                                                                                                                                                                                                                                                                             | 32.49                                                                                                                                                                                                                                                                                                                                                                                                  | 26.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 37.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 31.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 25.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| 39.12                                 | 33.25                                                                                                                                                                                                                                                            | 27.38                                                                                                                                                                              | 36.72                                                                                                                                                                                                                                                                                             | 31.21                                                                                                                                                                                                                                                                                                                                                                                                  | 25.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 35.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 30.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| 37.59                                 | 31.95                                                                                                                                                                                                                                                            | 26.31                                                                                                                                                                              | 35.19                                                                                                                                                                                                                                                                                             | 29.91                                                                                                                                                                                                                                                                                                                                                                                                  | 24.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 33.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 28.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 23.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| 36.42                                 | 30.96                                                                                                                                                                                                                                                            | 25.49                                                                                                                                                                              | 34.02                                                                                                                                                                                                                                                                                             | 28.92                                                                                                                                                                                                                                                                                                                                                                                                  | 23.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 32.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 27.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 22.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| 35.40                                 | 30.09                                                                                                                                                                                                                                                            | 24.78                                                                                                                                                                              | 33.00                                                                                                                                                                                                                                                                                             | 28.05                                                                                                                                                                                                                                                                                                                                                                                                  | 23.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 31.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 27.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 22.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| 34.65                                 | 29.45                                                                                                                                                                                                                                                            | 24.26                                                                                                                                                                              | 32.25                                                                                                                                                                                                                                                                                             | 27.41                                                                                                                                                                                                                                                                                                                                                                                                  | 22.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 31.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 26.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 21.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| 33.84                                 | 28.76                                                                                                                                                                                                                                                            | 23.69                                                                                                                                                                              | 31.44                                                                                                                                                                                                                                                                                             | 26.72                                                                                                                                                                                                                                                                                                                                                                                                  | 22.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 25.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 21.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| 33.27                                 | 28.28                                                                                                                                                                                                                                                            | 23.29                                                                                                                                                                              | 30.87                                                                                                                                                                                                                                                                                             | 26.24                                                                                                                                                                                                                                                                                                                                                                                                  | 21.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 29.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 25.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| 32.70                                 | 27.80                                                                                                                                                                                                                                                            | 22.89                                                                                                                                                                              | 30.30                                                                                                                                                                                                                                                                                             | 25.76                                                                                                                                                                                                                                                                                                                                                                                                  | 21.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 29.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 24.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| 30.03                                 | 25.53                                                                                                                                                                                                                                                            | 21.02                                                                                                                                                                              | 27.63                                                                                                                                                                                                                                                                                             | 23.49                                                                                                                                                                                                                                                                                                                                                                                                  | 19.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 26.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 22.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| 27.33                                 | 23.23                                                                                                                                                                                                                                                            | 19.13                                                                                                                                                                              | 24.93                                                                                                                                                                                                                                                                                             | 21.19                                                                                                                                                                                                                                                                                                                                                                                                  | 17.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 23.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| 25.20                                 | 21.42                                                                                                                                                                                                                                                            | 17.64                                                                                                                                                                              | 22.80                                                                                                                                                                                                                                                                                             | 19.38                                                                                                                                                                                                                                                                                                                                                                                                  | 15.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 21.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 18.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| 22.95                                 | 19.51                                                                                                                                                                                                                                                            | 16.07                                                                                                                                                                              | 20.55                                                                                                                                                                                                                                                                                             | 17.47                                                                                                                                                                                                                                                                                                                                                                                                  | 14.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 19.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 16.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| 22.08                                 | 18.77                                                                                                                                                                                                                                                            | 15.46                                                                                                                                                                              | 19.68                                                                                                                                                                                                                                                                                             | 16.73                                                                                                                                                                                                                                                                                                                                                                                                  | 13.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| 21.21                                 | 18.03                                                                                                                                                                                                                                                            | 14.85                                                                                                                                                                              | 18.81                                                                                                                                                                                                                                                                                             | 15.99                                                                                                                                                                                                                                                                                                                                                                                                  | 13.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 17.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|                                       | 1.5-30         lph         46.32         47.37         42.69         40.62         39.12         37.59         36.42         35.40         34.65         33.84         33.27         32.70         30.03         27.33         25.20         22.95         21.21 | 1.5-301.5-60lphlph46.3239.3747.3740.2642.6936.2940.6234.5339.1233.2537.5931.9536.4230.9635.4030.0934.6529.4533.8428.7632.7027.8030.0325.5327.3323.2325.2021.4222.9519.5121.2118.03 | Ivg. Di1.5-301.5-601.5-90IphIphIph46.3239.3732.4247.3740.2633.1642.6936.2929.8840.6234.5328.4339.1233.2527.3837.5931.9526.3136.4230.9625.4935.4030.0924.7834.6529.4524.2633.8428.7623.6932.7027.8022.8930.0325.5321.0227.3323.2319.1325.2021.4217.6422.9519.5116.0722.0818.7715.4621.2118.0314.85 | Avg. Discharge1.5-301.5-601.5-901.2-30lphlphlphlph46.3239.3732.4243.9247.3740.2633.1644.9742.6936.2929.8840.2940.6234.5328.4338.2239.1233.2527.3836.7237.5931.9526.3135.1936.4230.9625.4934.0235.4030.0924.7833.0034.6529.4524.2632.2533.8428.7623.6931.4433.2728.2823.2930.8730.0325.5321.0227.6327.3323.2319.1324.9325.2021.4217.6422.8022.9519.5116.0720.5522.0818.7715.4619.6821.2118.0314.8518.81 | Nvg. bischarges of one1.5-301.5-601.5-901.2-301.2-60lphlphlphlphlph46.3239.3732.4243.9237.3347.3740.2633.1644.9738.2242.6936.2929.8840.2934.2540.6234.5328.4338.2232.4939.1233.2527.3836.7231.2137.5931.9526.3135.1929.9136.4230.9625.4934.0228.9235.4030.0924.7833.0028.0534.6529.4524.2632.2527.4133.8428.7623.6931.4426.7233.2728.2823.2930.8726.2430.0325.5321.0227.6323.4927.3323.2319.1324.9321.1925.2021.4217.6422.8019.3822.9519.5116.0720.5517.4722.0818.7715.4619.6816.7321.2118.0314.8518.8115.99 | <b>1.5-301.5-601.5-901.2-301.2-601.2-90lphlphlphlphlphlph</b> 46.3239.3732.4243.9237.3330.7447.3740.2633.1644.9738.2231.4842.6936.2929.8840.2934.2528.2040.6234.5328.4338.2232.4926.7539.1233.2527.3836.7231.2125.7037.5931.9526.3135.1929.9124.6336.4230.9625.4934.0228.9223.8135.4030.0924.7833.0028.0523.1034.6529.4524.2632.2527.4122.5833.8428.7623.6931.4426.7222.0133.2728.2823.2930.8726.2421.6132.7027.8022.8930.3025.7621.2130.0325.5321.0227.6323.4919.3427.3323.2319.1324.9321.1917.4525.2021.4217.6422.8019.3815.9622.9519.5116.0720.5517.4714.3922.0818.7715.4619.6816.7313.7821.2118.0314.8518.8115.9913.17 | Nyg. Discharges of othe interotation, prior1.5-301.5-601.5-901.2-301.2-601.2-901.0-30lphlphlphlphlphlphlphlph46.3239.3732.4243.9237.3330.7442.7247.3740.2633.1644.9738.2231.4843.7742.6936.2929.8840.2934.2528.2039.0940.6234.5328.4338.2232.4926.7537.0239.1233.2527.3836.7231.2125.7035.5237.5931.9526.3135.1929.9124.6333.9936.4230.9625.4934.0228.9223.8132.8235.4030.0924.7833.0028.0523.1031.8034.6529.4524.2632.2527.4122.5831.0533.8428.7623.6931.4426.7222.0130.2433.2728.2823.2930.8726.2421.6129.6732.7027.8022.8930.3025.7621.2129.1030.0325.5321.0227.6323.4919.3426.4327.3323.2319.1324.9321.1917.4523.7325.2021.4217.6422.8019.3815.9621.6022.9519.5116.0720.5517.4714.3919.3522.0818.7715.46 | 1.5-301.5-601.5-901.2-301.2-601.2-901.0-301.0-60lphlphlphlphlphlphlphlphlphlph46.3239.3732.4243.9237.3330.7442.7236.3147.3740.2633.1644.9738.2231.4843.7737.2042.6936.2929.8840.2934.2528.2039.0933.2340.6234.5328.4338.2232.4926.7537.0231.4739.1233.2527.3836.7231.2125.7035.5230.1937.5931.9526.3135.1929.9124.6333.9928.8936.4230.9625.4934.0228.9223.8132.8227.9035.4030.0924.7833.0028.0523.1031.8027.0334.6529.4524.2632.2527.4122.5831.0526.3933.8428.7623.6931.4426.7222.0130.2425.7033.2728.2823.2930.8726.2421.6129.6725.2232.7027.8022.8930.3025.7621.2129.1024.7430.0325.5321.0227.6323.4919.3426.4322.4727.3323.2319.1324.9321.1917.4523.7320.1725.2021.4217.6422.8019.3815.96 |  |  |

17.10

16.56

15.72

15.03

14.13

13.26

12.06

10.92

14.54 11.97

11.59

11.00

10.82

10.18

9.55

8.70

7.88

14.08

13.36

12.93

12.15

11.41

10.38

9.40

6.50 20.70 17.60 14.49 18.30 15.56 12.81

17.76

16.92

16.23

15.33

14.46

13.26

12.12

15.10

14.38

13.95

13.18

12.43

11.41

10.43

12.43

11.84

11.68

11.03

10.41

9.55

8.74

14.11

13.52

13.39

12.74

12.12

11.26

10.45

17.14

16.42

16.01

15.24

14.49

13.46

12.48

6.00 20.16

5.50 19.32

5.00 18.63

4.50

4.00

3.50

3.00

17.73

16.86

15.66

14.52

Table 5.144: Inlet Pressure Vs Microtube Discharges of Various Diameterand Length of Microtubes20 mm Lateral - 6 mm dia and 0.15 m Long Polytube - 2-Microtubes

# Table 5.145: Inlet Pressure- Microtube Discharge Regression Equationsfor Various Diameter and Length of Microtubes20 mm Lateral - 6 mm dia and 0.15 m Long Polytube - 2-Microtubes

| Diameter of microtube | Length of microtube | Pressure-<br>discharge<br>equation | R²    | Estimated p<br>various disch | essure for<br>irges, mwc |  |
|-----------------------|---------------------|------------------------------------|-------|------------------------------|--------------------------|--|
| mm                    | m                   |                                    |       | 20                           | 10                       |  |
| 1.5                   | 0.3                 | $P2 = 0.1129q^{1.3034}$            | 0.960 | 5.60                         | 2.27                     |  |
| 1.5                   | 0.6                 | $P2 = 0.1352q^{1.3126}$            | 0.957 | 6.90                         | 2.78                     |  |
| 1.5                   | 0.9                 | $P2 = 0.1673q^{1.3253}$            | 0.952 | 8.87                         | 3.54                     |  |
| 1.2                   | 0.3                 | P2 = 0.1885q <sup>1.1837</sup>     | 0.965 | 6.54                         | 2.88                     |  |
| 1.2                   | 0.6                 | P2 = 0.2222q <sup>1.1919</sup>     | 0.962 | 7.90                         | 3.46                     |  |
| 1.2                   | 0.9                 | $P2 = 0.27q^{1.2034}$              | 0.958 | 9.93                         | 4.31                     |  |
| 1.0                   | 0.3                 | P2 = 0.2435q <sup>1.1228</sup>     | 0.968 | 7.04                         | 3.23                     |  |
| 1.0                   | 0.6                 | $P2 = 0.2847q^{1.1306}$            | 0.965 | 8.42                         | 3.85                     |  |
| 1.0                   | 0.9                 | $P2 = 0.3427q^{1.1415}$            | 0.961 | 10.47                        | 4.75                     |  |

## Table 5.146: Microtube Length - Inlet Pressure Regression Equations for Various Diameter of Microtubes 20 mm Lateral 6 mm dia and 0.45 m lang Balytype

| 20 | mm | Latera | - 6 | i mm | dia | and | 0.1 | 15 | m | long | Po | lytu | be - | - 2 | Microtubes |
|----|----|--------|-----|------|-----|-----|-----|----|---|------|----|------|------|-----|------------|
|----|----|--------|-----|------|-----|-----|-----|----|---|------|----|------|------|-----|------------|

| Diameter of<br>microtube | Press                                | ure -Len       | gth Equations                        |                |
|--------------------------|--------------------------------------|----------------|--------------------------------------|----------------|
| mm                       | 20 lph                               |                | 10 lph                               |                |
|                          | L                                    | R <sup>2</sup> | L                                    | R <sup>2</sup> |
| 1.5                      | L <sub>1.5</sub> = 0.1813P2 - 0.6913 | 0.986          | L <sub>1.5</sub> = 0.4669P2 - 0.7363 | 0.986          |
| 1.2                      | L <sub>1.2</sub> = 0.1744P2 - 0.8166 | 0.987          | L <sub>1.2</sub> = 0.302P2 - 1.361   | 0.991          |
| 1.0                      | L <sub>1.0</sub> = 0.1724P2 - 0.8902 | 0.987          | L <sub>1.0</sub> = 0.3911P2 - 0.9413 | 0.988          |

# Table 5.198: Inlet Pressure Vs Microtube Discharges of Various Diameter<br/>and Length of Microtubes20 mm Lateral - 7 mm dia and 0.15 mLong Polytube - 2-Microtubes

|       |        |        | Avg. D | )ischarge | es of One | Microtul | oe, lph |        |        |
|-------|--------|--------|--------|-----------|-----------|----------|---------|--------|--------|
| P2    | 1.5-30 | 1.5-60 | 1.5-90 | 1.2-30    | 1.2-60    | 1.2-90   | 1.0-30  | 1.0-60 | 1.0-90 |
| mwc   | lph    | lph    | lph    | lph       | lph       | lph      | lph     | lph    | lph    |
|       |        |        |        |           |           |          |         |        |        |
| 14.50 | 51.60  | 43.86  | 36.12  | 49.20     | 41.82     | 34.44    | 48.00   | 40.80  | 33.60  |
| 14.00 | 50.40  | 42.84  | 35.28  | 48.00     | 40.80     | 33.60    | 46.80   | 39.78  | 32.76  |
| 13.50 | 47.99  | 40.80  | 33.60  | 45.59     | 38.76     | 31.92    | 44.39   | 37.74  | 31.08  |
| 13.00 | 46.24  | 39.30  | 32.37  | 43.84     | 37.26     | 30.69    | 42.64   | 36.24  | 29.85  |
| 12.50 | 46.00  | 39.10  | 32.20  | 43.60     | 37.06     | 30.52    | 42.40   | 36.04  | 29.68  |
| 12.00 | 45.76  | 38.89  | 32.03  | 43.36     | 36.85     | 30.35    | 42.16   | 35.83  | 29.51  |
| 11.50 | 45.37  | 38.56  | 31.76  | 42.97     | 36.52     | 30.08    | 41.77   | 35.50  | 29.24  |
| 11.00 | 45.04  | 38.28  | 31.53  | 42.64     | 36.24     | 29.85    | 41.44   | 35.22  | 29.01  |
| 10.50 | 43.10  | 36.63  | 30.17  | 40.70     | 34.59     | 28.49    | .39.50  | 33.57  | 27.65  |
| 10.00 | 41.16  | 34.98  | 28.81  | 38.76     | 32.94     | 27.13    | 37.56   | 31.92  | 26.29  |
| 9.50  | 40.68  | 34.57  | 28.47  | 38.28     | 32.53     | 26.79    | 37.08   | 31.51  | 25.95  |
| 9.00  | 40.25  | 34.21  | 28.18  | 37.85     | 32.17     | 26.50    | 36.65   | 31.15  | 25.66  |
| 8.50  | 39.92  | 33.93  | 27.94  | 37.52     | 31.89     | 26.26    | 36.32   | 30.87  | 25.42  |
| 8.00  | 39.50  | 33.57  | 27.65  | 37.10     | 31.53     | 25.97    | 35.90   | 30.51  | 25.13  |
| 7.50  | 38.30  | 32.55  | 26.81  | 35.90     | 30.51     | 25.13    | 34.70   | 29.49  | 24.29  |
| 7.00  | 36.36  | 30.90  | 25.45  | 33.96     | 28.86     | 23.77    | 32.76   | 27.84  | 22.93  |
| 6.50  | 33.68  | 28.62  | 23.57  | 31.28     | 26.58     | 21.89    | 30.08   | 25.56  | 21.05  |
| 6.00  | 30.99  | 26.34  | 21.70  | 28.59     | 24.30     | 20.02    | 27.39   | 23.28  | 19.18  |
| 5.50  | 29.79  | 25.32  | 20.86  | 27.39     | 23.28     | 19.18    | 26.19   | 22.26  | 18.34  |
| 5.00  | 28.59  | 24.30  | 20.02  | 26.19     | 22.26     | 18.34    | 24.99   | 21.24  | 17.50  |
| 4.50  | 27.39  | 23.28  | 19.18  | 24.99     | 21.24     | 17.50    | 23.79   | 20.22  | 16.66  |
| 4.00  | 26.19  | 23.57  | 20.96  | 23.79     | 21.41     | 19.04    | 22.59   | 20.33  | 18.08  |
| 3.50  | 25.44  | 22.89  | 20.35  | 23.04     | 20.73     | 18.43    | 21.84   | 19.65  | 17.47  |
| 3.00  | 24.53  | 22.08  | 19.63  | 22.13     | 19.92     | 17.71    | 20.93   | 18.84  | 16.75  |
| 2.50  | 21.85  | 19.67  | 17.48  | 19.45     | 17.51     | 15.56    | 18.25   | 16.43  | 14.60  |
| 2.00  | 18.43  | 16.59  | 14.75  | 16.03     | 14.43     | 12.83    | 14.83   | 13.35  | 11.87  |
| 1.50  | 15.01  | 13.51  | 12.01  | 12.61     | 11.35     | 10.09    | 11.41   | 10.27  | 9.13   |
| 1.00  | 11.13  | 10.02  | 8.90   | 8.73      | 7.86      | 6.98     | 7.53    | 6.78   | 6.02   |
| 11.00 | 36.43  | 32.79  | 29.15  | 34.03     | 28.93     | 23.82    | 32.83   | 27.91  | 22.98  |
| 10.50 | 35.51  | 31.96  | 28.41  | 33.11     | 28.14     | 23.17    | 31.91   | 27.12  | 22.33  |
| 10.00 | 34.49  | 31.04  | 27.59  | 32.09     | 27.28     | 22.46    | 30.89   | 26.26  | 21.62  |
| 9.50  | 34.01  | 30.61  | 27.21  | 31.61     | 26.87     | 22.13    | 30.41   | 25.85  | 21.29  |
| 9.00  | 33.29  | 30.96  | 28.63  | 30.89     | 26.26     | 21.62    | 29.69   | 25.24  | 20.78  |

.

## Table 5.199: Inlet Pressure- Microtube Discharge Regression Equationsfor Various Diameter and Length of Microtubes20 mm Lateral - 7 mm dia and 0.15 m Long Polytube - 2-Microtubes

| Diameter of<br>microtube | Length of microtube | Pressure-<br>discharge<br>equation | R²    | Estimated various disc | pressure for<br>harges, mwc |
|--------------------------|---------------------|------------------------------------|-------|------------------------|-----------------------------|
| mm                       | m                   |                                    |       | 20                     | 10                          |
| 1.5                      | 0.3                 | P2= 0.009q <sup>1.881</sup>        | 0.949 | 2.52                   | 0.68                        |
| 1.5                      | 0.6                 | P2= 0.008q <sup>1.992</sup>        | 0.961 | 3.12                   | 0.79                        |
| 1.5                      | 0.9                 | P2= 0.007q <sup>2.123</sup>        | 0.962 | 4.05                   | 0.93                        |
| 1.2                      | 0.3                 | P2= 0.020q <sup>1.693</sup>        | 0.947 | 3,19                   | 0.99                        |
| 1.2                      | 0.6                 | P2= 0.020q <sup>1.769</sup>        | 0.937 | 4.00                   | 1.17                        |
| 1.2                      | 0.9                 | P2= 0.020q <sup>1.873</sup>        | 0.917 | 5.47                   | 1.49                        |
| 1.0                      | 0.3                 | P2= 0.030q <sup>1.594</sup>        | 0.944 | 3.56                   | 1.18                        |
| 1.0                      | 0.6                 | P2= 0.031q <sup>1.662</sup>        | 0.935 | 4.50                   | 1.42                        |
| 1.0                      | 0.9                 | P2= 0.031q <sup>1.753</sup>        | 0.916 | 5.92                   | 1.76                        |

## Table 5.200: Microtube Length - Inlet Pressure Regression Equations for Various Diameter of Microtubes 20 mm Lateral, 7 mm dia and 0.45 m lang Delutrice, 2 Microtubes

20 mm Lateral - 7 mm dia and 0.15 m long Polytube - 2 Microtubes

| Diameter of<br>microtube | Press                              | ure -Leng      | th Equations                       |                |
|--------------------------|------------------------------------|----------------|------------------------------------|----------------|
| mm                       | 20 lph                             |                | 10 lph                             |                |
|                          | L                                  | R <sup>2</sup> | L                                  | R <sup>2</sup> |
| 1.5                      | L <sub>1.5</sub> = 0.387P2 - 0.651 | 0.985          | L <sub>1.5</sub> = 2.425P2 - 1.339 | 0.990          |
| 1.2                      | L <sub>1.2</sub> =0.256P2 - 0.481  | 0.973          | L <sub>1.2</sub> = 0.302P2 - 1.361 | 0.991          |
| 1.0                      | L <sub>1.0</sub> =0.251P2 - 0.569  | 0.987          | L <sub>1.0</sub> = 1.031P2 - 0.897 | 0.992          |

Tables 5.201 to 5.248 present inlet pressure vs microtube discharges of various diameter and length of microtubes, regression equations for inlet pressure- microtube discharge for various diameter and length of microtubes, and regression equations for microtube length - inlet pressure for various diameter of microtubes for 20 mm lateral - 7 mm polytube and 0.30 m, 0.45 m, 0,60 m, 0.75 m, & 0.90 m length of polytubes considering 2,3 and 4 microtubes respectively and are given in enclosed DVD.

### 5.2.2 Field experiments on crops

### 5.2.2.1 Summer groundnut

Crop water requirement of summer groundnut was 452.74 mm, 455.13 mm and 449.56 mm, against this water applied was 453.60 mm, 457.78 mm and 451.32 mm in years 2005, 2006 and 2007 respectively.

Cultivation cost and yield of summer groundnut are presented in Table 4.75 and 4.76 respectively.

#### Internal rate of return

Average yield of each year from four replications were determined. Average yield was considered for the calculation of internal rate of return of that year. IRR was also calculated considering mean yield of the three year.

Table 5.249 gives the internal rate of return by MIS for 0.60 m row spacing and 75 % of crop water requirement for summer groundnut in 2005.

Table 5.250 illustrates the internal rate of return by MIS for 0.60 m row spacing and 100 % of crop water requirement for summer groundnut in 2005, and is given in enclosed DVD.

Table 5.251 shows the internal rate of return by MIS for 0.60 m spacing and 125 % of crop water requirement for summer groundnut in 2005, and is given in enclosed DVD.

Table 5.252 give the internal rate of return by ITK MIS for 0.60 m row spacing and 75 % of crop water requirement for summer groundnut in 2005, and is given in enclosed DVD.

Table 5.253 illustrates the internal rate of return by ITK MIS for 0.60 m row spacing and 100 % of crop water requirement for summer groundnut in 2005 and is given in enclosed DVD.

Table 5.254 shows the internal rate of return by ITK MIS for 0.60 m row spacing and 125 % of crop water requirement for summer groundnut in 2005 and is given in enclosed DVD.

Table 5.255 gives the internal rate of return by MIS for 0.45 m row spacing and 75 % of crop water requirement for summer groundnut in 2005, and is given in enclosed DVD.

Table 5.256 illustrates the internal rate of return by MIS for 0.45 m row spacing and 100 % of crop water requirement for summer groundnut in 2005 and is given in enclosed DVD.

Table 5.257 shows the internal rate of return by MIS for 0.45 m spacing and 125 % of crop water requirement for summer groundnut in 2005 and is given in enclosed DVD.

Table 5.258 gives the internal rate of return by ITK MIS for 0.45 m row spacing and 75 % of crop water requirement for summer groundnut in 2005, and is given in enclosed DVD.

Table 5.259 illustrates the internal rate of return by ITK MIS for 0.45 m spacing and 100 % of crop water requirement for summer groundnut in 2005, and is given in enclosed DVD.

Table 5.260 shows the internal rate of return by ITK MIS for 0.45 m spacing and 125 % of crop water requirement for summer groundnut in 2005, and is given in enclosed DVD.

Tables 5.261 to 5.263 give the internal rate of return by MIS for 0.60 m crop spacing and 75 %, 100 % and 125 % of crop water requirement for summer groundnut in 2006 and are given in enclosed DVD.

Tables 5.264 to 5.266 illustrate the internal rate of return by ITK MIS for 0.60 m crop spacing and 75 %, 100 % and 125 % of crop water requirement for summer groundnut in 2006 and are given in enclosed DVD.

Tables 5.267 to 5.269 give the internal rate of return by MIS for 0.45 m crop spacing and 75 %, 100 % and 125 % of crop water requirement for summer groundnut in 2006 and are given in enclosed DVD.

Tables 5.270 to 5.272 indicate the internal rate of return by ITK MIS for 0.45 m crop spacing and 75 %, 100 % and 125 % of crop water requirement for summer groundnut in 2006, and are given in enclosed DVD.

Tables 5.273 to 5.275 illustrate the internal rate of return by MIS for 0.60 m crop spacing and 75 %, 100 % and 125 % of crop water requirement for summer groundnut in 2007 and are given in enclosed DVD.

Tables 5.276 to 5.278 show the internal rate of return by ITK MIS for 0.60 m spacing and 75 %, 100 % and 125 % of crop water requirement for summer groundnut in 2007 and given in enclosed DVD.

Tables 5.279 to 5.281 give the internal rate of return by MIS for 0.45 m crop spacing and 75 %, 100 % and 125 % of crop water requirement for summer groundnut in 2007, and are given in enclosed DVD.

Table 5.282 to Table 5.284 indicate the internal rate of return by ITK MIS for 0.45 m crop spacing and 75 %, 100 % and 125 % of crop water requirement for summer groundnut in 2007, and are given in enclosed DVD.

Table 5.285 illustrate the internal rate of return by MIS for 0.60 m crop spacing and 75 % of crop water requirement for summer groundnut considering the mean yield of the three year, and is given in enclosed DVD.

Tables 5.286 and 5.287 show the internal rate of return by MIS for 0.60 m crop spacing and 100 % and 125 % of crop water requirement for summer groundnut considering the mean yield and are enclosed in DVD.

Table 5.288 gives the internal rate of return by ITK MIS for 0.60 m crop spacing and 75 % of crop water requirement for summer groundnut considering the mean yield, and is given in enclosed DVD.

Tables 5.289 and 5.290 give the internal rate of return by ITK MIS for 0.60 m spacing and 100 % and 125 % of crop water requirement for summer groundnut considering the mean yield and are enclosed in DVD.

Table 5.291 gives the internal rate of return by MIS for 0.45 m crop spacing and 75 % of crop water requirement for summer groundnut considering the mean yield of 2005, 2006 and 2007, and is given in enclosed DVD.

Table 5.292 and 5.293 give the internal rate of return by MIS for 0.45 m crop spacing and 100 % and 125 % of crop water requirement for summer groundnut considering the mean yield of 2005, 2006 and 2007 and are enclosed in DVD.

Table 5.294 gives the internal rate of return by ITK MIS for 0.45 m crop spacing and 75 % of crop water requirement for summer groundnut considering the mean yield of 2005, 2006 and 2007, and is given in enclosed DVD.

Table 5.295 and 5.296 give the internal rate of return by ITK MIS for 0.45 m crop spacing and 100 % and 125 % of crop water requirement for summer groundnut considering the mean yield of 2005, 2006 and 2007 and are enclosed in DVD.

Table 5.297 shows the internal rate return considering average yield of summer groundnut grown in year 2005, 2006 and 2007 for different row spacing, irrigation depths and irrigation systems.

Table 5.249: Internal Rate of Return by MIS for 0.60 m spacing and 75 % of Crop Water Requirement for Summer Groundnut in Year 2005

|              |            |                                 |         | •         |              |            | -        | Yield =    | 21.03       | qui/ha   |                                             |          |           |
|--------------|------------|---------------------------------|---------|-----------|--------------|------------|----------|------------|-------------|----------|---------------------------------------------|----------|-----------|
|              |            | Crop : Summer Groundnut         |         | Crop Spac | ing : 0.15 n | 1 × 0.60 m |          | Field Size | 57.6 m x 28 | E 8.     | وحفوف بالاستخاب باليوم متريوسين والعارية مع |          | <b>.</b>  |
| SR.          |            | PARTICULARS                     |         |           |              |            |          |            | F IN RS.    |          |                                             |          |           |
| ġ            |            |                                 |         | 1st year  | 2nd year     | 3rd year   | 4th year | 5th year   | 6th year    | 7th year | 8th year                                    | 9th year | 10th year |
| -            | 20.18%     | CAPITAL COST                    | 94672.5 |           |              |            |          | -          |             |          |                                             |          |           |
| 2            |            | FIXED COST                      |         |           |              |            |          |            |             |          |                                             |          |           |
| a)           |            | Depreciation                    |         | 13529     | 23185        | 16558      | 11825    | 8454       | 8445        | 8454     | 4222                                        | 0        | 0         |
| (q           |            | Interest                        |         | 8521      | 7303         | 5216       | 3726     | 2662       | 1901        | 1141     | 380                                         | 0        | 0         |
| Û            |            | Insurance                       |         | 710       | 710          | 710        | 710      | 710        | 710         | 710      | 710                                         | 710      | 710       |
| তি           |            | Maintenance and repairs         |         | 473       | 473          | 947        | 1420     | 1893       | 2367        | 2367     | 2367                                        | 2367     | 2367      |
| (e)          |            | Farm labourers' wages           |         | 11280     | 11280        | 11280      | 11280    | 11280      | 11280       | 11280    | 11280                                       | 11280    | 11280     |
| ÷            |            | Operator's salary               |         | 500       | 500          | 500        | 500      | 500        | 500         | 500      | 500                                         | 500      | 500       |
| e            |            | CASH OUTFLOW                    |         | 35013     | 43452        | 35211      | 29461    | 25500      | 25203       | 24452    | 19459                                       | 14857    | 14857     |
| 4            |            | NET CASH OUTFLOW                |         | 21484     | 20266        | 18653      | 17636    | 17045      | 16758       | 15998    | 15237                                       | 14857    | 14857     |
| S            |            | CULTIVATION COST                |         |           |              |            |          |            |             |          |                                             |          |           |
| a)           |            | Ploughing                       |         | 600       | 600          | 600        | 009      | 600        | 009         | 600      | 600                                         | 600      | 600       |
| (q           |            | Cultivating                     |         | 700       | 200          | 700        | 700      | 700        | 700         | 200      | 200                                         | 200      | 200       |
| Ω.           |            | Seeds                           |         | 3854      | 3854         | 3854       | 3854     | 3854       | 3854        | 3854     | 3854                                        | 3854     | 3854      |
| 6            |            | Sowing                          |         | 300       | 300          | 300        | 300      | 300        | 300         | 300      | 300                                         | 300      | 300       |
| e)           |            | Fertilizers and manures         |         |           |              |            |          |            |             |          |                                             |          |           |
|              | (1         | D.A.P.                          |         | 485       | 485          | 485        | 485      | 485        | 485         | 485      | 485                                         | 485      | 485       |
|              | (III)      | Farm yard manure                |         | 1600      | 1600         | 1600       | 1600     | 1600       | 1600        | 1600     | 1600                                        | 1600     | 1600      |
|              | (11)       | Ryzobium culture                |         | 96<br>06  | 96           | 96         | 96       | 96         | 96          | 96       | 96                                          | 96       | 96        |
|              | ί <u>Σ</u> | Urea                            |         | 50        | 50           | 50         | 50       | 50         | 50          | 50       | 50                                          | 50       | 50        |
|              | 5          | Fertilizers and manures appl.   |         | 750       | 750          | 750        | 750      | 750        | 750         | 750      | 750                                         | 750      | 750       |
| ¢            | •          | Pesticides and herbicides       |         |           |              |            |          |            |             |          |                                             |          |           |
| •            | (          | Foret                           |         | 1023      | 1023         | 1023       | 1023     | 1023       | 1023        | 1023     | 1023                                        | 1023     | 1023      |
|              | (III       | Pesticides and herbicides appl. |         | 1200      | 1200         | 1200       | 1200     | 1200       | 1200        | 1200     | 1200                                        | 1200     | 1200      |
| 6            |            | Energy cost                     |         | 600       | 009          | 009        | 009      | 600        | 600         | 600      | 600                                         | 600      | 009       |
| <u></u>      |            | Harvesting                      |         | 1500      | 1500         | 1500       | 1500     | 1500       | 1500        | 1500     | 1500                                        | 1500     | 1500      |
| (            |            | Packing                         |         | 330       | 330          | 330        | 330      | 330        | 330         | 330      | 330                                         | 330      | 330       |
| (            |            | Transportation                  |         | 464       | 464          | 464        | 464      | 464        | 464         | 464      | 464                                         | 464      | 464       |
|              |            | Total cultivation cost          |         | 13552     | 13552        | 13552      | 13552    | 13552      | 13552       | 13552    | 13552                                       | 13552    | 13552     |
| 9            |            | INCOME                          |         |           |              |            |          |            |             |          |                                             |          |           |
| a)           |            | Yield of produce in quintal/ha  |         | 21.03     | 21.03        | 21.03      | 21.03    | 21.03      | 21.03       | 21.03    | 21.03                                       | 21.03    | 21.03     |
| â            |            | Selling price Rs/quintal        |         | 2600      | 2600         | 2600       | 2600     | 2600       | 2600        | 2600     | 2600                                        | 2600     | 2600      |
| <del>ି</del> |            | Income from produce             |         | 54678     | 54678        | 54678      | 54678    | 54678      | 54678       | 54678    | 54678                                       | 54678    | 54678     |
| 7            |            | CASH INFLOW                     |         | 41126     | 41126        | . 41126    | 41126    | 41126      | 41126       | 41126    | 41126                                       | 41126    | 41126     |
| ∞            |            | NET CASH FLOW                   | -94673  | 19642     | 20860        | 22473      | 23490    | 24081      | 24368       | 25128    | 25889                                       | 26269    | 26269     |
| 6            |            | INTERNAL RATE OF RETURN         | 20.18%  |           |              |            |          |            |             |          |                                             |          |           |
| rrigation Svstems | Crop                  |       |       |                | IRR C | onsiderin | a vield o      | f summe    | r aroundr | nut. % |       |       |                |
|-------------------|-----------------------|-------|-------|----------------|-------|-----------|----------------|------------|-----------|--------|-------|-------|----------------|
|                   | Spacings              |       | 2005  |                |       | 2006      |                |            | 2007      |        |       | Mean  |                |
|                   |                       | F     | T2    | T <sub>3</sub> | 7     | T2        | T <sub>3</sub> | <b>1</b> , | T2        | 7.     | ŗ     | T2    | T <sub>3</sub> |
|                   | $B_{1}=0.60$          | 20.18 | 17.21 | 12.07          | 27.42 | 23.79     | 19.77          | 29.11      | 19.64     | 16.14  | 25.67 | 20.30 | 16.10          |
| SIM               | $B_2 = 0.45$          | 31.04 | 24.49 | 19.70          | 33.16 | 25.85     | 19.74          | 28.33      | 23.44     | 14.13  | 30.89 | 24.63 | 17.94          |
| CIRC              | B <sub>1</sub> = 0.60 | 47.20 | 46.25 | 37.54          | 60.39 | 54.22     | 47.90          | 57.05      | 48.26     | 40.53  | 54.96 | 49.65 | 42.09          |
|                   | $B_2 = 0.45$          | 60.73 | 59.96 | 49.48          | 72.30 | 63.25     | 52.34          | 63.28      | 51.94     | 53.86  | 65.49 | 58.44 | 49.07          |

.

Table 5.297: IRR Considering Yield of Summer Groundnut Grown in Year 2005, 2006 and 2007 at T.C.D. Farm, WREMI, Samiala

•

## 5.2.2.2 Cauliflower

Crop water requirement of cauliflower was 215.87 cm, 218.55 mm and 212.45 mm, against this water applied was 217.35 mm, 220.46 mm and 215.89 mm in years 2005, 2006 and 2007 respectively.

Cultivation cost and yield of cauliflower are presented in Table 4.81 and 4.82 respectively.

#### Internal rate of return

Average yield of each year from four replications were determined. Average yield was considered for the calculation of internal rate of return of that year. IRR was also calculated considering mean yield of the three year.

Table 5.298 gives the internal rate of return by MIS for 0.60 m row spacing and 75 % of crop water requirement for cauliflower in 2005.

Table 5.299 illustrates the internal rate of return by MIS for 0.60 m row spacing and 100 % of crop water requirement for cauliflower in 2005, and is given in enclosed DVD.

Table 5.300 shows the internal rate of return by MIS for 0.60 m row spacing and 125 % of crop water requirement for cauliflower in 2005, and is given given in enclosed DVD.

Table 5.301 gives the internal rate of return by ITK MIS for 0.60 m row spacing and 75 % of crop water requirement for cauliflower in 2005, and is given in enclosed DVD.

Table 5.302 illustrate the internal rate of return by ITK MIS for 0.60 m row spacing and 100 % of crop water requirement for cauliflower in 2005 and is given in enclosed DVD.

Table 5.303 shows the internal rate of return by ITK MIS for 0.60 m row spacing and 125 % of crop water requirement for cauliflower in 2005 and is given in enclosed DVD.

Table 5.304 gives the internal rate of return by MIS for 0.45 m row spacing and 75 % of crop water requirement for cauliflower in 2005, and is given in enclosed DVD.

Table 5.305 shows the internal rate of return by MIS for 0.45 m row spacing and 100 % of crop water requirement for cauliflower in 2005 and is given in enclosed DVD.

Table 5.306 shows the internal rate of return by MIS for 0.45 m row spacing and 125 % of crop water requirement for cauliflower in 2005, and is given in enclosed DVD.

Table 5.307 gives the internal rate of return by ITK MIS for 0.45 m row spacing and 75 % of crop water requirement for cauliflower in 2005, and is given in enclosed DVD.

Table 5.308 shows the internal rate of return by ITK MIS for 0.45 m row spacing and 100 % of crop water requirement for cauliflower in 2005, and are given in enclosed DVD.

Table 5.309 shows the internal rate of return by ITK MIS for 0.45 m row spacing and 125 % of crop water requirement for cauliflower in 2005, and are given in enclosed DVD.

Table 5.310 to Table 5.312 give the internal rate of return by MIS for 0.60 m row spacing and 75 %, 100 % and 125 % of crop water requirement for cauliflower in 2006 and are given in enclosed DVD.

Table 5.313 to Table 5.315 illustrate the internal rate of return by ITK MIS for 0.60 m row spacing and 75 %, 100 % and 125 % of crop water requirement for cauliflower in 2006 and are given in enclosed DVD.

Table 5.316 to 5.318 shows the internal rate of return by MIS for 0.45 m row spacing and 75 %, 100 % and 125 % of crop water requirement for cauliflower in 2006 and are in enclosed DVD.

Table 5.319 to 5.321 indicates the internal rate of return by ITK MIS for 0.45 m row spacing and **75** %, 100 % and 125 % of crop water requirement for cauliflower in 2006 and is given in enclosed DVD.

Table 5.322 to 5.324 give the internal rate of return by MIS for 0.60 m rowspacing and 75 %, 100 % and 125 % of crop water requirement forcauliflower in 2007 and are given in enclosed DVD.

Table 5.325 to 5.327 illustrate the internal rate of return by ITK MIS for 0.60 m row spacing and 75 %, 100 % and 125 % of crop water requirement for cauliflower in 2007 and are given in enclosed DVD.

Table 5.328 to Table 5.330 shows the internal rate of return by MIS for 0.45 mrow spacing and 75 %, 100 % and 125 %of crop water requirement forcauliflower in 2007 and are given in enclosed DVD.

Table 5.331 to Table 5.333 indicates the internal rate of return by ITK MIS for 0.45 m row spacing and 75 %, 100 % and 125 % of crop water requirement for cauliflower in 2007 and are given in enclosed DVD.

Table 5.334 gives the internal rate of return by MIS for 0.60 m row spacing and 75 % of crop water requirement for cauliflower considering the mean yield, and is given in enclosed DVD.

Table 5.335 and 5.336 indicate the internal rate of return by MIS for 0.60 m row spacing and 100 % and 125 % of crop water requirement for cauliflower considering the mean yield and are given in enclosed DVD.

Table 5.337 illustrate the internal rate of return by ITK MIS for 0.60 m row spacing and 75 % of crop water requirement for cauliflower considering the mean yield, and is given in enclosed DVD.

Table 5.338 and 5.339 show the internal rate of return by ITK MIS for 0.60 m row spacing and 100 % and 125 % of crop water requirement for cauliflower considering the mean yield and are given in enclosed DVD.

Table 5.340 gives the internal rate of return by MIS for 0.45 m row spacing and 75 % of crop water requirement for cauliflower considering the mean yield, and is given in enclosed DVD.

Table 5.341 and 5.342 show the internal rate of return by MIS for 0.45 m spacing and 100 % and 125 % of crop water requirement for cauliflower considering the mean yield and are given enclosed in DVD.

Table 5.343 illustrate the internal rate of return by ITK MIS for 0.45 m spacing and 75 % of crop water requirement for cauliflower considering the mean yield, and is given in enclosed DVD.

Table 5.344 and 5.345 give the internal rate of return by ITK MIS for 0.45 m spacing and 100 % and 125 % of crop water requirement for cauliflower considering the mean yield and are given in enclosed DVD.

Table 5.346 indicates the internal rate return considering average yield of cauliflower grown in year 2005, 2006 and 2007 for different row spacing, irrigation depths and irrigation systems.

Table 5.298: Internal Rate of Return by MIS for 0.60 m spacing and 75 % of Crop Water Requirement for Cauliflower in Year 2005

| s appl. | s appl.<br>les appl. | ris 13529<br>8521<br>710<br>710<br>710<br>710<br>500<br>85013<br>700<br>1500<br>35013<br>1600<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500                 | 940/2.5 13529 23185 16558   13529 23185 16558   8521 7303 5216   710 710 710   710 710 710   710 710 710   710 710 710   710 710 710   710 710 710   710 710 710   710 710 710   711 710 710   710 710 710   711 710 710   710 710 710   711 710 710   711 710 710   711 710 710   711 710 710   711 710 710   711 71280 11280   710 500 500   711 20265 18653 | 940/2.0 13529 23185 16558 11825   13529 23185 16558 11825   8521 7303 5216 3726   710 710 710 710   710 710 710 710   710 710 710 710   710 710 710 710   710 710 710 710   710 710 710 710   711 873 847 1420   600 500 500 500   500 500 500 500   35013 43452 35211 29461                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 940/2.3     13529     23185     16558     11825     8454       13529     23185     16558     11825     8454       8521     7303     5216     2662       710     710     710     710 | 940/2.5<br>13529 23185 16558 11825 8454 8445                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 40/2.0<br>13500 03105 14828 14825 0445 0445 0445 0445 0445 0445 0445 04                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         |                      | 13529<br>8521<br>8521<br>710<br>710<br>710<br>1280<br>1280<br>1280<br>1280<br>1500<br>350<br>960<br>63<br>850<br>850<br>850<br>850<br>850<br>850<br>850<br>850<br>850<br>850 | 13529 23185 16558   8521 7303 5216   710 710 710   473 473 947   11280 11280 11280   500 500 500   35013 43452 35211   21484 20266 18653                                                                                                                                                                                                                       | 13529     23185     16558     11825       8521     7303     5216     3726       710     710     710     710       710     710     710     710       710     710     710     710       710     710     710     710       710     710     710     710       71280     11280     11280     11280       500     500     500     500       35013     35452     35211     29461                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13529     23185     16558     11825     8454       8521     7303     5216     3726     2662       710     710     710     710     710                                               | 13529  23185  16558  11825  8454  8445                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         |                      | 8521<br>710<br>710<br>710<br>710<br>7500<br>3500<br>7500<br>960<br>63<br>850                                                                                                 | 8521     7303     521       710     710     710       710     710     710       473     473     947       11280     11280     11280       500     500     500       35013     43452     35211       21484     20266     18653                                                                                                                                  | 8521     7303     5216     3726       710     710     710     710     710       713     473     473     947     1420       11280     11280     11280     11280     11280       500     500     500     500     500       35013     43452     35211     29461                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 710 710 710 710 710 710 710 710 710                                                                                                                                                 |                                                                            | 13529 23185 16558 11825 8454 8445 8454                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                        | 13529 23185 16558 11825 8454 8445 8455 4222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|         |                      | 11280<br>500<br>5013<br>35013<br>21484<br>21484<br>1500<br>1500<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>5                                                        | 473     473     473     947       11280     11280     11280     500       500     500     500     500       35013     43452     35211       21484     20266     18653                                                                                                                                                                                          | 473     473     947     1420       11280     11280     11280     11280       500     500     500     500       35013     43452     35211     29461                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                     | 8521 7303 5216 3726 2662 1901<br>710 710 710 710 710 710 710               | 8521 7303 5216 3726 2662 1901 1141<br>710 710 710 710 710 710 710 710                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8521 7303 5216 3726 2662 1901 1141 3<br>710 710 710 710 710 710 710 710 7              | 8521 7303 5216 3726 2662 1901 1141 380<br>710 710 710 710 710 710 710 710 710                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         |                      | 11280<br>500<br>5013<br>5013<br>21484<br>700<br>1500<br>1500<br>500<br>500<br>500<br>63<br>63<br>63                                                                          | 11280     11280     11280       500     500     500       35013     43452     35211       21484     20266     18653                                                                                                                                                                                                                                            | 11280     11280     11280     11280     11280       500     500     500     500     500       35013     43452     35211     29461                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 473 473 947 1420 1893                                                                                                                                                               | 473 473 947 1420 1893 2367                                                 | 473 473 947 1420 1893 2367 2367                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 473 473 947 1420 1893 2367 2367 23                                                     | 473 473 947 1420 1893 2367 2367 2367 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         |                      | 21484<br>500<br>5013<br>5013<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>50                                                                                          | 500     500     500     500       35013     43452     35211       21484     20266     18653                                                                                                                                                                                                                                                                    | 500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500 <td>11280 11280 11280 11280 11280</td> <td>11280 11280 11280 11280 11280 11280 11280</td> <td>11280 11280 11280 11280 11280 11280 11280</td> <td>11280 11280 11280 11280 11280 11280 11280 11280 112</td> <td>11280 11280 11280 11280 11280 11280 11280 11280 11280 112</td> | 11280 11280 11280 11280 11280                                                                                                                                                       | 11280 11280 11280 11280 11280 11280 11280                                  | 11280 11280 11280 11280 11280 11280 11280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11280 11280 11280 11280 11280 11280 11280 11280 112                                    | 11280 11280 11280 11280 11280 11280 11280 11280 11280 112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| -i-     |                      | 2013<br>21484<br>1500<br>1500<br>1500<br>1500<br>330<br>350<br>350                                                                                                           | 21484 20266 18653                                                                                                                                                                                                                                                                                                                                              | 30013 43452 30211 23401<br>04404 00056 40650 47696                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 500 500 500 500 500 500 500                                                                                                                                                         | 500 500 500 500 500 500 500 500 500                                        | 500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500     500 <td>500 500 500 500 500 500 500 500 500 50 5</td> <td>500 500 500 500 500 500 500 500 500 500</td> | 500 500 500 500 500 500 500 500 500 50 5                                               | 500 500 500 500 500 500 500 500 500 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| -i-     |                      | 21484<br>600<br>1500<br>1500<br>1600<br>500<br>500<br>500<br>530<br>83                                                                                                       | 21484 20209 18093                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30013 43452 35211 29401 20000<br>2101 00000 10000 17010                                                                                                                             | 30U13 43452 30211 29401 20200 20200<br>01101 00000 10000 17000 17010 20200 | 30013 43452 30211 23401 20000 20200 24402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30U13 43D2 30Z11 23401 230U 232U0 24F02 194<br>01011 00000 10000 1000 14701 10000 1470 | 30U13 43402 30Z11 29401 200U 20200 24402 19402 1940 14402 19404 1940 14402 19404 14402 1940 14402 19404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 14404 1440 |
| -i.     |                      | 600<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>83<br>83<br>850                                                                                               |                                                                                                                                                                                                                                                                                                                                                                | 21404 ZUZODI 100302 14041 Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 21484 20266 18653 17636 17045                                                                                                                                                       | 21484 20266 18653 17636 17045 16758                                        | 21484 20266 18653 17636 17045 16758 15998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21484 20266 18653 17636 17045 16758 15998 152                                          | 21484 20266 18653 17636 17045 16758 15998 15237 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ä.      |                      | 80<br>30<br>80<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30                                                                                 |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                     |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         |                      | 350<br>350<br>350<br>350<br>350<br>350<br>350<br>350<br>350<br>350                                                                                                           | 600 600                                                                                                                                                                                                                                                                                                                                                        | 600 600 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 600 600 600 600 600 600 F00 F00 F00 F00                                                                                                                                             |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ä       |                      | 500<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500                                                                                                           | 200 200 200                                                                                                                                                                                                                                                                                                                                                    | 700 700 700 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 700 700 700 700 700                                                                                                                                                                 | 700 700 700 700 700 700                                                    | 00/ 00/ 00/ 00/ 00/ 00/ 00/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         |                      | 300<br>500<br>63<br>63<br>350                                                                                                                                                | 1500 1500 1500                                                                                                                                                                                                                                                                                                                                                 | 1500 1500 1500 1500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1500 1500 1500 1500 1500                                                                                                                                                            | 1500 1500 1500 1500 1500 1500                                              | 1500 1500 1500 1500 1500 1500 1500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1500 1500 1500 1500 1500 1500 1500 15                                                  | 1500 1500 1500 1500 1500 1500 1500 1500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ā       |                      | 1600<br>500<br>750<br>63<br>63<br>350                                                                                                                                        | 300 300                                                                                                                                                                                                                                                                                                                                                        | 300 300 300 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 300 300 300 300 300                                                                                                                                                                 | 300 300 300 300 300 300                                                    | 300 300 300 300 300 300 300 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 300 300 300 300 300 300 300 300 3                                                      | 300 300 300 300 300 300 300 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ā       |                      | 1600<br>500<br>960<br>350<br>350                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                     |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ä       |                      | 500<br>960<br>350<br>350                                                                                                                                                     | 1600 1600 1600                                                                                                                                                                                                                                                                                                                                                 | 1600 1600 1600 1600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1600 1600 1600 1600 1600                                                                                                                                                            | 1600 1600 1600 1600 1600 1600                                              | 1600 1600 1600 1600 1600 1600 1600 1600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1600 1600 1600 1600 1600 1600 1600 1600                                                | 1600 1600 1600 1600 1600 1600 1600 1600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ä       |                      | / 20<br>960<br>350<br>350                                                                                                                                                    | 500 500 500                                                                                                                                                                                                                                                                                                                                                    | 500 500 500 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 500 500 500 500 500 500                                                                                                                                                             | 500 500 500 500 500 500 500                                                | 500 500 500 500 500 500 500 500 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 500 500 500 500 500 500 500 500 5                                                      | 500 500 500 500 500 500 500 500 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|         |                      | 960<br>63<br>350                                                                                                                                                             | /20 /20 /20                                                                                                                                                                                                                                                                                                                                                    | 150 /50 /50 /50 /50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                     |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         |                      | 350                                                                                                                                                                          | 960                                                                                                                                                                                                                                                                                                                                                            | 960 960                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 960<br>960                                                                                                                                                                          | 960 960 960 960                                                            | 960 960 960 960 960                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 960 960 960 960 960 960                                                                | 096 096 096 096 096 096 096 096 096 096                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ä       |                      | 350                                                                                                                                                                          | 63 63 63                                                                                                                                                                                                                                                                                                                                                       | 63 63 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 63 63 63 63                                                                                                                                                                         | 63 63 63 63 63 63 63 63 63 63 63 63 63 6                                   | 63 63 63 63 63 63 63 63 63 63 63 63 63 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 63 63 63 63 63 63 63 63 63 63 63 63 63 6                                               | 63 63 63 63 63 63 63 63 63 63 63 63 63 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|         |                      |                                                                                                                                                                              | 350 350 350                                                                                                                                                                                                                                                                                                                                                    | 350 350 350 350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 350 350 350 350 350                                                                                                                                                                 | 350 350 350 350 350 350                                                    | 350 350 350 350 350 350 350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 350 350 350 350 350 350 350 350 3                                                      | 350 350 350 350 350 350 350 350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         |                      | 300                                                                                                                                                                          | 300 300                                                                                                                                                                                                                                                                                                                                                        | 300 300 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 300 300 300 300 300                                                                                                                                                                 | 300 300 300 300 300 300                                                    | 300 300 300 300 300 300 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 300 300 300 300 300 300 300 300 300 300                                                | 300 300 300 300 300 300 300 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -       |                      | 1200                                                                                                                                                                         | 1200 1200 1200                                                                                                                                                                                                                                                                                                                                                 | 1200 1200 1200 1200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1200 1200 1200 1200 1200                                                                                                                                                            | 1200 1200 1200 1200 1200 1200                                              | 1200 1200 1200 1200 1200 1200 1200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1200 1200 1200 1200 1200 1200 1200 12                                                  | 1200 1200 1200 1200 1200 1200 1200 1200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|         |                      | 377                                                                                                                                                                          | 377 377 377                                                                                                                                                                                                                                                                                                                                                    | 377 377 377 377                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 377 377 377 377 377                                                                                                                                                                 | 377 377 377 377 377 377                                                    | 377 377 377 377 377 377 377                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 377 377 377 377 377 377 377 377 3                                                      | 377 377 377 377 377 377 377 377                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         |                      | 1500                                                                                                                                                                         | 1500 1500 1500                                                                                                                                                                                                                                                                                                                                                 | 1500 1500 1500 1500 1500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1500 1500 1500 1500 1500 1500                                                                                                                                                       | 1500 1500 1500 1500 1500 1500 1500                                         | 1500 1500 1500 1500 1500 1500 1500 1500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1500 1500 1500 1500 1500 1500 1500 1500                                                | 1500 1500 1500 1500 1500 1500 1500 1500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|         |                      | Innei                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                     |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1100 1300 1300 1300 1300 1300 1300 1300                                                | 1100 1300 1300 1300 1300 1300 1300 1300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|         |                      |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                     |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                        | 1100 1100 1100 1100 1100 1100 1100 1100 1100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -       |                      | 1100                                                                                                                                                                         | 1100 1100 1100                                                                                                                                                                                                                                                                                                                                                 | 1100 1100 1100 1100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1100 1100 1100 1100 1100                                                                                                                                                            | 1100 1100 1100 1100 1100 1100 1100                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -       |                      | 1100                                                                                                                                                                         | 1100 1100 1100                                                                                                                                                                                                                                                                                                                                                 | 1100 1100 1100 1100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1100 1100 1100 1100 1100                                                                                                                                                            | 1100 1100 1100 1100 1100 1100                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| lon Crop    | ms Spacings 20( | L<br>L              | B <sub>1</sub> = 0.60 <b>166.09</b> 164 | $B_2 = 0.45$ <b>159.05</b> 141. | $B_1 = 0.60$ <b>325.52</b> 300. | $B_2 = 0.45  328.27  283.$ |        |        |
|-------------|-----------------|---------------------|-----------------------------------------|---------------------------------|---------------------------------|----------------------------|--------|--------|
|             | 05              | 2<br>T <sub>3</sub> | .75 117.55                              | .00 139.43                      | .06 246.87                      | .63 211.41                 |        |        |
|             |                 | Т,                  | 127.21                                  | 117.82                          | 250.81                          | 241.43                     |        |        |
| IRR consi   | 2006            | 2006                | 2006                                    | Τ2                              | 123.78                          | 111.06                     | 247.72 | 221.75 |
| idering yie |                 | T <sub>3</sub>      | 119.41                                  | 106.84                          | 238.80                          | 219.17                     |        |        |
| ld of cauli |                 | T,                  | 222.87                                  | 225.29                          | 499.18                          | 572.12                     |        |        |
| flower, %   | 2007            | T2                  | 179.47                                  | 207.57                          | 307.23                          | 443.42                     |        |        |
|             | 0               | T <sub>3</sub>      | 140.54                                  | 143.13                          | 384.55                          | 347.62                     |        |        |
|             |                 | T,                  | 172.03                                  | 167.35                          | 359.28                          | 380.56                     |        |        |
|             | Mean            | $T_2$               | 155.99                                  | 153,18                          | 285.00                          | 316.25                     |        |        |
|             |                 | Т3                  | 125.83                                  | 129.79                          | 290.05                          | 259.38                     |        |        |

Table 5.346: IRR of Cauliflower Grown in Year 2005, 2006 and 2007 at T.C.D. Farm, WREMI, Samiala

•

-

#### 5.2.2.3 Summer groundnut and cauliflower

Two crops, summer groundnut and cauliflower were grown in a year. IRR was calculated and analysis of variance was carried out for the year.

#### Internal rate of return (Two season crops)

Internal rate of return for a year was calculated considering yield of summer groundnut and cauliflower. Two crops could be grown in a year using both irrigation systems. IRR was also calculated considering the mean yield of crops of the three years..

Table 5.347 gives the internal rate of return by MIS for 0.60 m row spacing and 75% of crop water requirement for summer groundnut and cauliflower in 2005.

Table 5.348 illustrate the internal rate of return by MIS for 0.60 m row spacing and 100% of crop water requirement for summer groundnut and cauliflower in 2005, and is given in enclosed DVD.

Table 5.349 shows the internal rate of return by MIS for 0.60 m row spacing and 125% of crop water requirement for summer groundnut and cauliflower in 2005, and is given in enclosed DVD.

Table 5.350 gives the internal rate of return by ITK MIS for 0.60 m row spacing and 75% of crop water requirement for summer groundnut and cauliflower in 2005, and is given in enclosed DVD.

Table 5.351 illustrate the internal rate of return by ITK MIS for 0.60 m row spacing and 100% of crop water requirement for summer groundnut and cauliflower in 2005, and is given in enclosed DVD.

Table 5.352 shows the internal rate of return by ITK MIS for 0.60 m row spacing and 125% of crop water requirement for summer groundnut and cauliflower in 2005, and is enclosed in DVD.

Table 5.353 indicate the internal rate of return by MIS for 0.45 m row spacing and 75% of crop water requirement for summer groundnut and cauliflower in 2005, and is given in enclosed DVD.

Table 5.354 shows the internal rate of return by MIS for 0.45 m row spacing and 100% of crop water requirement for summer groundnut and cauliflower in 2005, and is given in enclosed DVD.

Table 5.355 gives the internal rate of return by MIS for 0.45 m row spacing and 125% of crop water requirement for summer groundnut and cauliflower in 2005, and is given in enclosed DVD.

Table 5.356 illustrate the internal rate of return by ITK MIS for 0.45 m row spacing and 75% of crop water requirement for summer groundnut and cauliflower in 2005, and is given in enclosed DVD.

Table 5.357 indicate the internal rate of return by ITK MIS for 0.45 m row spacing and 100% of crop water requirement for summer groundnut and cauliflower in 2005 and is given in enclosed DVD.

Table 5.358 shows the internal rate of return by ITK MIS for 0.45 m row spacing and 125% of crop water requirement for summer groundnut and cauliflower in 2005 and is given in enclosed DVD.

Table 5.359 to 5.361 give the internal rate of return by MIS for 0.60 m row spacing and 75%, 100% and 125% of crop water requirement for summer groundnut and cauliflower in 2006 and are given in enclosed DVD.

Table 5.362 to 5.364 give the internal rate of return by ITK MIS for 0.60 m row spacing and 75%, 100% and 125% of crop water requirement for summer groundnut and cauliflower in 2006 and are given in enclosed DVD.

Table 5.365 to 5.367 show the internal rate of return by MIS for 0.45 m row spacing and 75%, 100% and 125% of crop water requirement for summer groundnut and cauliflower in 2006 and are given in enclosed DVD.

Table 5.368 to 5.370 indicates the internal rate of return by ITK MIS for 0.45 m row spacing and 75%, 100% and 125% of crop water requirement for summer groundnut & cauliflower in 2006 and are given in enclosed DVD.

Table 5.371 to Table 5.373 illustrate the internal rate of return by MIS for 0.60 m row spacing and 75%, 100% and 125% of crop water requirement for summer groundnut and cauliflower in 2007 and are given in enclosed DVD.

Table 5.374 to Table 5.376 give the internal rate of return by ITK MIS for 0.60 m row spacing and 75%, 100% and 125% of crop water requirement for summer groundnut and cauliflower in 2007 and are given in enclosed DVD.

Table 5.377 to Table 5.379 indicates the internal rate of return by MIS for 0.45 m row spacing and 75%, 100% and 125% of crop water requirement for summer groundnut and cauliflower in 2007 and are given in enclosed DVD.

Table 5.380 to Table 5.382 indicates the internal rate of return by ITK MIS for 0.45 m row spacing and 75%, 100% and 125% of crop water requirement for summer groundnut and cauliflower in 2007 and are given in enclosed DVD.

Table 5.383 gives the internal rate of return by MIS for 0.60 m row spacing and 75% of crop water requirement for summer groundnut and cauliflower considering the mean yield, and is given in enclosed DVD.

Table 5.384 and 5.385 indicate the internal rate of return by MIS for 0.60 m row spacing and 100% and 125% of crop water requirement for summer groundnut and cauliflower considering the mean yield and are enclosed in DVD.

Table 5.386 gives the internal rate of return by ITK MIS for 0.60 m row spacing and 75% of crop water requirement for summer groundnut and cauliflower considering the mean yield, and is given in enclosed DVD.

Table 5.387 and Table 5.388 give the internal rate of return by ITK MIS for 0.60 m row spacing and 100% and 125% of crop water requirement for

summer groundnut and cauliflower considering the mean yield and are enclosed in DVD.

Table 5.389 gives the internal rate of return by MIS for 0.45 m row spacing and 75% of crop water requirement for summer groundnut and cauliflower considering the mean yield, and is given in enclosed DVD.

Table 5.390 and 5.391 illustrate the internal rate of return by MIS for 0.45 m row spacing and 100% and 125% of crop water requirement for summer groundnut and cauliflower considering the mean yield and are given in enclosed DVD.

Table 5.392 shows the internal rate of return by ITK MIS for 0.45 m row spacing and 75% of crop water requirement for summer groundnut and cauliflower considering the mean yield, and is given in enclosed DVD.

Table 5.393 and Table 5.394 give the internal rate of return by ITK MIS for 0.45 m row spacing and 100% and 125% of crop water requirement for summer groundnut and cauliflower considering the mean yield and are given in enclosed DVD.

Table 5.395 shows the internal rate return considering average yield of summer groundnut and cauliflower grown in year 2005, 2006 and 2007 for different row spacing, irrigation depths and irrigation systems.

Table 5.347: Internal Rate of Return by MIS for 0.60 m Spacing and 75 % of Crop Water Requirement for Summer Groundnut and Cauliflower in Year 2005

21.03 240.35 1st year 2nd year 3rd year 4th year 5th year 6th year 7th year 8th year 9th year 10th year 4734 21.03 240.35 21.03 760 240.35 240.35 14300 21.03 4734 1280 Field Size 57.6 m x 28.8 m 4734 1280 14300 21.03 240.35 3802 AMOUNT IN RS 240.35 21.03 3787 11280 240.35 7452 21.03 240.35 21.03 10433 Crop : Combination of Groundnut and Cauliflower 21.03 240.35 21.03 240.35 -189345 100.40% Selling price of Cauliflower Rs/quintal Selling price of Groundnut Rs/quintal Yield of produce of Cauliflower in Yield of produce of Groundnut in INTERNAL RATE OF RETURN Cultivation cost of Groundnut Cultivation cost of Cauliflower PARTICULARS Total Income from produce Maintenance and repairs Farm labourers' wages NET CASH OUTFLOW CULTIVATION COST Total cultivation cost NET CASH FLOW CASH OUTFLOW Operator's salary CAPITAL COST CASH INFLOW FIXED COST Depreciation nsurance quintal/ha quintal/ha NCOME nterest 100.40% କିତିତିହିଇ <u>ର</u> ତ 6 g SR. b g a) S ى ∞ က Þ ດ

Table 5.395: IRR Considering Yield of Summer Groundnut and Cauliflower Grown in Year 2005, 2006 and 2007 at T.C.D. Farm WREMI, Samiala

•

| Irrigation | Crop                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | R      | R conside | ring yield            | of summe | er groundr | nut and ca | uliflower,     | %      |        |        |
|------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|-----------|-----------------------|----------|------------|------------|----------------|--------|--------|--------|
| Systems    | Spacings              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2005   |        |           | 2006                  |          | -          | 2007       |                |        | Mean   |        |
| _          |                       | Ŀ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | T2     | Т.     | Ч,        | <b>T</b> <sub>2</sub> | Т3       | Ţ          | T2         | T <sub>3</sub> | r,     | $T_2$  | н<br>г |
|            | B <sub>1</sub> = 0.60 | 100.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 98.48  | 72.82  | 84.18     | 80.84                 | 76.91    | 132.72     | 106.90     | 86.01          | 107.24 | 93.23  | 80.65  |
| MIS        | $B_2 = 0.45$          | 100.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 88.49  | 85.62  | 80.86     | 74.12                 | 69.32    | 132.29     | 121.27     | 85.22          | 106.61 | 97.67  | 77.65  |
|            | B <sub>1</sub> = 0.60 | 197.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 184.82 | 154.09 | 167.21    | 162.62                | 155.07   | 289.22     | 189.48     | 224.31         | 226.27 | 175.21 | 188.58 |
|            | B <sub>2</sub> = 0.45 | 203.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 181.29 | 140.13 | 166.39    | 152.06                | 145.37   | 327.07     | 257.17     | 206.00         | 245.49 | 204.95 | 175.79 |
|            |                       | A REAL PROPERTY AND A REAL PROPERTY A REAL PROPERTY AND A REAL PRO |        |        |           |                       |          |            |            |                |        |        |        |

# 5.3 Analysis

#### 5.3.1 Indoor ITK MIS laboratory work

#### Friction head loss in ITK MIS

With reference to Tables 4.11 to 4.70, pressures at 16 nodes on lateral were measured. Head loss through each section between two pressure gauges between two outlets,  $Hf_{Li}$  was determined.  $Hf_{li}$  is head loss through minor length near outlet, as pressure gauges could not be placed exactly at outlet.  $Hf_{li}$  was very negligible compared to  $Hf_{Li}$ . So head loss measured at both sides of outlet by pressure transducers was same as head loss at outlet. Head losses in polytubes were also determined.

#### Head loss at outlets by regression analysis

Regression equations were developed for 20 mm lateral for one microtube and are presented in Table 5.1. Discrepancy ratio, D is very near to 1 for  $1^{st}$  to  $6^{th}$  outlets, which reflects less discrepancy in observed and predicted data. D value is more than 1 for  $7^{th}$  and  $8^{th}$  outlet, which reflects that model over predict the data. Coefficient of correlation r is also above 0.65 for all the outlets.  $R^2$  value of the models varies from 0.34 to 0.65.

Difference in RMSE value for model and prediction is less which reflects less deviation in observed and predicted head loss.

Table 5.2 gives regression equations for 20 mm lateral for two microtubes attached to micromanifold. Discrepancy ratio D is very near to 1 for all outlets except  $4^{th}$  and  $5^{th}$  outlet. This reflects that the equation exactly predicts the measured rate. Value of  $R^2$  varies from 0.33 to 0.61. Value of r varies from 0.57 to 0.78 which indicates good correlation between observed and predicted values.

Regression equations for 20 mm lateral for three microtubes are presented in Table 5.3. Value of D is 1 for model and validation for 1<sup>st</sup> outlet which indicates equation exactly predicts the measured data. At other outlets value

of D is not one which indicates predicted head loss may differ from observed head loss.

Table 5.4 presents regression equations for 20 mm lateral for four miscotubes. D is very near to 1 for all outlets except 1<sup>st</sup> and 6<sup>th</sup> outlet, which reveals that an equation exactly predicts the measured data at other outlets. Value of r varies from 0.52 to 0.87.

There are the explanations for not getting the value of D as 1 in Table 5.2, 5.3 and 5.4 for all the outlets.

Tables 5.5, 5.6 and 5.7 indicate regression equations for 16 mm lateral for 1, 2, and 3 microtubes. Value of D is near one for all outlets which represents that predicted head loss are near to observed head loss.

Tables 5.8, 5.9 and 5.10 indicate regression equations for 12 mm lateral for 1, 2, and 3 microtubes. Value of D is near to one for all outlets which represents that predicted head loss and observed head loss are similar.

In ITK MIS, Polytubes are attached to laterals using jointers. Jointers are inserted in to lateral. There may be small variation in size of jointers. Due to this there may be variation in discharge at particular outlet.

The head loss increased with increase in protrusion areas, which may differ from outlet to outlet.

Regression equations were developed using 70 % of data and remaining 30 % data were used for validation. Selections of this 70 % of data were done through random selection. Numbers of trials were carried out to choose good model which would give value of D near to one. Sometimes model over or under predict the data as per the random selection of dataset.

# Head loss through polytubes by regression analysis

Regression equations to determine head loss through polytubes for 20 mm lateral when one microtube is attached is given in Table 5.11. Value of D is very near to one in all outlets. Coefficient of correlation r varies from 0.53 to

0.75, which shows good correlation between predicted and observed head loss in polytube.  $R^2$  varies from 0.34 to 0.56.

Table 5.12 presents regression equations to determine head loss through polytubes for two microtubes. D value is very near to one for all the outlets. Correlation coefficient r varies from 0.39 to 0.69.

Table 5.13 indicates that value of D is very near to one for all the oulets. Value of r varies from 0.62 to 0.68, which reveals good correlation between predicted and observed head loss.

With reference to Table 5.14, D value is very near to1 for all outlets except 8<sup>th</sup> outlet, which reveals that predicted head loss is same as observed head loss. For 8<sup>th</sup> outlets model under predict the head loss.

Tables 5.15 to 5.17 present regression equations for 16 mm lateral for 1, 2, & 3 microtubes. D value is near 1 in all outlets. This represents that equation exactly predicts the measured head loss.  $R^2$  value varies from 0.47 to 0.63 for one microtube, 0.34 to 0.62 for two microtubes and 0.47 to 0.61 for 3 microtubes. The coefficient of correlation r varies from 0.69 to 0.79 which shows good correlation between observed and predicted head loss.

Tables 5.18 to 5.20 illustrate regression equations for 12 mm lateral for 1, 2, & 3 microtubes. D value is near one in all outlets. This reveals that predicted head loss in polytubes are same as observed headloss. The coefficient of correlation varies from 0.49 to 0.63 for one microtube, 0.31 to 0.49 for two microtube and 0.21 to 0.58 for three microtubes.

In ITK MIS, Polytubes were attached to laterals on one side and with manifold to other side using jointers. There might be small variation in size of jointers. Due to this there might be variation in discharge at particular outlet.

#### F factor for ITK MIS

Table 5.21 and Fig. 5.1 give F factor for 20 mm lateral – 4 mm dia and 0.15 m long polytube for 2, 3, and 4 microtubes for various inlet pressures.

Fig. 5.1 illustrate the variation in F factor with respect to no. of outlets on laterals. For two and three microtubes, variations of F factor with respect to no.of outlets are similar. The F factors for 4 microtubes are higher compared to that for two and three microtubes due to increase in discharge. Head loss is more due to increased discharge and hence F factor increases.

The number outlets which receive water depends on pressure and discharge available. So the number of outlets served for given lateral inlet discharge for 2, 3 and 4 microtubes are varying. Hence in Table 5.21, number of outlets and F values are not the same for 2,3 and 4 microtubes.

Fig. 5.2 shows variation in F factor w.r.t. number of outlets for 20 mm lateral – 4 mm dia and 0.30 m long polytube – 2, 3, and 4 microtubes for various inlet pressures and is given in enclosed DVD.

With respect to Fig. 5.2 variation in F factor along the lateral is similar for two and three microtubes. F factor with respect to no. of outlets for four microtubes are higher compared to that for two and three microtubes.

Fig. 5.3 shows variation in F factor w.r.t. number of outlets for 20 mm lateral -4 mm dia and 0.45 m long polytube -2, 3, and 4 microtubes for various inlet pressures and is given in enclosed DVD.

It is observed from Fig.5.3 that the value of F factor with respect to no.of outlets for four microtubes is higher than that for two and three microtubes.

Fig. 5.4 shows variation in F factor w.r.t. number of outlets for 20 mm lateral - 4 mm dia and 0.60 m long polytube - 2, 3 and 4 microtubes for various inlet pressures. It is observed that F factor w. r. t to no. of outlets is comparatively higher than that for two and three microtubes and is given in enclosed DVD.

Figs. 5.5 and 5.6 illustrate variation in F factor w.r.t. number of outlets for 20 mm lateral – 4 mm dia and 0.75 m and 0.90 m long polytube – 2, 3 and 4 microtubes for various inlet pressures. Variations of F factor w.r.t. no. of

outlets are similar for two, three and four microtubes. Fig. 5.6 is given in enclosed DVD.

Figs. 5.7, 5.8, 5.10 and 5.11 illustrate variation of F factor for 20 mm – 5 mm dia and 0.15 m, 0.30, 0.60 and 0.75 m long polytube – 2, 3 & 4 microtubes for various inlet pressures. Value of F is high in 4 microtubes in few cases, compared to 2 and 3 microtubes.

Figs. 5.9 and 5.12 depict variation of F factor for 20 mm – 5 mm dia and 0.45 m, 0.60 m , 0.75 m and 0.90 m long polytube - 2, 3 & 4 microtubes for various inlet pressures. Variation of F factor w.r.t. number of outlets are similar but no specific pattern can be observed to compare F factor between 2, 3 or 4 microtubes. Figs. 5.8 to 5.12 are given in enclosed DVD.

Figs. 5.13 to 5.18 depict variation of F factor for 20 mm – 6 mm dia and 0.15, 0.30, 0.45 m, 0.60 m and 0.75 m and 0.90 m long polytube - 2, 3 & 4 microtubes for various inlet pressures. Variation of F factor is similar for 2, 3 and 4 microtubes. Figs. 5.14 to 5.18 are given in enclosed DVD.

Fig. 5.19, 5.20, and 5.21 illustrate variation of F factor w. r. t. to no. of outlets for 20 mm lateral – 7 mm dia and 0.15 m, 0.30 m and 0.45 m long polytube for 2, 3 & 4 microtubes. F factor is higher in 4 microtubes compared to 2 and 3 microtubes. Figs. 5.20 and 5.21 are given in enclosed DVD.

Figs. 5.22, 5.23, and 5.24 present variation of F factor w. r. t. to no. of outlets for 20 mm lateral – 7 mm dia and 0.60 m, 0.75 m and 0.90 m long polytube for 2, 3 & 4 microtubes. The variation in F value value is similar for 1, 2 & 3 microtubes and are given in enclosed DVD.









Discharge through various outlets depends on number of microtubes attached to the micromanifold. Discharge was higher for four microtubes compared to two and three microtubes. Due to high discharge head loss was also high in case of four microtubes. Hence value of F factor was higher in 4 microtubes compared to 2 and 3 microtubes.

To analyze the effect of no.of microtubes on F factor, graphs were developed for each length of polytube, i.e. 0.15 m, 0.30 m, 0.45 m, 0.60 m and 0.90 m.

For each length of polytube, a combined F factor graph for 4 mm, 5 mm, 6 mm and 7 mm diameter polytube was developed and analyzed.

Fig. 5.229 illustrates variation of F factor w.r.t. to no. of outlets for 20 mm lateral - 4 mm, 5 mm, 6 mm, & 7 mm and 0.15 m long polytube - 2, 3, & 4 – microtubes.

F factor depends on no.of microtubes attached. For 4, 5 and 6 mm diameter polytube F factor increase with increase in no. of microtubes. For 7 mm diameter polytube, F factor for 4 microtube is lower than 2 and 3 microtubes.

Fig. 5.230 presents variation of F factor w.r.t. to no. of outlets for 20 mm lateral - 4 mm, 5 mm, 6 mm, & 7 mm and 0.30 m long polytube - 2, 3, & 4 – microtubes and is given in enclosed DVD.

For all the polytubes, F factor increases with increase in no. of microtubes.

Fig. 5.231 presents variation of F factor w.r.t. to no. of outlets for 20 mm lateral - 4 mm, 5 mm, 6 mm, & 7 mm and 0.45 m long polytube - 2, 3, & 4 – microtubes and is given in enclosed DVD.

For 4, 6 and 7 mm diameter polytube, F factor increases with increase in no. of microtubes. For 5 mm reverse trend for F factor is observed.



Fig. 5.232 presents variation of F factor, w.r.t. to no. of outlets for 20 mm lateral - 4 mm, 5 mm, 6 mm, & 7 mm and 0.60 m long polytube - 2, 3, & 4 – microtubes and is given in enclosed DVD.

For 4, 5 and 6 mm diameter polytube, F factor increases with increase in no. of microtubes. For 7 mm, F factor is higher for 2 microtube, followed by 4 and 3 microtubes.

Fig. 5.233 presents variation of F factor w.r.t. to no. of outlets for 20 mm lateral - 4 mm, 5 mm, 6 mm, & 7 mm and 0.75 m long polytube - 2, 3, & 4 – microtubes and is given in enclosed DVD.

For 5, 6 and 7 mm diameter polytube, F factor increase with increase in no. of microtubes. For 4 mm, F factor is higher for 4 microtube, followed by 2 and 3 microtubes.

Fig. 5.234 shows variation of F factor w.r.t. to no. of outlets for 20 mm lateral 4 mm, 5 mm, 6 mm, & 7 mm and 0.90 m long polytube - 2, 3, & 4 – microtubes and is given in enclosed DVD.

For 5 and 6 mm diameter polytube, F factor increase with increase in no. of microtubes. For 4 mm, F factor is higher for 4 microtube, followed by 2 and 3 microtubes, however the variation is very less. For 7 mm polytube, F factor is higher for 4 microtube, followed by 2 and 3 microtubes.

As discussed above, in almost all cases of polytube diameters (4 mm, 5 mm, 6mm and 7 mm) the F factor increases with increase in no.of microtubes because of increased discharge. However, in some of the cases the sequence is not followed. The reason is explained below.

#### Limitation of F factor analysis

The F factor was obtained using experimental data. Only those data were considered for the analysis where the F factor at the first outlet is 1.0. Such no. of data were less and were at different inlet pressure.

The F factor analysis graphs were developed using those data which have more or less same inlet pressure. Though, in some cases due to unavailability of same inlet pressure data, variations in trends of F factors were observed.

# Development of the relationship between inlet pressure - microtube discharge and length of microtubes – inlet pressure

The relationship between inlet pressures and discharge through microtubes were established.

Fig. 5.25 shows relationship between Inlet pressure and microtube discharge of various diameter and length of microtubes for 20 mm lateral - 4 mm dia and 0.15 m long polytube - 2-microtubes.

With reference to Fig. 5.25 and Table 5.37 regression equations were obtained which show relationship of inlet pressure vs discharge through microtubes. For a given discharge inlet pressure required in lateral was determined using these regression equations.

Fig. 5.26 and Table 5.38 give microtube length-inlet pressure relationship for various diameter and length of microtubes. The regression equations were developed for discharge of 15 lph.

Fig. 5.27 indicates microtube length-inlet pressure relationship for various diameter and length of microtubes. The regression equations were developed for 10 lph.

Regression equations to determine length of microtubes can be developed for various discharges. These equations were very useful in deciding the length of microtube required to obtain specific discharge in the field.

From Table 5.37 it reveals that for discharge 15 lph, estimated pressure for various diameter and length of microtube varies from 5.45 mwc to 20.05 mwc. Similarly, for discharge of 10 lph, estimated pressure for various combination ranges from 1.92 mwc to 7.75 mwc.

For each combination, regression equations are developed and are to be used to design ITK MIS.

Figs. 5.28 to 5.75 illustrate relationship between Inlet pressure and microtube discharge of various diameter and length of microtubes, microtube length-inlet pressure relationship for various diameter and length of microtubes for 20 mm lateral - 4 mm dia and 0.15 m, 0.30 m, 0.45 m, 0.60 m, 0.75 m and 0.90 m long polytube – 2, 3, & 4 – microtubes and are given in enclosed DVD.

Figs. 5.76 to 5.123 show relationship between Inlet pressure and microtube discharge of various diameter and length of microtubes, microtube length-inlet pressure relationship for various diameter and length of microtubes for 20 mm lateral - 5 mm dia and 0.15 m, 0.30 m, 0.45 m, 0.60 m, 0.75 m and 0.90 m long polytube – 2, 3, & 4 – microtubes and are given in enclosed DVD.

Figs. 5.124 to 5.177 give relationship between Inlet pressure and microtube discharge of various diameter and length of microtubes, microtube length-inlet pressure relationship for various diameter and length of microtubes for 20 mm lateral - 6 mm dia and 0.15 m, 0.30 m, 0.45 m, 0.60 m, 0.75 m and 0.90 m long polytube – 2, 3, & 4 – microtubes and are given in enclosed DVD.

Figs. 5.178 to 5.228 give relationship between Inlet pressure and microtube discharge of various diameter and length of microtubes, microtube length-inlet pressure relationship for various diameter and length of microtubes for 20 mm lateral - 7 mm dia and 0.15 m, 0.30 m, 0.45 m, 0.60 m, 0.75 m and 0.90 m long polytube – 2, 3, & 4 – microtubes and are given in enclosed DVD.







#### 5.3.2 Field experimental work

#### 5.3.2.1 Summer groundnut

#### **Analysis of variance**

### Analysis of variance on yield of summer groundnut

Effects of row spacings, irrigation depths and irrigation systems on yield of summer groundnut at T.C.D. Farm, WREMI, Samiala in 2005, 2006 and 2007 were analyzed as follows.

| Factor                 | Level 1  | Level 2  | Level 3  |
|------------------------|----------|----------|----------|
| A : Row Spacings       | 0.60 m   | 0.45 m   |          |
| B : Irrigation Depth   | 0.75 ETc | 1.00 ETc | 1.25 ETc |
| C : Irrigation Systems | MIS      | ITK MIS  | ·        |

Yield data presented in Table 4.76 were rearranged in Table 5.396.

| Leve  | el of fac | tors | Expected Y | ield of summe | r groundnut, qu | uintal/ha |
|-------|-----------|------|------------|---------------|-----------------|-----------|
| A     | В         | С    | 2005       | 2006          | 2007            | Total     |
| 1     | 1         | 1    | 21.03      | 23.37         | 23.98           | 68.38     |
| 1     | 1         | 2    | 20.59      | 23.10         | 22.50           | 66.18     |
| 1     | 2         | 1    | 20.11      | 22.18         | 20.91           | 63.20     |
| 1     | 2         | 2    | 20.41      | 21.92         | 20.83           | 63.15     |
| 1     | 3         | 1    | 18.60      | 20.90         | 19.83           | 59.33     |
| 1     | 3         | 2    | 18.79      | 20.72         | 19.38           | 58.88     |
| 2     | 1         | 1 '  | 28.41      | 29.31         | 27.30           | 85.02     |
| 2     | 1         | 2    | 26.06      | 28.77         | 26.69           | 81.52     |
| 2     | 2         | 1    | 25.67      | 26.22         | 25.28           | 77.17     |
| 2     | 2         | 2    | 25.88      | 26.65         | 24.06           | 76.59     |
| 2     | 3         | 1    | 23.75      | 23.76         | 21.67           | 69.18     |
| 2     | 3         | 2    | 23.47      | 24.11         | 22.49           | 70.07     |
| Total |           |      | 272.74     | 291.01        | 274.90          | 838.65    |

#### Table 5.396: Effects of Row Spacings, Irrigation Depths and Irrigation Systems on Yield of Summer Groundnut at T.C.D. Farm, WREMI, Samiala in 2005, 2006 and 2007

The analysis of the data were carried out by treating the experiment as a two way classification with a-b-c treatments and r replicates.

$$C = (838.65)^2 / 36 = 19536.82$$

SST = 
$$(21.03)^2$$
 +  $(20.59)^2$  + .... +  $(22.49)^2$  - 19536.82  
= 297.6613

$$SS(Tr) = 1/3 [(68.38)^{2} + (66.18)^{2} + \dots + (70.07)^{2}] - 19536.82$$
  
= 267.0898  
$$SSR = 1/12 [(272.74)^{2} + (291.01)^{2} + (274.90)^{2}] - 19536.82$$
  
= 16.6147  
$$SSE = SST - SS(Tr) - SSR$$

Next, the treatment sum of squares could be subdivided into the three main effect sums of squares, SSA, SSB and SSC, the three two way interaction sums of squares, SS(AB), SS(AC) and SS(BC) and the three way interaction sum of squares SS(ABC). To facilitate the calculation of these sums of squares following three tables were constructed.

|   |      |          | В        |          |          |
|---|------|----------|----------|----------|----------|
|   |      | 1        | 2        | 3        | Total    |
| ٨ | 1    | 134.5575 | 126.3500 | 118.2100 | 379.1175 |
| A | 2    | 166.5350 | 153.7500 | 139.2425 | 459.5275 |
| Т | otal | 301.0925 | 280.1000 | 257.4525 | 838.6450 |

|   |       | (        | C        |          |
|---|-------|----------|----------|----------|
|   |       | 1        | 2        | Total    |
| ۸ | 1     | 190.9000 | 188.2175 | 379.1175 |
| A | 2     | 231.3550 | 228.1725 | 459.5275 |
|   | Total | 422.2550 | 416.3900 | 838.6450 |

|   |       | (        | C        |          |
|---|-------|----------|----------|----------|
|   |       | 1        | 2        | Total    |
|   | 1     | 153.3900 | 147.7025 | 301.0925 |
| В | 2     | 140.3625 | 139.7375 | 280.1000 |
|   | 3     | 128.5025 | 128.9500 | 257.4525 |
|   | Total | 422.2550 | 416.3900 | 838.6450 |

To calculate SSA, SSB and SS(AB), refer to the first of the above tables and the treatment sum of squares is calculated as

$$\operatorname{rc} \sum_{i=1}^{a} \sum_{j=1}^{b} (y_{ij} \dots - y_{i})^{2} = 1/\operatorname{rc} \sum_{i=1}^{a} \sum_{j=1}^{b} \operatorname{Tij}^{2} \dots - C_{i} \dots (5.1)$$
$$= 1/6[(134.55)^{2} + (166.53)^{2} + \dots + (139.24)^{2}] - 19536.82$$
$$= 264.03$$

$$SSA = 1/bcr \sum_{i=1}^{\alpha} T^{2}i..-C ... (5.2)$$
  
= 1/18 [(379.11)2 + (459.52)2] - 19536.82  
= 179.6047

$$SSB = 1/acr \sum_{i=1}^{b} T^{2}j_{..} - C \qquad ... \qquad (5.3)$$
  
= 1/12 [(301.09)2 + (280.1000)2 + (257.45)2] - 19536.82  
= 79.3901

Some calculations for the second table,

Treatment sum of squares

$$= 1/9 [(190.90)^{2} + (231.3550)^{2} + \dots + (228.17)^{2}] - 19536.82$$
$$= 180.5671201$$

SSC = 
$$1/18 [(422.25)^2 + (416.39)^2] - 19536.82$$
  
= 0.9555

SS(AC) = 180.5671201 --179.6047- 0.9555 = 0.0069

The analysis of third table yields the treatment sum of squares

$$= 1/6 [(153.39)^{2} + (140.3625)^{2} + \dots + (128.95)^{2}] - 19536.82$$
  
= 82.1350

١

SS(BC) = 82.1350-79.3901-0.9555 = 1.7894

The three way interaction sum of squares,

The degree of freedom for each main effect is one less than the number of levels of the corresponding factor. The degree of freedom for each interaction

is the product of the degrees of freedom for those factors appearing in the interaction. The degree of freedom for the three main effects are 1, 2, 1 while the degree of freedom for the two way interactions are 2, 1, 2 and degrees of freedom for the three way interactions is 2.

| Table 5.397: Complete Analysis of Variance for Effect of Row Spacing, |
|-----------------------------------------------------------------------|
| Irrigation Depths and Irrigation Systems on Yield of Summer Groundnut |
| at T.C.D. Farm, WREMI, Samiala in 2005, 2006 and 2007                 |

| Source of    | Degree of   | Sum of    | Mean     | F     | F <sub>0.05</sub> & F <sub>0.01</sub> | Significance |
|--------------|-------------|-----------|----------|-------|---------------------------------------|--------------|
| Variation    | Freedom     | Squares   | Squares  |       | from                                  |              |
|              |             |           |          |       | literature                            |              |
| Replicates   | 2           | 81069.58  | 40534.79 | 30.86 | 3.32/5.39                             | S            |
| Main Effects |             |           |          |       |                                       |              |
| A            | 1           | 20901.11  | 20901.11 | 15.91 | 4.17/7.56                             | S            |
| В            | 2           | 22784.64  | 11392.32 | 8.67  | 3.32/5.39                             | S            |
| С            | 1           | 1209.12   | 1209.12  | 0.92  | 4.17/7.56                             | N            |
| Two way Inte | eractions   |           |          |       |                                       |              |
| AB           | 2           | 1172.69   | 586.34   | 0.44  | 3.32/5.39                             | N            |
| AC           | 1           | 8.7149    | 8.7149   | 0.00  | 4.17/7.56                             | N            |
| BC           | 2           | 1123.19   | 561.59   | 0.42  | 3.32/5.39                             | N            |
| Three way Ir | nteractions |           |          |       |                                       |              |
| ABC          | 2           | 1147.11   | 573.56   | 0.43  | 3.32/5.39                             | N            |
| Error        | 22          | 28890.15  | 1313.18  |       |                                       |              |
| Total        | 35          | 158306.33 |          |       |                                       |              |

Obtaining the appropriate values of  $F_{0.05}$  and  $F_{0.01}$  from the literature, it was found that the test for replicates, factor A and factor B were significant at both the levels, while test of factor C was insignificant at both the levels. Two factor interactions AB, AC and BC were not significant at both the levels. Similarly, three factor interactions were not significant at both the levels.

It is concluded that the variations in the row spacings and irrigation depths affect the yield of summer groundnut and irrigation systems did not affect the yield of summer groundnut. Combination of row spacings, irrigation depths and irrigation systems did not affect the yield.

#### Analysis of variance on IRR of summer groundnut

Effects of row spacings, irrigation depths and irrigation systems on IRR of summer groundnut at T.C.D. Farm, WREMI, Samiala in 2005, 2006 and 2007 were analyzed as follows:

| Factor                 | Level 1  | Level 2  | Level 3  |
|------------------------|----------|----------|----------|
| A : Row Spacing        | 0.60 m   | 0.45 m   |          |
| B : Irrigation Depth   | 0.75 ETc | 1.00 ETc | 1.25 ETc |
| C : Irrigation Systems | MIS      | ITK MIS  |          |

Internal rate of Return for summer groundnut are given in Table 5.398.

#### Table 5.398: Effects of Row Spacings, Irrigation Depths and Irrigation Systems on IRR of Summer Groundnut at T.C.D. Farm, WREMI, Samiala grown in 2005, 2006 and 2007

| Level of factors |   |   | Internal Rate of Return based on yield data, % |         |        |        |  |  |
|------------------|---|---|------------------------------------------------|---------|--------|--------|--|--|
| A                | В | C | 2005                                           | 2006    | 2007   | Total  |  |  |
| 1                | 1 | 1 | 20.18                                          | 27.42   | 29.11  | 76.71  |  |  |
| 1                | 1 | 2 | 47.20                                          | 60.39   | 57.05  | 164.63 |  |  |
| 1                | 2 | 1 | 17.21                                          | 23.79   | 19.64  | 60.64  |  |  |
| 1                | 2 | 2 | 46.25                                          | 54.22   | 48.26  | 148.73 |  |  |
| 1                | 3 | 1 | 12.07                                          | 19.77   | 16.14  | 47.97  |  |  |
| 1                | 3 | 2 | 37.54                                          | 47.90   | 40.53  | 125.98 |  |  |
| 2                | 1 | 1 | 31.04                                          | 33.16   | 28.33  | 92.53  |  |  |
| 2                | 1 | 2 | 60.73                                          | 72.30   | 63.28  | 196.30 |  |  |
| 2                | 2 | 1 | 24.49                                          | 25.85   | 23.44  | 73.77  |  |  |
| 2                | 2 | 2 | 59.96                                          | 63.25   | 51.94  | 175.15 |  |  |
| 2                | 3 | 1 | 19.70                                          | 19.74   | 14.13  | 53.58  |  |  |
| 2                | 3 | 2 | 49.48                                          | · 52.34 | 53.86  | 155.68 |  |  |
| Total            |   |   | 427.67                                         | 500.19  | 425.85 | 500.12 |  |  |

The degree of freedom for each main effect is one less than the number of levels of the corresponding factor. The degree of freedom for each interaction is the product of the degrees of freedom for those factors appearing in the interaction. The degree of freedom for the three main effects are 1, 2, 1 while the degree of freedom for the two way interactions are 2, 1, 2 and degrees of freedom for the three way interactions is 2.

Table 5.402 shows the complete analysis of variance.

# Table 5.399: Complete Analysis of Variance for Effect of Row Spacings,Irrigation Depths and Irrigation Systems on IRR of Summer Groundnutat T.C.D. Farm, WREMI, Samiala in 2005, 2006 and 2007

| Source of             | Degree of | Sum of    | Mean      | F        | F <sub>0.05</sub> /F <sub>0.01</sub> | Significance   |  |  |  |  |  |
|-----------------------|-----------|-----------|-----------|----------|--------------------------------------|----------------|--|--|--|--|--|
| Variation             | Freedom   | Squares   | Squares   |          | from                                 | 1              |  |  |  |  |  |
|                       |           |           |           |          | literature                           |                |  |  |  |  |  |
| Replicates            | 2         | 246.4400  | 123.2200  | 12.1876  | 3.32/5.39                            | S              |  |  |  |  |  |
| Main Effects          |           |           |           |          |                                      |                |  |  |  |  |  |
| A                     | 1         | 415.8103  | 415.8103  | 41.1274  | 4.17/7.56                            | S              |  |  |  |  |  |
| В                     | 2         | 900.1723  | 450.0861  | 44.5176  | 3.32/5.39                            | S              |  |  |  |  |  |
| С                     | 1         | 8750.5979 | 8750.5979 | 865.5132 | 4.17/7.56                            | S              |  |  |  |  |  |
| Two way Interaction   |           |           |           |          |                                      |                |  |  |  |  |  |
| AB                    | 2         | 6.3660    | 3.1830    | 0.3148   | 3.32/5.39                            | N <sup>*</sup> |  |  |  |  |  |
| AC                    | 1         | 78.7354   | 78.7354   | 7.7876   | 4.17/7.56                            | N              |  |  |  |  |  |
| BC                    | 2         | 6.2947    | 3.1473    | 0.3113   | 3.32/5.39                            | N.             |  |  |  |  |  |
| Three way Interaction |           |           |           |          |                                      |                |  |  |  |  |  |
| ABC                   | 2         | 5.3131    | 2.6565    | 0.2628   | 3.32/5.39                            | N              |  |  |  |  |  |
| Error                 | 22        | 222.4266  | 10.1103   |          |                                      | •              |  |  |  |  |  |
| Total                 | 2         | 5.3131    | 2.6565    | 0.2628   | 3.32/5.39                            | N              |  |  |  |  |  |

Obtaining the appropriate values of  $F_{0.05}$  and  $F_{0.01}$  from the literature, it was found that the tests for replicates, factor A, factor B and factor C were significant at both the levels. Two factor interactions AB, AC and BC were not significant at both levels. Similarly, three factor interactions were not significant at both the levels.

It was concluded that the variations in the row spacing, irrigation depths and irrigation systems affected the IRR of summer groundnut. Combination of row spacings, irrigation depths and irrigation systems did not affect the IRR of summer groundnut.

#### 5.3.2.2 Cauliflower

#### Analysis of variance

#### Analysis of variance on yield of cauliflower

As discussed earlier, similarly the effects of row spacings, irrigation depths and irrigation systems on yield of cauliflower at T.C.D. Farm, WREMI, Samiala in 2005, 2006 and 2007 were analyzed.
| Factor                 | Level 1  | Level 2  | Level 3  |
|------------------------|----------|----------|----------|
| A : Row Spacings       | 0.60 m   | 0.45 m   |          |
| B : Irrigation Depth   | 0.75 ETc | 1.00 ETc | 1.25 ETc |
| C : Irrigation Systems | MIS      | ITK MIS  |          |

Table 5.400 shows yield of cauliflower for various level of factors.

# Table 5.400: Effects of Row Spacings, Irrigation Depths and Irrigation Systems on Yield of Cauliflower at T.C.D. Farm, WREMI, Samiala in 2005, 2006 and 2007

| Le    | vel of fact | ors | Expect  | Expected yield of cauliflower, quintal/ha |         |         |  |
|-------|-------------|-----|---------|-------------------------------------------|---------|---------|--|
| Α     | В           | C   | 2005    | 2006                                      | 2007    | Total   |  |
| 1     | 1           | 1   | 240.35  | 194.10                                    | 307.76  | 742.21  |  |
| 1     | 1           | 2   | 242.39  | 195.58                                    | 350.58  | 788.55  |  |
| 1     | 2           | 1.  | 238.76  | 190.02                                    | 256.25  | 685.03  |  |
| 1     | 2           | 2   | 226.44  | 193.64                                    | 230.93  | 651.01  |  |
| 1     | 3           | 1   | 182.60  | 184.81                                    | 209.96  | 577.37  |  |
| 1     | 3           | 2   | 193.11  | 188.05                                    | 279.35  | 660.51  |  |
| 2     | 1           | 1   | 283.32  | 221.63                                    | 382.23  | 887.18  |  |
| 2     | 1           | 2   | 289.79  | 223.63                                    | 475.41  | 988.84  |  |
| 2     | 2           | 1   | 256.33  | 211.50                                    | 355.80  | 823.63  |  |
| 2     | 2           | 2   | 255.79  | 208.63                                    | 377.46  | 841.88  |  |
| 2     | 3           | 1 - | 253.98  | 205.18                                    | 259.51  | 718.67  |  |
| 2     | 3           | 2   | 200.74  | 206.66                                    | 304.53  | 711.93  |  |
| Total |             |     | 2863.59 | 2423.42                                   | 3789.78 | 9076.79 |  |

The analysis of the data were carried out by treating the experiment as a two way classification with a b c treatments and r replicates.

 $C = (9076.79)^2 / 36$ 

= 2288558.8

SST =  $(240.35)^2 + (194.10)^2 + \dots + (304.53)^2 - 2288558.8$ = 158306.3319

SS(Tr)= 1/3 [(742.21)<sup>2</sup> + (788.55)<sup>2</sup> + .... + (711.93)<sup>2</sup>] -2288558.8 = 48346.59762

SSR =  $1/12 [(2863.59)^{2} + (2423.42)^{2} + (3789.78)^{2}] - 2288558.8$ = 81069.5814

Next, the treatment sum of squares could be subdivided into the three main effect sums of squares, SSA, SSB and SSC, the three two way interaction sums of squares, SS(AB), SS(AC) and SS(BC) and the three way interaction . sum of squares SS(ABC). To facilitate the calculation of these sums of squares following three tables were constructed.

|   |       | 1                 | 2         | 3         | Total     |
|---|-------|-------------------|-----------|-----------|-----------|
| ۸ | 1     | 1530.7600         | 1336.0428 | 1237.8758 | 4104.6785 |
| A | 2     | <b>18</b> 76.0138 | 1665.5061 | 1430.5916 | 4972.1115 |
|   | Total | 3406.7738         | 3001.5489 | 2668.4673 | 9076.7900 |

|   |       | С         |           |           |
|---|-------|-----------|-----------|-----------|
|   |       | 1         | 2         | Total     |
| A | 1     | 2004.6088 | 2100.0698 | 4104.6785 |
|   | . 2   | 2429.4690 | 2542.6425 | 4972.1115 |
|   | Total | 4434.0777 | 4642.7123 | 9076.7900 |

|   |              | С         |           |           |
|---|--------------|-----------|-----------|-----------|
|   |              | 1         | 2         | Total     |
|   | 1            | 1629.3889 | 1777.3849 | 3406.7738 |
| В | 2            | 1508.6540 | 1492.8948 | 3001.5489 |
|   | 3            | 1296.0347 | 1372.4326 | 2668.4673 |
|   | <b>Fotal</b> | 4434.0777 | 4642.7123 | 9076.7900 |

To calculate SSA, SSB and SS(AB), refer to the first of the above tables and the treatment sum of squares is calculated as

$$\operatorname{rc} \sum_{i=1}^{a} \sum_{j=1}^{b} (yij \dots - y \dots)^{2} = 1/\operatorname{rc} \sum_{i=1}^{a} \sum_{j=1}^{b} \operatorname{Tij}^{2} \dots - \mathbb{C}_{\dots} (5.4)$$
  
=1/6[(1530.7600)2 + (1876.0138)2+..... + (1430.5916)2] - 2288558.  
= 44858.44788

$$SSA = 1/bcr \sum_{i=1}^{\alpha} T^{2}i..-C ... (5.5)$$
  
= 1/18 [(4104.6785)2 + (4972.1115)2] - 2288558.8  
= 20901.1106

 $SSB = 1/acr \sum_{i=1}^{b} T^{2}j.. - C ... ...$ = 1/12 [(3406.7738)2 + (3001.5489)2 + (2668.4673)2] - 2288558.8 = 22784.6411

(5.6)

SS(AB) = 44858.44788 - 20901.1106 - 22784.6411 = 1172.6962

Performing the same calculations for the second of the tables

Treatment sum of squares

= 1/9 [(2004.6088)2 + (2429.4690)2 + ..... + (2542.6425)2] – 2288558.8 = 22118.94744

SSC = 1/18 [(4434.0777)2 + (4642.7123)2] - 2288558.8 = 20901.1106

SS(AC) = 22118.94744–20901.1106– 20901.1106 = 8.7149

The analysis of third table yields the treatment sum of squares = 1/6 [(1629.3889)2 + (1508.6540)2 + ..... + (1372.4326)2] – 2288558.8 = 25116.9560

SS(BC) = 25116.9560-22784.6411-20901.1106 = 1123.1930

The three way interaction sum of squares

SS(ABC) = SS (Tr) - SSA - SSB - SSC - SS(AB) - SS(AC) - SS(BC) = 48346.59762 - 20901.1106 - 22784.6411 - 20901.1106-1172.6962 - 8.7149 - 1123.1930 = 1147.1199

The degree of freedom for each main effect is one less than the number of levels of the corresponding factor. The degree of freedom for each interaction is the product of the degrees of freedom for those factors appearing in the interaction. The degree of freedom for the three main effects are 1, 2, 1 while the degree of freedom for the two way interactions are 2, 1, 2 and degrees of

freedom for the three way interactions is 2. Table 5.401 give complete analysis if variance for cauliflower for year 2005,2006, and 2007.

| Source of<br>Variation | Degree of<br>Freedom | Sum of<br>Squares | Mean<br>Squares | F     | F <sub>0.05</sub> & F <sub>0.01</sub><br>from | Significance |
|------------------------|----------------------|-------------------|-----------------|-------|-----------------------------------------------|--------------|
|                        |                      |                   |                 |       | literature                                    |              |
| Replicates             | 2                    | 81069.58          | 40534.79        | 30.86 | 3.32/5.39                                     | S            |
| Main Effects           | S                    |                   |                 |       |                                               |              |
| A                      | 1                    | 20901.11          | 20901.11        | 15.91 | 4.17/7.56                                     | S            |
| В                      | 2                    | 22784.64          | 11392.32        | 8.67  | 3.32/5.39                                     | S            |
| С                      | 1                    | 1209.12           | 1209.12         | 0.92  | 4.17/7.56                                     | N            |
| Two way In             | teractions           |                   |                 |       |                                               |              |
| AB                     | 2                    | 1172.69           | 586.34          | 0.44  | 3.32/5.39                                     | N            |
| AC                     | 1                    | 8.71              | 8.71            | 0.00  | 4.17/7.56                                     | N            |
| BC                     | 2                    | 1123.19           | 561.59          | 0.42  | 3.32/5.39                                     | N            |
| Three way Interactions |                      |                   |                 |       |                                               |              |
| ABC                    | 2                    | 1147.11           | 573.56          | 0.43  | 3.32/5.39                                     | N            |
| Error                  | 22                   | 28890.15          | 1313.18         |       |                                               |              |
| Total                  | 35                   | 158306.33         |                 |       |                                               |              |

# Table 5.401: Complete Analysis of Variance for Effect of Row Spacing, Irrigation Depths and Irrigation Systems on Yield of Cauliflower at T.C.D. Farm, WREMI, Samiala in 2005, 2006 and 2007

Obtaining the appropriate values of  $F_{0.05}$  and  $F_{0.01}$  from the literature, it was found that the test for replicates was significant at 0.05 and 0.01 levels. The tests for factor A and factor B were significant at both the levels, while test of factor C was insignificant at both the levels. Two factor interactions, AB, AC and BC were insignificant at both the levels. Similarly, three factor interactions were not significant at both the levels.

It was concluded that the variations in the row spacings and irrigation depths affected the yield of cauliflower and irrigation systems did not affect the yield of cauliflower. Other interactions did not affect the yield.

### Analysis of variance on IRR of cauliflower

Analysis of variance reflects the effects of row spacings, irrigation depths and irrigation systems on IRR of cauliflower. Table 5.17 shows IRR for three years at various level of factors.

| Factor                 | Level 1  | Level 2  | Level 3  |
|------------------------|----------|----------|----------|
| A : Row Spacings       | 0.60 m   | 0.45 m   |          |
| B : Irrigation Depth   | 0.75 ETc | 1.00 ETc | 1.25 ETc |
| C : Irrigation Systems | MIS      | ITK MIS  |          |

Internal Rate of Return for cauliflower is given in Table 5.402

# Table 5.402: Effects of Row Spacings, Irrigation Depths and Irrigation Systems on IRR of Cauliflower at T.C.D. Farm, WREMI, Samiala in 2005, 2006 and 2007

| Lev   | vel of fact | ors | Internal Rate of Return, % |         |         |         |
|-------|-------------|-----|----------------------------|---------|---------|---------|
| A     | В           | С   | 2005                       | 2006    | 2007    | Total   |
| 1     | 1           | 1   | 166.09                     | 127.21  | 223.00  | 516.30  |
| 1     | 1           | 2   | 326.69                     | 250.81  | 499.18  | 1076.68 |
| 1     | 2           | 1   | 164.75                     | 123.78  | 179.47  | 468.01  |
| 1     | 2           | 2   | 300.06                     | 247.72  | 307.23  | 855.01  |
| 1     | 3           | 1   | 117.55                     | 119.41  | 140.54  | 377.49  |
| 1     | 3           | 2   | 246.87                     | 238.80  | 384.55  | 870.21  |
| 2     | 1           | 1   | 159.05                     | 117.82  | 225.29  | 502.16  |
| 2     | 1           | 2   | 328.27                     | 241.43  | 572.12  | 1141.83 |
| 2     | 2           | 1   | 141.00                     | 111.06  | 207.57  | 459.64  |
| 2     | 2           | 2   | 283.63                     | 221.75  | 443.42  | 948.80  |
| 2     | 3           | 1   | 139.43                     | 106.84  | 143.13  | 389.40  |
| 2     | 3           | 2   | 211.41                     | 219.17  | 347.62  | 778.20  |
| Total |             |     | 2863.59                    | 2423.42 | 2584.79 | 2125.80 |

The degree of freedom for each main effect is one less than the number of levels of the corresponding factor. The degree of freedom for each interaction is the product of the degrees of freedom for those factors appearing in the interaction. The degree of freedom for the three main effects are 1, 2, 1 while the degree of freedom for the two way interactions are 2, 1, 2 and degrees of freedom for the three way interactions is 2.

Table 5.403 give complete analysis of variance on IRR of cauliflower.

# Table 5.403: Complete Analysis of Variance for Effect of Row Spacings, Irrigation Depths and Irrigation systems on IRR of Cauliflower at T.C.D. Farm, WREMI, Samiala in 2005, 2006 and 2007

| Source of     | Degree of | Sum of    | Mean      | F     | F0.05 / F0.01 | Significance |
|---------------|-----------|-----------|-----------|-------|---------------|--------------|
| Variation     | Freedom   | Squares   | Squares   |       | from          |              |
|               |           |           |           |       | literature    |              |
| Replicates    | 2         | 105260.41 | 52630.20  | 20.13 | 3.32/5.39     | S            |
| Main Effects  |           |           |           |       |               |              |
| A             | 1         | 88.07     | 88.07     | 0.03  | 4.17/7.56     | N            |
| В             | 2         | 28628.57  | 14314.29  | 5.47  | 3.32/5.39     | S            |
| С             | · 1       | 243003.79 | 243003.79 | 92.94 | 4.17/7.56     | S            |
| Two way Inter | ractions  |           |           |       |               |              |
| AB            | 2         | 1271.52   | 635.76    | 0.24  | 3.32/5.39     | N            |
| AC            | 1         | 166.98    | 166.98    | 0.06  | 4.17/7.56     | N            |
| BC            | 2         | 5733.07   | 2866.54   | 1.10  | 3.32/5.39     | N            |
| Three way Int | eractions |           |           |       |               |              |
| ABC           | 2         | 2126.61   | 1063.30   | 0.41  | 3.32/5.39     | N            |
| Error         | 22        | 57521.05  | 2614.59   |       |               |              |
| Total         | 35        | 443800.07 |           |       |               |              |

Obtaining the appropriate values of  $F_{0.05}$  and  $F_{0.01}$  from the literature, it was found that the test for replicates was significant at 0.05 and 0.01 levels. The test for factor A was not significant at both the levels. Factor B and factor C were significant at both the levels. Two factor interactions AB, AC and BC were insignificant at both the levels. Similarly, three factor interactions were not significant at both the levels.

It was concluded that the variations in the irrigation depths and irrigation systems affected the IRR of cauliflower. Other interactions did not affect the IRR.

#### 5.3.2.3 Summer groundnut and cauliflower

Two crops, summer groundnut and cauliflower are grown in a year. IRR is calculated and analysis of variance is carried out for the year

#### Analysis of variance

Analysis of variance on combined yield of summer groundnut and cauliflower

Analysis of variance was determined to find out the effects of row spacings, irrigation depths and irrigation systems on yield of summer groundnut and cauliflower.

Combined yield of summer groundnut and Cauliflower are given in Table 5.404.

| Factor                 | Level 1  | Level 2  | Level 3  |
|------------------------|----------|----------|----------|
| A : Row Spacings       | 0.60 m   | 0.45 m   |          |
| B : Irrigation Depth   | 0.75 ETc | 1.00 ETc | 1.25 ETc |
| C : Irrigation Systems | MIS      | ITK MIS  |          |

# Table 5.404: Effects of Row Spacing, Irrigation Depths and Irrigation Systems on Combined Yield of Summer Groundnut and Cauliflower at T.C.D. Farm, WREMI, Samiala in 2005, 2006 and 2007

| Lev   | el of fac | tors | s Combined yield of Summer Groundnut and Cauliflower, quintal/ha |         |         |         |
|-------|-----------|------|------------------------------------------------------------------|---------|---------|---------|
| Α     | В         | С    | 2005                                                             | 2006    | 2007    | Total   |
| 1     | 1         | 1    | 261.38                                                           | 217.47  | 331.74  | 810.59  |
| 1     | 1         | 2    | 262.98                                                           | 218.68  | 373.07  | 854.73  |
| 1     | 2         | 1    | 258.87                                                           | 212.20  | 277.15  | 748.23  |
| 1     | 2         | 2    | 246.85                                                           | 215.56  | 251.76  | 714.17  |
| 1     | 3         | 1    | 201.19                                                           | 205.71  | 229.79  | 636.70  |
| 1     | 3         | 2    | 211.89                                                           | 208.77  | 298.73  | 719.39  |
| 2     | 1         | 1    | 311.73                                                           | 250.94  | 409.53  | 972.19  |
| 2     | 1         | 2    | 315.85                                                           | 252.40  | 502.10  | 1070.36 |
| 2     | 2         | 1    | 282.00                                                           | 237.72  | 381.08  | 900.79  |
| 2     | 2         | 2    | 281.67                                                           | 235.28  | 401.52  | 918.46  |
| 2     | 3         | 1    | 277.72                                                           | 228.94  | 281.18  | 787.84  |
| 2     | 3         | 2    | 224.21                                                           | 230.77  | 327.02  | 781.99  |
| Total |           |      | 3136.33                                                          | 2714.43 | 4064.67 | 9915.44 |

The degree of freedom for each main effect is one less than the number of levels of the corresponding factor. The degree of freedom for each interaction is the product of the degrees of freedom for those factors appearing in the interaction. The degree of freedom for the three main effects are 1, 2, 1 while the degree of freedom for the two way interactions are 2, 1, 2 and degrees of freedom for the three way interactions is 2.

Table 5.405 shows complete analysis of variance.

# Table 5.405: Complete Analysis of Variance for Effect of Row Spacings, Irrigation Depths and Operation Methods on Combined Yield of Summer Groundnut and Cauliflower at T.C.D. Farm, WREMI, Samiala in 2005, 2006 and 2007.

| Source of    | Degree of  | Sum of    | Mean     | F     | F <sub>0.05</sub> & F <sub>0.01</sub> | Significance |
|--------------|------------|-----------|----------|-------|---------------------------------------|--------------|
| Variation    | Freedom    | Squares   | Squares  |       | from                                  |              |
|              |            |           |          |       | literature                            |              |
| Replicates   | 2          | 79527.04  | 39763.52 | 30.39 | 3.32/5.39                             | S            |
| Main Effects | S          |           |          |       |                                       |              |
| A            | 1          | 24955.73  | 24955.73 | 19.07 | 4.17/7.56                             | S            |
| В            | 2          | 25545.68  | 12772.84 | 9.76  | 3.32/5.39                             | S            |
| С            | 1          | 1142.09   | 1142.04  | 0.87  | 4.17/7.56                             | N            |
| Two way In   | teractions |           |          |       |                                       |              |
| AB           | 2          | 1322.87   | 661.43   | 0.50  | 3.32/5.39                             | N            |
| AC           | 1          | 8.22      | 8.22     | 0.00  | 4.17/7.56                             | N            |
| BC           | 2          | 1060.01   | 530.00   | 0.40  | 3.32/5.39                             | N            |
| Interactions | 1          |           |          |       |                                       |              |
| ABC          | 2          | 1111.21   | 555.60   | 0.42  | 3.32/5.39                             | N            |
| Error        | 22         | 28779.09  | 1308.14  |       |                                       |              |
| Total        | 35         | 163451.99 |          |       |                                       |              |

Obtaining the appropriate values of  $F_{0.05}$  and  $F_{0.01}$  from the literature, it was found that the test for replicates was significant at 0.05 and 0.01 levels. The tests for factor A and factor B were significant at both the levels, while test of factor C was insignificant at both the levels. Two factor interactions, AB, AC and BC were insignificant at both the levels. Similarly, three factor interactions were not significant at both the levels.

It was concluded that the variations in the row spacings and irrigation depths affected the combined yield of summer groundnut and cauliflower and irrigation systems did not affect the combined yield of summer groundnut and cauliflower. Other interactions did not affect the yield.

# Analysis of Variance on Combined IRR of Summer Groundnut and Cauliflower

Analysis of variance was determined to find out the effects of row spacings, irrigation depths and irrigation systems on IRR of summer groundnut and cauliflower.

| Factor                 | Level 1  | Level 2  | Level 3  |
|------------------------|----------|----------|----------|
| A : Row Spacings       | 0.60 m   | 0.45 m   |          |
| B : Irrigation Depth   | 0.75 ETc | 1.00 ETc | 1.25 ETc |
| C : Irrigation Systems | MIS      | ITK MIS  |          |

Table 5.406shows IRR for three years for various factors.

# Table 5.406: Effects of Row Spacing, Irrigation Depths and Irrigation Systems on Combined IRR of Summer Groundnut and Cauliflower at T.C.D. Farm, WREMI, Samiala in 2005, 2006 and 2007

| Lev   | el of fac | tors | Internal Rate of Return, % |         |         |         |
|-------|-----------|------|----------------------------|---------|---------|---------|
| Α     | В         | С    | 2005 2006                  |         | 2007    | Total   |
| 1     | 1         | 1    | 100.40                     | 84.18   | 132.72  | 317.30  |
| 1     | 1         | 2    | 197.99                     | 167.21  | 289.22  | 654.42  |
| 1     | 2         | 1    | 98.48                      | 80.84   | 106.90  | 286.23  |
| 1     | 2         | 2    | 184.82                     | 162.62  | 189.48  | 536.91  |
| 1     | 3         | 1    | 72.82                      | 76.91   | 86.01   | 235.75  |
| 1     | 3         | 2    | 154.09                     | 155.07  | 224.31  | 533.47  |
| 2     | 1         | 1    | 100.47                     | 80.86   | 132.29  | 313.62  |
| 2     | 1         | 2    | 203.95                     | 166.39  | 327.07  | 697.41  |
| 2     | 2         | 1    | 88.49                      | 74.12   | 121.27  | 283.88  |
| 2     | 2         | 2    | 181.29                     | 152.06  | 257.17  | 590.51  |
| 2     | 3         | 1    | 85.62                      | 69.32   | 85.22   | 240.17  |
| 2     | 3         | 2    | 140.13                     | 145.37  | 206.00  | 491.51  |
| Total | د         |      | 1610.73                    | 1417.11 | 1608.56 | 1414.95 |

The degree of freedom for each main effect is one less than the number of levels of the corresponding factor. The degree of freedom for each interaction is the product of the degrees of freedom for those factors appearing in the interaction. The degree of freedom for the three main effects are 1, 2, 1 while the degree of freedom for the two way interactions are 2, 1, 2 and degrees of freedom for the three way interactions is 2. Table 5.407 shows complete analysis of variance.

Table 5.407 gives effects of row spacing, Irrigation depths and irrigation systems on combined IRR of summer groundnut and cauliflower.

# Table 5.407: Complete Analysis of Variance for Effect of Row Spacings,Irrigation Depths and Irrigation Systems on Combined IRR of SummerGroundnut and Cauliflower at T.C.D. Farm, WREMI, Samiala in2005, 2006 and 2007

| Source of              | Degree of | Sum of    | Mean     | F      | F <sub>0.05</sub> & F <sub>0.01</sub> | Significance |  |  |
|------------------------|-----------|-----------|----------|--------|---------------------------------------|--------------|--|--|
| Variation              | Freedom   | Squares   | Squares  |        | from                                  |              |  |  |
|                        |           |           |          |        | literature                            |              |  |  |
| Replicates             | 2         | 24740.37  | 12370.18 | 19.41  | 3.32/5.39                             | S            |  |  |
| Main Effects           |           |           |          |        |                                       |              |  |  |
| A                      | 1         | 78.11     | 78.11    | 0.12   | 4.17/7.56                             | N            |  |  |
| В                      | 2         | 9783.69   | 4891.84  | 7.67   | 3.32/5.39                             | S            |  |  |
| С                      | 1         | 92749.76  | 92749.76 | 145.56 | 4.17/7.56                             | S            |  |  |
| Two way Interactions   |           |           |          |        |                                       |              |  |  |
| AB                     | 2         | 386.97    | 193.48   | 0.30   | 3.32/5.39                             | N            |  |  |
| AC                     | 1         | 87.81     | 87.81    | 0.13   | 4.17/7.56                             | N            |  |  |
| BC                     | 2         | 1565.65   | 782.82   | 1.22   | 3.32/5.39                             | N            |  |  |
| Three way Interactions |           |           |          |        |                                       |              |  |  |
| ABC                    | 2         | 533.71    | 266.85   | 0.41   | 3.32/5.39                             | N            |  |  |
| Error                  | 22        | 14018.21  | 637.19   |        |                                       |              |  |  |
| Total                  | 35        | 143944.31 |          |        |                                       |              |  |  |

Obtaining the appropriate values of  $F_{0.05}$  and  $F_{0.01}$  from the literature, it was found that the test for replicates was significant at 0.05 and 0.01 levels. The tests for factor A were not significant at both the levels. Test for factor B and factor C were significant at both the levels. Two way interactions, AB, AC and BC were insignificant at both the levels. Similarly, three way interactions were not significant at both the levels.

It was concluded that the variations in the irrigation depths and irrigation systems affected the combined IRR of summer groundnut and cauliflower. Other interactions did not affect the IRR.

182

# 5.4 Conclusions

## 5.4.1 Indoor ITK MIS laboratory work

- Loss of head along the lateral were determined and used to calculate F factor.
- Regression equations were developed to determine head loss at outlets and could be utilized for design of ITK MIS.
- Head loss through polytube at each outlet could be determined using developed Regression equations.
- For ITK MIS, F factor derived by earlier researchers cannot be used as exponent of discharge to determine friction factor f is difficult to derive analytically and graphically. This is so because every outlet has polytube of different diameter and length. A micro manifold is attached to the other end of the polytube. To this 1 to 4 microtubes of different diameter and length are attached. Therefore experimental approach is adopted to determine F factor for 20 mm lateral.
- With reference to analysis of Fig. 5.229 to 5.234, in ITK MIS, F factor depends on the no.of microtubes attached to the polytube. F factor for one particular diameter of polytube increases with increase in no. of microtubes. This proves that F factor depends on discharge through outlet (i.e. microtube).
- F factors are developed for each combination of polytubes and microtubes for 20 mm lateral and are now readily available for design of ITK MIS.
- For laterals of 12 mm and 16 mm, F factor comes to more than 1.0 at first outlet due to more head loss observed along the section of the lateral upto the first outlet compared to theoretical head loss up to the first outlet using the calculated friction factor by Churchill's equation, length of the lateral upto the first outlet, observed discharge and inner diameter of the lateral. This may be due to pressure transducers with least count of 0.1 m is used.

If the pressure transducers having 0.01 m or 0.001 m least count were used, then this problem could be solved and F factor for 12 mm and 16 mm laterals could be determined. Otherwise or meanwhile only 20 mm laterals can be used for the ITK MIS.

• The length of microtube could be determined to achieve desired discharge for a given inlet pressure using the developed regression equations.

# 5.4.2 Field experimental work

#### 5.4.2.1 Summer groundnut

- In MIS, maximum yield is 22.79 quintal/ha for row spacing 0.6 m and 28.34 quintal/ha for 0.45 m row spacing for 75 % of crop water requirement.
- For MIS, maximum Internal Rate of Return is 25.67 % for 0.6 m and is 30.89 % for 0.45 m spacing.
- In ITK MIS, maximum yield is 22.06 quintal/ha for 0.6 m row spacing and is 27.17 quintal/ha for 0.45 row spacing for 75 % of crop water requirement.
- For ITK Micro irrigation system, Internal Rate of Return is 54.96 % for 0.6 m spacing and 65.49 % for 0.45 m spacing.
- From the analysis of variance on yield of crop, it is concluded that the variations in the row spacings and irrigation depths affect the yield of summer groundnut but the irrigation system does not affect the yield of summer groundnut. Interactions of row spacings, irrigation depths and irrigation systems do not affect the yield.
- From the analysis of variance on IRR, it is concluded that the variations in the row spacings, irrigation depths and irrigation systems affect the IRR of summer groundnut. Interactions of row spacings, irrigation depths and irrigation systems do not affect the IRR of summer groundnut.

# 5.4.2.2 Cauliflower

- In MIS, maximum yield is 250.93 quintal/ha for row spacing 0.6 m and 301.93 quintal/ha for 0.45 m row spacing for 75 % of crop water requirement.
- In MIS, maximum Internal Rate of Return is 172.03 % for 0.6 m and is 167.35 % for 0.45 m spacing.
- In ITK MIS, maximum yield is 273.08 quintal/ha for 0.6 m row spacing and is 349.52 quintal/ha for 0.45 row spacing for 75 % of crop water requirement.
- For ITK MIS, Internal Rate of Return is 359.28 % for 0.6 m row spacing and 380.56 % for 0.45 m row spacing.
- From the analysis of variance on yield, it is concluded that the variations in the row spacings and irrigation depths affect the yield of cauliflower but the irrigation system do not affect the yield of cauliflower.
- From the analysis of variance on IRR, it is concluded that the variations in the irrigation depths and irrigation systems affect the IRR of cauliflower. Interactions of row spacings, irrigation depths and irrigation systems do not affect the IRR of cauliflower.

# 5.4.2.3 Combination of summer groundnut and cauliflower

- For MIS, maximum Internal Rate of Return is 107.24 % for 0.6 m row spacing and is 106.61 % for 0.45 m row spacing for 75 % of crop water requirement.
- For ITK MIS, maximum Internal Rate of Return is 226.27% for 0.6 m row spacing and 245.49 % for 0.45 m row spacing for 75 % of crop water requirement.
- From the analysis of variance on IRR considering summer groundnut and cauliflower it is concluded that the variations in the irrigation depths and

irrigation systems affect the combined IRR of summer groundnut and cauliflower. Interactions of row spacings, irrigation depths and irrigation systems do not affect the combined IRR of summer groundnut and cauliflower.

- Thus it is concluded that from the point of view of IRR, ITK MIS gives the higher IRR and hence it is better than MIS.
- From the point of view of variance in IRR, it is concluded that variation in irrigation system i.e. MIS or ITK MIS affect the IRR. ITK MIS gives the better IRR.

# 5.5 Recommendations

# 5.5.1 Indoor ITK MIS laboratory work

ITK MIS can be designed for 20 mm lateral using F factor for various combinations of diameter and length of polytube and microtube and number of microtubes.

### 5.5.2 Field experimental work

ITK MIS is recommended to the farmers for summer groundnut and cauliflower as IRR is higher by 130 % compared to that of MIS for row spacing 0.45 m.

The IRR of the ITK MIS is 130 % more than that of the MIS as the cost of the ITK MIS is 40 % less than that of MIS.

# Future scope of work

Determination of F factor for 12 mm, 16 mm and 25 mm diameter of laterals for ITK MIS with pressure transducers having least count of 0.01 or 0.001 m.

Determination of F factor for various diameter of manifold, submain and main for ITK MIS.

Head loss through various length and diameter of micromanifold attached to the polytube in ITK MIS.

Design of ITK MIS for various crops like cotton, banana, orchard crops and its economic analysis.