LIST OF FIGURES

Figure no.	TITLE	Page no.
Figure 1. Modalities of Cell Deatl	h	
Figure 2. Death receptor apopto	sis signaling	
Figure 3. Binding of caspase-8 a	nd cFLIP to FADD at DISC	
Figure 4. cFLIP in regulation of A	Autophagy	
Figure 5. Different isoforms of cl	FLIP in Human	
Figure 6. Involvement of FADD a	and cFLIP in regulation of Apoptosis and Auto	phagy32
Figure 7. Multiple role of FADD i	n regulation of cellular signaling	
Figure 8. Structural organization	ו of human FADD	
Figure 9. The three-Dimensional	l structure of human FADD	35
Figure 10. The conserved seque	ence of DED in FADD, cFLIP and pro-capsase-	836
Figure 11. The orthologs of FAD	D in human, mouse and Xenopus	
Figure 12 Cytosolic and nuclear	sub cellular localization of human FADD	
Figure 13. TNFR1 signaling		41
Figure 14. The TRAIL signaling of	of apoptosis	42
Figure 15. Interaction of FADD a	nd RIP determines fate of cell death and surv	vival signaling
		44
Figure 16. Role of FADD in autor	phagy	45
Figure 17. Role of FADD in Necro	optosis	47
Figure 18. Role of FADD in inflar	nmatory signaling	49
Figure 19. Expression of FADD a	nd cFLIP _L	71
Figure 20. Overexpression of pE	YFP-FADD	72
Figure 21. Induced expression	of FADD attenuates expression of $\ensuremath{cFLIP}\xspace_L$	and activate
cascades of extrinsic caspases		73
Figure 22. FADD potentiates CD ⁴	95L induced apoptosis	75
Figure 23. Analysis of FADD, cFL	${ m JP}_{ m L}$ and pro-caspases-8 binding at DISC	76
Figure 24. FADD and $cFLIP_L$ bala	ances mitochondrial integrity	78
Figure 25. FADD and cFLIP in re	gulation of cell viability	79
Figure 26. FADD and $cFLIP_L expl$	ression commences apoptotic cell death	80
Figure 27. Selective knockdown	of $cFLIP_L$ augments cell death	
Figure 28. Transient silencing of	f cFLIP _L challenges mitochondrial integrity	
Figure 29. Knockdown of cFLIP	$_{\rm L}$ augments cell death, independent of TNF-o	α stimulation.
		83

Figure no.

TITLE

Figure 30. Knockdown of cFLIP _L induces apoptosis, independent of TNF- α stimulat	ion.84
Figure 31. TNF- α stimulation to HKE 293T cells	85
Figure 32. FADD augments cell death in TNF- α stimulated cells	86
Figure 33. FADD augments downstream apoptosis signaling in TNF- α stimulated ce	ells.86
Figure 34. Induced expression of FADD inhibits NF-кВ activation, independent o	of TNF-α
stimulation.	88
Figure 35. FADD ubiquitinate IKKβ	89
Figure 36. Knockdown of $cFLIP_L$ mitigates NF- κB activation.	90
Figure 37. Mutation of specific amino acids in the FADD and $cFLIP_L$ modulate activity.	s NF-кВ 91
Figure 38. FADD abrogates cIAP2 expression and interacts with RIP1 and procas	pases-8. 92
Figure 39. FADD protects RIP1 integrity	93
Figure 40. <i>In silico</i> molecular docking between death domains (DD) of FADD and RI	IP1.94
Figure 41. FADD and $cFLIP_L$ synergistically regulates NF- κB signaling	95
Figure 42. Knockdown of $cFLIP_L$ facilitates RIP1-FADD complex formation	96
Figure 43. FADD augments apoptotic death rather than necropotosis in TNF- α sti	mulated
cells.	96
Figure 44. FADD triggers JNK1 mediate ubiquitination of $cFLIP_L$	97
Figure 45. FADD and $cFLIP_L$ regulates oxidative stress and JNK1 expression	98
Figure 46. FADD triggers JNK1 mediate ubiquitination of $cFLIP_L$ in the presence o	f TNF-α.
	99
Figure 47. Knockdown of cFLIP _L triggers ROS generation and JNK1 activation	.100
Figure 48. FADD and $CFLIP_L$ regulates autophagy signaling.	.102
Figure 49. Ectopic expression of $CFLIP_L$ suppresses rapamycin induced autophagy.	. 103
Figure 50. Induced expression of $cFLIP_L$ suppresses rapamycin induced cell death.	.103
Figure 51. Expression of $cFLIP_L$ balances Bcl-2 interaction with Beclin-1.	.104
Figure 52. Knockdown of $cFLIP_L$ ($cFLIP_L^{KD}$) and re-expression of $cFLIP_L$ in $cFLIP$	105
Figure 53 cFLIP, maintains cell viability	106
Figure 54. Depletion of $cFLIP_1$ imbalances autophagic equilibrium	107
Figure 55, cFLIP, stabilizes the interaction of Beclin-1 with Bcl-2	108
Figure 56, cFLIP, mitigates oxidative stress and restore interaction of Reclin-1 with	th Rcl-7
· Bare sol et Bit - integrees onducive succes and restore interaction of beelin-1 wi	.109

TITLE

Figure no.

LIST OF TABLES

Table no.	TITLE	Page no.
Table 1.	RT-qPCR primers. Following primers were used in this study.	61
Table 2.	Quantitative estimation of RNA and cDNA.	116
Table 3.	Quantification of RE digested insert and vector	117
Table 4.	IPTG dose standardization and induction profile.	118
Table 5.	Purification yield of human FADD (hFADD) protein	
Table 6.	Preliminary quantification of purified hFADD	120
Table 7.	Quantitative analysis of CP-FADD.	122