CONTENTS

		//	200
Chapter		Title	Page
		ABSTRACT	
		TABLE OF CONTENTS	IV
		LIST OF FIGURES	IX
		LIST OF TABLES	XI
		NOMENCLATURE	XIV
1		Introduction	01
1	1 1		()6
	1.1	Exergoeconomic Methodologies	07
	1.2	Organization of the Thesis	() /
2		Review of Literature	09
	2.1	Exergy Analysis of Thermal Systems	99
		2.1.1 Entropy Generation Minimization Metho	od 10
		2.1.2 Exergy Destruction Method	19
		2.1.3 Comparison between EGM and EDM	37
	2.2	Exergoeconomic Analysis	37
		2.2.1 TEO Method	4()
		2.2.2 Theory of Exergetic Cost	43
		2.2.3 Engineering Functional Analysis	44
		2.2.4 Thermoeconomic Functional analysis	45
		2.2.5 Structural Method	40

		2.2.6 Evolutionary programming	49
		2.2.7 EEA method	50
		2.2.8 Exergetic Production Cost method	51
		2.2.9 Graphical Method	51
		2.2.10 Input-Output Method	51
	2.3	Problem Formulation	53
	2.4	Objectives of the Research	54
3		AAVAR System	61
	3.1	System Description	61
		3.1.1 Chilling Unit	62
		3.1.2 Condensing Unit	62
	3.2	Other Options of Heat Energy Sources	66
		3.2.1 Heat from GT-HRSG Plant as Heat Source	67
		3.2.2 Tapped Steam from Steam Power Plant as Heat	68
		Source	70
	3.3	Steady State Online Data	70
		3.3.1 Online Data for Brine Chilling Unit	70
		3.3.2 Online Data for GT-HRSG	71
		3.3.3 Online Data for Steam Power Plant	72
4		Exergoeconomic Optimization Methodology	74
	4.1	Exergy Analysis	74
		4.1.1 Evergy Destruction Method (FDM)	75

,

		4.1.2 Entropy Generation Minimization Method (EGM)	77
	4.2	Exergoeconomic Analysis	77
		4.2.1 Exergy Costing	78
		4.2.2 Economic Analysis	80
		4.2.3 Exergoeconomic Evaluation	83
	4.3	Exergoeconomic Optimization	85
	4.4	Unified Approach for Exergoeconomic Optimization	91
5		Exergoeconomic Optimization of Existing	95
		System	
	5.1	Exergy Analysis	95
		5.1.1 System Simulation	95
,		5.1.2 EDM of Exergy Analysis	99
		5.1.3 EGM Method of Exergy Analysis	107
	5.2	Exergoeconomic Analysis	111
		5.2.1 Levelized O&M Cost	112
		5.2.2 Fuel Cost	121
		5.2.3 Cost Flows	121
		5.2.4 Exergoeconomic Evaluation	125
	5.3	Exergoeconomic Optimization	129
		5.3.1 Estimation of B_k , n_k and m_k	129
	•	5.3.2 Optimization Through Case by Case Iterative	141
		Procedure for AAVAR system	
		5.3.3 Optimization through Iterative Procedure for Pre-	146
,		coolers 1 and 2	140
		1 3 4 BECHIE ADO I HECHEGIONE	

6		Options Optimization of Alternative	150
	6.1	Steam Generated at HRSG as Heat Source	150
		6.1.1 System Simulation	151
		6.1.2 Exergy Analysis	151
		6.1.3 Exergoeconomic Analysis	163
		6.1.4 Exergoeconomic Evaluation	166
		6.1.5 Exergoeconomic Optimization	168
	6.2	Tapped Steam as Heat Source	182
		6.2.1 System Simulation	182
		6.2.2 Exergy Analysis	189
		6.2.3 Exergoeconomic Analysis	194
		6.2.4 Exergoeconomic Evaluation	197
		6.2.5 Exergoeconomic Optimization	198
	6.3	Comparison	206
7		Conclusions	209
		References	213
		Appendices	
		Appendix-A	227
		Appendix-B	231
		Appendix-C	234
		Appendix-D	237
		Appendix-E	240
		Appendix-F	242

Appendix-G	ł	244
Appendix-H	•	247
Appendix-I		249
Publication From This Work		
Acknowledgement		251