
CHAPTER 1

INTRODUCTION

An isometry h of the real line R is a self-homeomorhism of 
R for which there obviously does not exist a positive real number 
<5 such that for x, y in R, x * y,

Ihn(x) - hn(y)| ( = lx - yl ) > 6
for some n in Z; on the other hand, the left / right 
multiplication ha by a fixed real number a, a # -1, 0, 1, is a 
self-homeomorphism of R for which there does exist a positive real 
number £ (in fact any £ > 0 works) such that for x, y in R, x y,

|hn(x) - hn(y)| ( = a"|x - y\ ) >6 

for some n in Z. The self-homeomorphisms of the later type drew 
attention of Utz I 37 1 in 1950 who termed them unstable and 
carried out their study first time on a general metric space. The 
term expansive homeomorphism. which got into use in the literature 
for an unstable homeomorphism of Utz seems rather natural and 
descriptive of the notion and was suggested by Gottschalk and 
Hedlund (refer I 6, 13 J). The definition of such a homeomorphism 
on a metric space given by Utz is as follows :

Definition l.l. Given a metric space (X,d), a self-homeomorphism h 
of X is called expansive if there exists a positive real number £ 
such that whenever x, y e X, x * y, one can find an integer n 
satisfying d(hn(x) ,hn(y)) > £. The number £ is then called an 
expansive constant for h.
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Throughout, an expansive homeomorphism will mean an expansive 
self-homeomorphism.

Since the appearance of Uts’s paper in 1950, extensive work 
has been done on expansive homeomorp hisms. The work mainly 
concerns the study of properties of expansive homeomorphisms, 
their existence / non-existence on different metric spaces, their 
extension problems, their characterizations, their asymptotic 
properties, and so on.

The concept of expansive homeomorphism is defined and studied 
also in other contexts by various authors. For example, expansive 
homeomorphism on compact uniform spaces / surfaces are studied in 
[ 5, IS, 16 1 ; refer l 34 J for pointwise expansive homeomorphism 
on a metric space, I 40 ] for expansive maps, I 12 J for 
positively expansive maps and I 23 J for positively pseudo 
expansive maps; expansive automorphisms of topological groups are 
studied in t 1, 44 J and of topological vector spaces are studied 
in t lO 1 ; for expansive transformation semigroups / groups refer 
f 11, 30 1; uniformly expansive homeomorphisms are studied in 
I 36 1 ; also refer I 3 J for expansive flows, f 17 3 for expansive 
foliations, I 26 1 for continuumwise expansive homeomorphism; 
refer also I 24, 31 3 . However, it appears to us that the concept 
of expansive homeomorphism is yet not defined and studied in the 
settings of general topological spaces and G-spaces. Taking up 
this task, we study several examples and analyse the definition of
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expansive homeomorphism on a metric space and define the notion of 
expansiveness in these general settings. We then carry out the 
study of existence / non-existence of such homeomorphisms on 
different spaces, their properties, their characterisations, 
their extension problems and several other related problems. The 
present thesis is the outcome of interesting researches carried 
out by the author mainly along these lines. There are five 
chapters in the thesis and this chapter aims at providing 
introduction to the subject matter of the thesis through the 
recent developments regarding the concerned problems of expansive 
homeomorphisms.

Some of the interesting properties of the expansive 
homeomorphisms are concerning their compositions, restrictions, 
products, periodic and fixed points, etc. For example, considering 
multiplications h and hz on the real line R respectively by 
fixed real numbers 1/2 and 2, and observing that their composition 
is the identity on R, it is easily seen that the composition of 
two expansive homeomorphisms need not be expansive. In this regard 
consider the following example also.

Example 1.1. Let X = { 1/n, 1 - 1/n 1 n e N } with usual metric. 
Clearly, X is a compact metric space. Consider the mapping h 
defined on X by

h(x) = x if x = 0 or 1,
= point of X which is immediately to the right of x.
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This map may be called the right shift operator on X and is an 
expansive homeomorphism with expansive constant 6, 0 < 6 < 1/6. 
The left shift operator on X, defined similarly, is also expansive 
with the same expansive constant 6. But their composition being 
an identity is obviously not expansive. This shows that the 
composition of two expansive homeomorphisms need not be expansive
--  even if the underlying space is compact metric. However, the
following result for compact metric spaces concerning the 
composition of an expansive homeomorphism with itself is proved by 
Utz £371.

Theorem 1.1. Let X be a compact metric space and let h 
expansive homeomorphism on X. Then for each, integer m, m * 
is expansive on X-

Concerning the restrictions and product of expansive 
homeomorphisms, it is easy to see that the restriction of an 
expansive homeomorphism h on a metric space X to a subspace Y of X 
is expansive if h(Y) = Y; and, if h are expansive homeomorphisms 
on metric spaces X , i = 1,2, then so is the homeomorphism h4 x hz 
on Xt x X . The later property extends to any finite product but 
not to infinite product £21.

Next, observe that if <5 is an expansive constant for an 
expansive homeomorphism h on a metric space X, then obviously so 
is any & such that 0 < & < &; and in general, the set of all

be an 
0, hm
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expansive constants for h need not be bounded ( for example every 
real number 6 > 0 is an expansive constant for the multipliation 
ha of the real line R, a s* -1, 0, 1 ). However, if X is compact, 
then the set of all expansive constants for any expansive 
homeomorphism h on X is a bounded subset of real numbers and 
hence has a least upper bound. The question whether this least 
upper bound is an expansive constant for h was answered in 
negation by Bryant in I 6 J . His result follows.

Theorem 1.2. If X is a compact metric space and. & is a least upper 
bound of the expansive constants for an expansive homeomorpihism. h 
on X, then & is not an expansive constant for h-

Observe that for any a * -1, 0, 1, not only the set of 
expansive constants for the homeomorphism ha on E is an unbounded 
set but for each integer m * 0, ham is also expansive ( recall 
Theorem 1.1; notice that R is not compact ). Therefore, the 
following questions arise.
(t) Does there exist an expansive homeomorphism h on R, or more 
generally on Rn, n « N, such that hm is not expansive if 
m * -1, 0, 1 ? 
and
(a) Does there exist an expansive homeomorphism h on R, or more 
generally on Rn, such that the set of expansive constants for h is 
bounded ?
For an affirmative answer to these questions, refer Bryant and
Coleman t 7 ].
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Recall that a point x of a metric space X is said to be a 
periodic point of period k, k e N, with respect to a homeomorphism 

h of X if x is a fixed point of h . The following result of Utz 
I 37 ] concerning periodic points of a compact metric space with 

respect ‘ to an expansive homeomorphism on it shows that an 
expansive homeomorphism on a compact metric space can have only 
finitely many fixed points. ( In general it is not true, for 
example the identity homeomorphism on the set of integers Z with 
usual topology is expansive with expansive constant 6, 0 < 6 < 1 

and obviously all points of Z are its fixed points. )

Theorem 1.3. 2/ X is a compact metric space and. h is an expansive 
homeomorphism on X. then for each positive integer k, the points 
of X of period, k are finite in number. Thus the periodic points of 
X form a countable set.

In the same paper, Utz observes that expansiveness is a 
strong contradiction of regularity**0 on a metric space which 

is dense-in-itself; and recalls that £ 37 p.773 J a pointwise 
periodic ( or, even an almost periodic ) homeomorphism on a 
compact metric space has to be regular. It therefore follows from

{*) A transformation f from a metric space (X,d) onto itself is 
said to be regular if given any real number s > 0 there exists a 
real number 6 > 0 such that x, y « X with d(x,y) < <5 implies 
d(fn(x),fn(y)) < c for all integer n.
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Theorem 1.3 that there does not exist a pointwise periodic or even 
an almost periodic expansive homeomorphism on a compact metric 

space which is dense in itself.

Concerning the existence of an expansive homeomorphism on a 
compact continuum, Williams f 38 ] gave an example of such a 
homeomorphism in 1955. In 1958, Gottschalk f 14 ] asked whether 
the n-cell can carry an expansive homeomorphism or not. A partial 
answer to this was given by Bryant I 6 1 who showed that there 
exists no expansive homeomorpism on a closed 1-cell ( in fact on 
any finite interval ). In 1960, Jakobsen and Utz I 18 1 proved 
that there exists no expansive homeomorphism on a circle and from 
this obtained the same result for a simple closed curve and a 
closed 2-cell. However in l 33 1 , Reddy shows that an open cell of 
even positive dimension as well as an n- dimensional torus for 
n 2: 2 do carry expansive homeomorphisms. In connection with the 
existence / non-existence of expansive homeomorphisms on different 
spaces refer also I 32, 35, 27, 19, 20, 21, 22, 25 1 .

As a consequence of the facts that the real line R does carry 
expansive homeomorphisms but there does not exist an expansive 
homeomorphism on the open unit interval (0,1), one sees that 
possessing an expansive homeomorphism is not a topological 
property for metric spaces. In this connection, Bryant I 6 J 
proves the following theorem giving sufficiency condition for 
preserving expansiveness under a homeomorphism.
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Theorem 1.4. Let h be an expansive homeomorphism on a metric 
space X and. let g be a homeomorphism. from X onto a metric space Y. 
If g 1 is uniformly continuoxis, then ghg 1 is an expansive 

homeomorpism on Y-

One can also see from the same facts that an expansive 
homeomorphism on a metric space need not remain expansive under 
an equivalent metric; however, for a compact metric space 
expansiveness of a homeomorphism is independent of the choice of a 
metric as far as metric generates the same topology 181.

An extension problem for expansive homeomorphisms concerns 
finding conditions under which a homeomorphism on a metric space 
which is expansive on a subset turns out to be expansive on 
the whole space. Here a homeomorphism h on a metric space (X,d) is 
said to be expansive on a subset A of X if there exists a positive 
real number 6 such that fcr x, y « A, x * y, one has 
d(hn (x) ,hn (y)) > <5 for some integer n. Notice that we do not 
assume h(A) = A. The following is the first result along this line 
which is obtained by Bryant 101.

Theorem 1.5. Let h be a homeomorphism on a metric space X and 
suppose h is expansive on a subset A of X- If A is such that X - A 
is finite, then h is expansix>e on X.

An extension of this result due to Williams f 39 1 follows
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the following definition.

Definition 1.3. Given a homeomorphism h on a metric spae X the set 
0(x) = { hn(x) I n « Z } is called the h-orfoti of x in X.

Theorem 1.6. Let X be a compact metric space and let h be a

homeomorphism. on X. // h is expansive on X - 3j 0(x^) for some n

points x ..... ,x of Xt then h is expansive on X- i n

These results on extension involve some finiteness condition 
on the remainder. In the following, another type of result 
involving a concept of a basis is proved by Wine I 43 1 for the 
homeomorphic extension of an expansive homeomorphism to be
expansive. First we give the definition of a basis due to Wine.

Definition 1.3. Given a homeomorphism h on a metric space X, a set
{ xa e X | a «= j4, is an index set } is called a basis of X with 
respect to h, if a, ft e sf, a * ft, implies 0(xa) n O(x^) - <P and
u { 0(xa) | a e sf } = X.

Theorem 1.7. Let (Y,p) 6© a metric space, X be its subspace, h be 
an expansive homeomorphism on X with expansive constant 6 and f be 
a homeomorphic extension of h to Y. Then f is expansive with 
expansive constant 6 if

(«.) f|y_x expansive with expansive constant 3, and

(u.) there exists a basis Si of X with respect to h such that

p(x,Y-X) > <5 for every x in £.



The proof of Wine’s this theorem is based on the following 
characterization of an expansive homeomorphism of a metric space 
obtained by him in the same paper.

Theorem 1.8. A homeomorphism. .h on a metric space (X,d) is 

expansive with expansive constant 6 iff 
(i) h 6-sepcurates h-orbits, and.

(it) for any Yi-orbit 0(p) and integer n. not a period of 0(p), 
there exist integers r and s such that

r - s = n and d(hr(p) ,h* (p)) > 6.

Notice that the following definition due to Wine f 42 J is 
used in this result.

*

Definition 1.4. A homeomorphism h on a metric space (X,d) is said
to 6-separate h-orbits if given any basis S={xa|aej#>ofX
with respect to h whenever x , e S with x„ * x„, there existaft aft
integers m and M depending on a and ft such that M - m 2: 2 and 
and d(hL(xa),h1"(x^)) > <5 for all m < t < M.

Regarding extension of an expansive homeomorphism, one may 
also refer Wine’s further work in t 43 1 .

Another characterization of expansive homeomorphisms on a 
compact metric space is obtained by Keynes and Robertson l 29 1 in 
terms of topological analogue of generators of measure preserving
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transformations --  the concept defined by them in the same paper.
The definition of this concept of topological generators is as 
follows.

Definition 1.5. Given a compact Hausdorff space X and a
homeomorphism h on X, a finite open cover 1L of X is called a
generator ( respectively weak generator ) for (X,h) if for each 
bisequence {U> _ of members of U, h 1(C1U. ) ( respectively

L4SZ \c—C© l
00 “ih (U. ) ) contains at most one point.la*0O l

Note. A generator is obviously a weak generator but a weak 
generator need not be a generator. However, Keynes and Robertson 
show that if (X,h) has a weak generator, where X is a compact 
Hausdorff space, then X has a generator. Moreover, they prove
that if (X,h) has a generator, then X is metrizable. The
Keynes-Robertson characterization of expansive homeomorphism on a 
compact metric space is as follows.

Theorem 1.9. Let X be a compact metric space and and let h be a 

homeomorphism. on X. Then h is expansive iff (X,h) has a generator.

In Chapter 2, we formulate and study the notion of expansive 
homeomorphism on a general topological space. Given a topological 
space X and a homeomorphism h on X, the notion of A-expansiveness 
of h is introduced relative to a subset A of XxX. We then observe 
that when X is a metric space, for a specific choice of A c XxX,
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A-expansiveness coincides with usual expansiveness on a metric
space. As in the case of expansiveness, here too the finite
products and restrictions of A-expansive homeomorphisms do turn
to be A-expansive. We give several examples of A-expansive
homeomorphisms for certain non-trivial choices of subsets A of the
product space. We prove in Theorem 2.5 that an analogue of Theorem
1.1 concerning powers hm, m * 0, of an A-expansive homeomorphism
h also holds true. Moreover, while expansiveness is not a
topological property, our Theorem 2.3, from which Bryants Theorem
1.4 follows as a corollary, shows that A-expansiveness is a
topological property. As a consequence of this, the behaviour of
A-expansive homeomorphisms regarding their existence turns out to
be typical. In fact, when X is a finite interval I or is the
unit circle S1, we have several non-trivial choices of A e XxX
for which an A-expansive homeomorphism can be constructed on X.
This is interesting if one recalls that I or S1 does not carry any

expansive homeomorphism in the usual sense. Notice that while
expansiveness involves an expansive constant <3, A-expansiveness
involves A; and we show that analogue of Theorem 1.2 does not
hold. In fact, we give a homeomorphism h on a compact metric space
[0,1] which is not only Al-expansive for all t, but also 
00 .A-expansive for a certain increasing sequence {A.}i=1 of non 
trivial regular closed subsets At of [0,l]x[0,l] containing the 
diagonal. It is also shown that the set of fixed points of 
an A-expansive homeomorphism may be uncountable and obtain in 
Theorem 2.6 conditions on A and the space X so that the set

12



of fixed points of an A-expansive homeomorphism is finite.

Concerning the extension of an A-expansive homeomorphism, we 
prove in Theorem 2.7 that for paracompact Hausdorff spaces the 
analogue of Bryant’s Theorem 1.5 holds true. A characterization of 
A-expansive homeomorphisms in terms of basis is obtained in 
Theorem 2.8 which generalizes Wine’s Theorem 1.8 and then using 
this characterization in Theorem 2.9 an analogue of Theorem 1.7 
is obtained for A-expansive homeomorphisms —— giving another 
extension theorem.

Finally, in Chapter 2, we define the notion of generators and 
weak generators for a homeomorphism on a paracompact Hausdorff 
space and show that for such spaces the existence of a weak 
generator guarantees the existence of a generator. It is then 
proved in Theorem 2.11 that for paracompact Hausdorff spaces 
X, a homeomorphism h has a generator if and only if h is 
A-expansive for some neighbourhood A of the diagonal in XxX. This 
result is the analogue of the Keyne-Robertson Theorem 1.9.

In Chapter 3, we define and study the notion of expansive 
homeomorphism on a metric 6-space. Before elaborating our work, we 
give the necessary notations and terminologies.

Recall that a topological group is a triple (G,r,.)> where 
(G,» ) is a group and t is a Hausdorff topology on G such that the
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map r) : GxG -*■ G defined by r)(x,y) = x. y * is continuous. Some
of the standard examples of topological groups are : the additive
groups R and Z with usual topology, the additive group Z^ of
residue classes modulo m with discrete topology, the orthogonal
group 0(n) of all nxn real metrices having determinant 1 or -1

2under multiplication and with the subspace topology of Rn , the 
multiplicative group 0(n) of n roots of unity with usual 
subspace topology of the complex plane, and so on.

By a topological transformation group or a G-space X, we 
mean I 4 I a triple (X,G,^) consisting of a topological space X,
a topological group G and an action ^ of G on X i.e., a continuous
map & : G x X •+ X satisfying = x and £(g ,*Kg ,x)) =

where e is the identity of G, x e X and g1, gj s G, An
action & of G on X is called trivial if &(g,x) = x for each g in G 
and x in X. By a metric G-space X, we mean a metric space X on 
which a topological group G acts. For g in G and x in X, we 
denote $(g,x) by g.x ( or simply by gx ) and for A £ X, let g.A = 
{ ga | a e A }. A subset A of a G-space X is called G-£m>ar£an£ if 
&(G x A) £ A; and for x in X, the set G(x) = { gx i g <s G } is 
called thd G-orbit of x in X. Notice that the relation 
defined on X as x ~ y iff x = gy for some g in G, where x, y e X 
is an equivalence relation. Therefore these G-orbits form a 
partition of X. The quotient space X/G of X having G-orbits as its 
members is called the orbit space of X; and the quotient map 
P : X -♦ X/G, sending x to G(x), is called the orbit map which is
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clearly open and continuous t 4; p.37 1 . Given G-spaces X and Y, a 
continuous map f : X -*■ Y satisfying f(g.x) = g.f(x) for all g in G 
and x in X is called an e<yu£variant map. In case an equivariant 
map is a homeomorphism, then f 1 is also equivariant. An 
equivariant map f : X -*• Y naturally induces a map fg : X/G -* Y/G 
which is defined by fg(G(x)) = G(f(x)). If (X,d) is a metric 
G-space with G compact, then X/G is also a metric space with 
metric p defined by p[G(x),G(y)3 = Inf { d(gx,ky) I g, k e G }.

In I 11 J , Eisenberg defined and studied the notion of 
expansive transformation group. This definition is as follows.

Definition 1.6. Let a uniform space X with uniformity U be a 
topological transformation group i.e., a G-space. Then X is called 
expansive if there exists a in ^ such that whenever x, y «s X with 
x * y, one can find a g in G satisfying (gx,gy) e a; a is then 
called an expansive index of X.

Observe that every metric space is a uniform space and hence 
according to this definition, an expansive metric G-space can be 
defined. However, it does not involve any kind of study of 
expansiveness of a homeomorphism of that G-space. Therefore, we 
introduce the notion of G-expansive homeomorphism on a metric 
G-space and continue our researches to study them in this Chapter. 
First observing that every metric space is a metric G-space under 
trivial action of G, we analyse the definition of expansiveness of
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a homeomorphism on a metric space in a specific way. Then through 
several examples we motivate the definition of G-expansiveness 
of a homeomorphism on a metric G-space. The definition is 
such that when the action of G is trivial, the 
G-expansiveness of a homeomorphism on a metric G-space turns out 
to be equivalent to the expansiveness in the usual sense. However, 
examples are provided to show that under a non-trivial action 
of G neither expansiveness of a homeomorphism implies nor is 
implied by its G-expansiveness. This leads us to determine some 
conditions under which expansiveness implies or is implied by 
G-expansiveness. In this process, we introduce the notion of 
pseudoequivariant maps between G-spaces. Every equivariant map is 
a pseudoequivariant but the fact that the converse is not true is 
justified by an example. We prove that if a homeomorphism h of a 
G-space X is pseudoequivariant, then for any intrger n, hn is 
also pseudoequivariant. Like expansiveness, here also, under 
relavent conditions a finite product of G-expansive homeomorphisms 
as well as restriction of a G-expansive homeomorphism turn out to 
be G-expansive. A result similar to Theorem 1.1 concerning powers 
hm, m * 0, of a G-expansive homeomorphism is shown to hold true in 
our Theorem 3.3. It is observed that unlike expansiveness, the set 
of fixed points of a G-expansive homeomorphism may be infinite 
even if the metric G-space under consideration is compact. A 
result of the type of Theorem 1.4 giving some conditions , for 
G-expansiveness to be preserved under a homeomorphism is obtained 
and an extension theorem for G-expansive homeomorphism, along the
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line of Theorem 1.5, is proved in our Theorem 3.8. We also obtain 
in Theorem 3.7 an analogue for G-expansive homeomorphisms of the 
following result due to Bryant 161.

Theorem 1.10 If (X,d) is a compact metric space and. h is an 
expansive homeomorphism on X with, expansive constant 6, then for 
each &, 0 < & < 6, there exists a positive integer k(Q') such that

d(x,y) > & implies d(hn(x) ,hn(y)} > <5 for some n with |n| £ k(&).

Defining the notion of G-<5 separate h-orbits for a 
homeomorphism on a metric G-space, we finally obtain in Chapter 3, 
a characterization of a G-expansive homeomorphism in terms of 
a basis in Theorem 3.9; and using this characterization a 
sufficient condition for a pseudoequivariant homeomorphie 
extension of a pseudoequivariant G-expansive homeomorphism to 
be G-expansive is obtained in Theorem 3.10. Our Theorem 3.9 and 
Theorem 3.10 extend Wine’s Theorems 1.8 and 1.7 respectively in 
the sense that when the action of G on X is trivial, our results 
coincide with those of Wine's.

Next, observe that the notion of a generator for (X,h) 
defined in definition 1.5 by Keynes and Robertson for a 
homeomorphism h on a compact Hausdorff space X was also 
generalized by them in the same paper l 29 1 to the notion of a 
generator for a G-space X with X a compact Hausdorff space and G a 
discrete group as follows.
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Definition 1.7. Let X be a G-space with X a compact Hausdorff 

space and G a discrete group. Then a finite open cover ^ of X is 
called a generator for (X,G) if for every G-family •£ I g e G } 

of members in U, n g 1(C1A ) contains at most one point.

In terms of this definition, the following characterization 

is obtained in t 29 1 for expansive transformation groups.

Theorem 1.11. A compact Hausdorff uniform G-space X with G a 

discrete group and compatible uniformity of X is expansive iff 

there exists a generator for (X,G).

Also, the notion of asymptotic points for a homeomorphism on 
a metric space was defined in t 37 J as follows.

Definition 1.8. Let (X,d) be a metric space and let h be a 
homeomrophism on X. Then two distinct points x, y in X are said to 

be positively asymptotic ( respectively negatively asymptotic ) to 
each other under h if Limn^c£d(hr,(x) ,hn(y) = 0 ( respectively,

Limn_t_ood(hn(x),hn(y) = 0 ).

On metric spaces, the existence of asymptotic points under 
expansive homeomorphisms is studied by Utz I 37 1, Bryant l 5, 6 1 
and others. Using the concept of generators as defined in 
Definition 1.5, Bryant and Walters I 8 J obtained the following 
results while studying asymptotic points further.
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Theorem 1.12. Let be a generator for (X,h), inhere X is a compact 
metric space and h is a homeomorphism on X- Then for each non-

negative integer n. there exists s > 0 such that d(x,y) < £
implies the existence of A , A ......, A , A,......A e U with-r> -\r»+l O 1 n
X, y e h ’'(A^). Conversely, for each s > 0, there is an n in N
such that if x, y <s , r> h *'(A }, where A , , , . ,A_ , . . . , A e then

i -t> O r»
d(x,y) < e.

Theorem 1.13. Let %i be generator for (X,h), where X is a compact 

metric space and h is a homeomorphism on X- Then two points x
and y are positively asymptotic under h iff there is a natural 
number N such that for each i > N, there is an A^ e *11 wi th 
x, y e= .°q h"l(A. ).

tsN t

Both these theorems are also true if At is replaced by ClA^.

Observe that the notion of a generator for (X,h) as defined 
in Definition 1.5 involves a homeomorphism of X, while that for a 
G-space X, ( (X,G) with G discrete ) as defined in Definition 1.7 
does not involve any homeomorphism of X — though X is a compact 
Hausdorff space in both the cases; and hence the notion of a 
generator for a G-space X ( with G any group ) involving a 
homeomorphism needs an attention. In Chapter 4 of the present 
thesis, we define such a notion of generators and weak generators 
for a homeomorphism on a compact Hausdorff G-space X with G 
any topological group and term them G-generators and weak
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G-generators. We provide examples to show that under a non-trivial 
action of a group G on a compact Hausdorff space X, neither a 
G-generator need be a generator nor a generator need be a 
G-generator for a homeomorphism on X — though under a trivial 
action of G on X both of them coincide. It is proved that the 
existence of a weak generator implies that of a G-generator for a 
compact Hausdorff G-space. We then prove some properties of 
pseudoequivariant maps and use them to prove in Theorem 4.3 that 
the existence of a G-generator for a homeomorphism on a compact 
Hausdorff G-space X assures the metrizability of the orbit space 
X/G. Also, in Theorem 4.5 we obtain a characterization of a 
G-expansive homeomorphism on a compact metric G-space in terms of 
a G-generator — a result analogous to Theorem 1.9. We ’then 
define the notion of positively ( negatively ) G-asymptotic points 
for a homeomorphism on a metric G-space — the notion which under 
the trivial action of G on X, coincide with positively 
( negatively ) asymptotic points. However, under a non-trivial 
action of G on X, while positively ( negatively ) asymptotic 
points are positively ( negatively ) G-asymptotic, the converse is 
not true. Studying G-asymptotic points in relation to G-generators 
for a homeomorphism on a compact metric G-space, we obtain 
analogues of Theorems 1.12 and 1.13 in the setting of G-spaces.

Finally, in Chapter 5 we consider the case of a topological 
G-space X which need not be a metric G-space and define the notion 
of expansiveness of a homeomorphism on this G-space X relative to
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a subset A of XxX. We term such a homeomorphism as GA-expansive 
homeomorphism.

We observe that in case X is a metric G-space, for a specific 
choice of a subset A of XxX, GA-expansiveness is equivalent to 
G-expansiveness and on G-space when action of G is trivial, 
GA-expansiveness is equivalent to A-expansiveness. Examples are 
provided to illustrate that in general neither GA-expansiveness 
implies nor is implied by the A-expansiveness — showing that the 
two concepts are independent of each other. As in the case of 
A-expansive and G-expansiveness, it turns out that the restriction 
and finite products of GA-expansive homeomorphisms are 
GA-expansive. The analogue of Theorem 1.1 concerning powers hm, 
m * 0 of GA-expansive homeomorphism also holds true. In Theorem 
5.4, we find a condition for GA-expansiveness to be preserved 
under a homeomorphism; and then prove in Theorem 5.5, a result 
concerning extension of GA-expansive homeomorphism. Defining the 
notion of GA-separate h-orbits for a homeomorphism of a G-space 
X, we obtain in Theorem 5.6 a characterization of GA-expansive 
homeomorphism in terms of basis and using this one more result 
( see Theorem 5.7 ) concerning extension of GA-expansive 
homeoroorphisms is proved. Theorems 5.7 and 5.6 reduce to Wine’s 
Theorems 1.7 and 1.8 respectively for a certain A c XxX, when X 
is a metric G-space with a trivial action.
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