
CHAPTER 2

EXPANSIVE HOMEOMORPHISMS ON TOPOLOGICAL SPACES

In this chapter we formulate and study the notion of 
expansiveness of a homeomorphism on a topological space X relative 
to a subset A of XxX. Let X throughout denote a topological space 
and H(X) denote the collection of all homeomorphisms on X.

i. A-expansiveness : Definitions, examples and properties.
Recall that in case X is a metric space with metric d, an h 

in H(X) is defined to be expansive with expansive constant <5 > 0 
if for x, y in X with x * y, there exists an integer n such that 
d(hn(x) ,hn(y)) > 6, that is, (hn(x),hn(y)) e A^, where

A6 = d"‘[0,6]
= { (x,y) e XxX | d(x,y) < 6 }

which is a subset of XxX. Therefore, if one regards an expansive 
homeomorphism in this usual sense to be A^-expansive, then it 
motivates the following definition of A-expansiveness of an h 
in H(X) when X is mearly a topological space and A is any subset 
of XxX.

Definition 2.1. Let X be a topological space and let A be a 
subset of XxX. Then a homeomorphism h on X is called K-&xpansi\>e> 

if for x, y in X with x * y, there exists an integer n such that 
(hn(x) ,hn(y)) *s A.
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Obviously, if h in H(X) is A-expansive, then it is 
B-expansive for any subset B of A. Also, every h in H(X) 
( respectively no h in H(X) ) will be A-expansive if A = <p 

( respectively A = XxX ), and hence we assume that A is a 
non-trivial subset of XxX, that is, A * and A s* XxX. In case A
is an at most countable subset { (a.,b.) I j « J } of XxX, it is
easy to see that an h in H(X) is A-expansive iff for each index i 
in J, either

0(at) n { a^ I j « J }c s* <p 

or
0(b.) n { b. 1 j € J }c * <p,

, L J

where 0(x) = { hn(x) | n « Z } is the h-orbit of x in X. Since
A-expansiveness depends on A, the notion provides a wider scope
even on metric spaces; in fact, on metric spaces the behaviour of 
A-expansiveness is observed to be completely different at some 
places from the behaviour of expansiveness in the usual sense. 
The typical illustration being the fact that certain metric 
spaces which admit no expansive homeomorphism, i.e., A^-expansive 
homeomorphism, for any & >0, do admit A-expansive homeomorphisms 
for certain non-trivial subsets A of the product space. For 
example, we know that the space X = I = [0,1) ( in fact, any 
finite interval ) and the unit circle S1 both with usual metric do 
not admit any expansive homeomorphism; however, there are many 
non-trivial choices of A <= I x I and A c S1 x S* for which 
A-expansive homeomorphisms can be constructed on I and S* 
respectively. A typical choice of a subset A in Ixl is given in
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the following example.

Example 8.1. Let A = [1/5,1/2] x [1/3,2/3] c Ixl, I = [0,1) with 
usual metric, and let h : I -» I be defined by

h(x) = x, if x e [0,1/8]
= (19x - 2)/3, if xe [1/8,1/5]
= (llx + 5)/12, if x e [1/5,1/2]
= (x + 3)/4, if xe [1/2,1).

Then it is easily seen that h is an A-expansive homeomorphism 
on I.

In fact, for any A <= Ixl such that either I - pt(A) or
I ~ p2(A) contains a non trivial segment ( Pt(A) and p2(A) are
respectively the first and the second projections of A on I ), 
one can construct a homeomorphism on I which is A-expansive. 
Before giving other examples of A-expansive homeomorphisms, we 
obtain some simple properties of such homeomorphisms.

We have the following result concerning the restriction of 
A-expansive homeomorphisms.

Theorem 2*1. Let h in H(X) be A-expansive, where A c XxX and Y c. X 
be any subspace of X such, that h(Y) = Y, then h|y B-expansive
for a suitable subset B of YxY-
Proof. Let x, y « Y and x * y. Then x, y e X, and therefore 
A-expansiveness of h on X implies the existence of an integer n
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such that (hn(x) ,h"(y)) 0 A, that is, (hn(x),hn(y)) 0 [A n YxY] . 
The Theorem follows if we take B = A n YxY.

As in the case of expansive homeomorphisms, we have the 
following result regarding product of A-expansive homeomorphisms.

Theorem 2.2. Let X and Y be topological spaces, f in H(X) be A~ 
expansive and g in H(Y) be B-expansive, where A c XxX and B c YxY. 
Then fxg : XxY -* XxY is C-expansive, where C = h *(AxB) in which 
h : (XxY)2 -* JC'xY2 is such that h(x,y,x’,y*) = (x,x’,y,y’)f where 

x, x’ e X and y, y' e Y.
Proof. Let (x,y) and (x’,y3) be any two distinct points of XxY. 
Therefore either x * x' or y * y*. Assume x * x’. Then by 
A-expansiveness of f on X we find an integer n satisfying 
(fn(x),fn(x3)) <e A. It follows that

(fn(x),fn(x’),gn(y),gn(y})) m A x B 
and hence as h is bijective we get

(fn(x),gn(y),f"(x’),g"(y’)) = ((fxg)n(x,y),(fxg)n(xJ, y’ ))
0 h_1(AxB) = C.

This proves the result.

Observe that if (X,d) is a metric space then for any positive 
real number <5, A^ always contains the diagonal D in XxX and is 
a regular closed set ( in fact, A^ is a closed neighbourhood 
of D ). Therefore study of A-expansive homeomorphisms on a 
topological space X where A is a regular closed subset containing
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the diagonal D in XxX may be useful. The set A in Example 2.1 
does not contain the diagonal D in Ixl. It is therefore natural 

to inquire whether there exists an A-expansive homeomorphism on I 

for an A which is a regular closed set containing the diagonal in 
Ixl. We shall show that there does exist such an A-expansive 

homeomorphism on I. Before that let us prove the following theorem 
which shows that for topological spaces admitting an A-expansive 
homeomorphism is a topological property.

Theorem 2.3. Let X and Y he topological spaces, g : X Y be a 
homeomorphism. and A c XxX. Then an h in H(X) is A-expansive iff 
ghg 1 <s H(Y) is B-expansive, where B = (gxg)(A).
Proof. Suppose h in H(X) is A-expansive. Let y±, yz e Y and 
yi * yz' ^en 6~*(y4) and g~*(y2) are distinct points of X and 

thus from A-expansiveness of h on X we find an integer n for which 
( hn(g‘1(yi)),hr’(g“‘(y2)) ) e A.

But this gives
( (ghg~1)n(yi), (ghg_1)n(y2) ) (gxg)(A) = B.

Hence ghg 1 is B-expansive.

For the converse, suppose x , x2 e X and xt * x2- Then g(xA) 
and g(xz) are distinct points of Y and therefore by the 
B-expansiveness of ghg-1, there exists an integer n satisfying 

( (ghg 1)n(g(x±)), (ghg-1)n(g(x2>) ) « B

which gives
( (ghng-1)(g(xi)),(ghng-1)(g(x2)) ) m B,

that is
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(hn(x1),hn(x2)) « (gxgJ^CB) = A.

Hence h is A-expansive.

Recall that the above theorem is in contrast to the known 
fact that for metric spaces admitting an expansive homeomorphism 
is not a topological property. As a corollary to the above theorem 
we get the following result due to Bryant ( Theorem 1.4 of our 
Chapter 1 ) giving a sufficient condition for the expansiveness on 
metric spaces to be preserved under a homeomorphism.

Corollary 2.4. If (X,d) and (Y,p) are metric spaces, h in H(X) is 
expansive and g is a homeomorphism. of X onto Y svch that g 1 is 
uniformly continuous, then ghg 1 is an expansive homeomorphism 

on Y.
Proof. Suppose h is A-expansive, where A = A^ = d 4[0,<5] for some 
6 > 0. Then by Theorem 2.3 ghg-1 is B-expansive on Y, where 
B = (gxg)(A(5). On applying the uniform continuity of g 1 we obtain 
an c > 0 such'that B 3 B„ = P^tO,^]. In fact, g 1 being uniformly

<c?

continuous, there exists an s > 0 such that
p(Y1,y2) ^ ^ •» d(g_4(yl),g 1(y2)-) < <5; 

or equivalently
d (xi»x2) - 6 ■* P(g(xi),g(x2)) > s.

This shows
(gxg)(XxX - Ag) e YxY - B or B => B£.

Hence ghg-1 is expansive on Y.
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As noted in the proof of corollary 2.4, A^-exipansiveness of h 
does give B-expansiveness of ghg *, where B =/(gxg)(A^). However, 
the following example will show that in general ghg 1 may fail to 
be expansive in the usual sense as B may not contain B„ = P *[0,£] 

for any s > 0.

Example 2.2. Consider the subspaces [0,oo) and [0,1) of the usual 
space of the real numbers R. Obviously h(x) = 2x is an 
A^-expansive homeomorphism of [0,®) for any <5 > 0 and g(x) 
= x/(x+l) is a homeomorphism from [0,®) to [0,1). Hence by Theorem 
2.3, ghg-1: [0,1) -*• [0,1), sending u to'2u/(u+l), is B-expansive 
on [0,1), where 

B = (gxg)(A6)
= { (U,v) € [0,1)x[0,1) | u = x/x+l,v = y/y+1; (x,y) « k& }. 

Observe that
Ag = { (x,y) | x — 0, y i 0 and x~6<y<x+S } 

lies in the first quadrant [0,oo) x [0,oo) of xy-plane between 
the lines y = x - 6 and y = x + <5; and hence B is a subset 
of uv-plane contained in [0,1) x [0,1) and enclosed by the 
u-axis v = 0, v-axis u = 0, the lower branch of the rectangular 
hyperbola

(u - (6 - 1 )/<5). (v - (6 + l)/6) = ~l/<52 
( image of y = x - <5 under gxg ) and the upper branch of the 
ractangular hyperbola

(u - (<5 + 1 )/6). (v - (S - 1) /&) = -I/S2 
( image of y = x + <5 under gxg ). The set B is clearly a regular
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closed set containing the diagonal D in [0,l)x[0,l), but do not
contain B for any e > 0, where 

£
B^. = { (u,v) | 0 5 u,v < 1 and |u - v| < e }.
£

In fact, suppose B => B, for some e > 0. Since g(x) •+ 1 as x -» oo,
£

there is an N in N such that
1 - x/(x + 1) = l/(x + 1)

< */2&

for x > N. Consider any u, v with 0 < u,v < 1, e/2 < ju - vt ^ e
and g 4(u) = x > N + <5. Then (u.v) e c B and must be the

image under gxg of some (x,y) «s . But, this is impossible 
because then

|u - v| = |(x/(x + 1)) - (y/(y + l))i 
= lx - y|/|x + II,. Iy + II 
<<5/|l + x|
< S.c/26 - e/2 

as x = g 1(u) > N + <5.

The observation that B does not contain for any e > 0

can also be concluded from the~~1fact that [0,1) possesses no
expansive homeomorphism, i.e,, B -expansive homeomorphism for any

£
e > 0 ( refer I 6 J ). Observe that the homeomorphism ghg *= on 

[0,1) given as above by u •* 2u/(u +1) is strictly increasing 
homeomorphism with Fixv' = { u <s [0,1) | v>(u) = u } = {0}. However, 
the Example 2.3, given below shows that not every strictly 
increasing homeomorphism on [0,1) with {0} as its set of fixed 
points is B = (gxg)(A^)-expansive for some <5 > 0.
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Example 2.3. Let A = [a ,co), where a_ > 0 and let I. = [a.0 O l ll Tl

where a < a _ for t = 0,1,2,...., be a countably infinite
l l T|

partitioning of A. Let f be a homeomorphism on [0,oo) such that
(1) f[0,ao] = [O.aJ
(2) f(x) > x for 0 < x < aQ
(3) f (I_) = It+i for t = 0,1,2,.....

For example, let I = [aQ,ai] = [1,2] and define f on [0,8^] 
as f(x) = 2x. Then It = [a1,aJe3 = [2,4] and define f on 1^ as f(x) 
= x + 2. Now, for n k 2, let I = f(I ) ( note that I = [4,6] )n 2

and define f on I as f(x) = m x + b , where the sequences {m }n n n n
and {b } are defined as follows :n

ta = 1 and for n ^ 2, m is so chosen that
x rt

m . m _ ■ . . . m . in = 1, if n is not primen n-i Z 1
= n, if n is prime;

b± = 1 and for ni 2
b = ( ni - m )a + b .n n-4 n n n—1

Then f is a homeomorphism on [0,a>) of the type described above
such that it is expansive with any <5 > 0 as an expansive constant
but f is not expansive when k * -1, 0, 1 I 71.

We now define y : [0,1) ■+ [0,1) by y = ghg. ±, where g is 
as in Example 2.2 and h = f , k * -1, 0, 1. It is easy to observe 
that V' is a strictly increasing homeomorphism on [0,1) with Fix^
= {0}. In view of Theorem 2.3, one then concludes that w is not
B = (gxg) (A^)-expansive for any <5 > 0.

Note. Consider the usual closed unit interval [0,1] and define the
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homeomorphism f : [0,1] ■* [0,1] by f(u) = 2u/(u + 1). By taking g
and to be same as in example 2.2, one can easily show that 
f is B^~expansive on [0,1], where

B6 = { (1,1) u {gxg)(k6) } 
c [0,l]x[0,1].

Moreover, for any sequence 0 < <5^ < 6^ <.......  of reals, we have
c c ....... c B^ c B^ c ......... and f is not only

i z n n+t
COB^ -expansive for each i but is also ,u -expansive on [0,1].

This is interesting if one compares it with the known result 
due to Bryant ( Theorem 1.2 ) which says that the least upper 
bound of expansive constants of an expansive homeomorphism on a 
compact metric space is not an expansive constant.

Similarly, it can be shown using Theorem 2.3 that any finite 
interval admits an A-expansive homeomorphism.

We now give an example of an A-expansive homeomorphism on the 
unit circle S1.

Example 2.4. In the unit circle S1, suppose Cfc denote the arc
(e’znkyr', e*-2,I<k+1>/n) f where k = 0,1,.... ,n-l. Let denote the

closed unit interval [0,1] for each k. Then obviously ffc : I -» Cfc 
defined by

- , , i27T<B+Je>Xn , _ . „fk(s) = e , k = 0,1,..,n-1,
is a homeomorphism for each k. Since on Ifc, g^: Ifc •* I defined by

31



g^x) = 2x/(x + 1), x « Ik
is -expansive, where is as described in the Note following
Example 2.3, therefore in view of Theorem 2.3 it follows that for

a fixed <5 > 0,
fkgkfk 1 = h^. is (fkxfk)(B<5)-expansive on Cfc

Define h : S* -» S* by

h| c = hj^, k = 0,1..... ,n-l.

Then h is a homeomorphism on S* which is (f.xf ) (B,-)-expansive
k=o K K o

on S .

In general composition of two A-expansive homeomorphisms need 
not be A-expansive. For example recall that the homeomorphisms 
h2 and h4/2 on R sending x to 2x and x to x/2 respectively are 
expansive with any <5 > 0 as an expansive constant. However, their 
composition being the identity map is not A-expansive for any 
A in RxR. We now prove a result about powers hm, m * 0, of an 

A-expansive homeomorphism h ( compare Theorem 1.1 of Chapter 1 ).

Theorem 2.5. Let X be a paracompact Hausdor f f space and let 91 be 
the uniformity on it consisting of all neighbourhoods of the 
diagonal. Suppose h is a homeomorphism on X such that h™, m ** 0. 
is uniformly continuous with respect to 91. Then h is U-expansive 
for some 13 in 11 implies each hm, m * 0, is V-expansive for some V 
in 91.

Proof. Consider any integer m differnt from 0 and let i. belong to

32



{ ±1,.....±m }. Since hl is a homeomorphism and h~t = (h1) 1 is

uniformly continuous, there exists V « tt such that
(hW)'1(V.)'c 0

or equivalently
(hW)(M - U) c M - VL.

Set
V = n { V | i € {±1,...... ,±m} }

and note that
(hWxXxX - 0) c (XxX - V).

Applying U-expansiveness of h to distinct points x, y in X one 
obtains an integer n satisfying (hn(x) ,hn (y)) « (XxX - 0) and 
hence from the above observation,

( hi(hn(x)),hl(hn(y)) ) e (XxX - V) 

for each i in {±1,..,±m>. Let r be an integer such that
0 < |r - n/ml ^ 1 or 0 < {rm - n| £ |m|.

Now putting t = (rm - n) one obtains
((hw)r(x),(hm)r(y)) « XxX - V.

This proves the V-expansiveness of hm.

2. A—expansiveness and fixed points.
fiWe recall ( Theorem 1.3 ) that the fixed point set of an

expansive homeomorphism on a compact metric space is always
a finite set. However this is not the situtation with
A-expansive homeomorphisms. For example, if we replace I by [0,1] 
in Example 2.1 and then define h at 1 by h(l) = 1, then with the 
same A the homeomorphism h is A-expansive on the compact metric
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[0,1/8],space [0,1] with Fixh = { x e [0,1] I h(x) = x } =

an uncountable set . Of course here A does not contain the

diagonal D in [0, 1] x [0,1]. On the other hand, if A is a

neighbourhood of D, one can very easily conclude that there
can not be any A-expansive homeomorphism on [0,1]. But one can ask 

what happens if A is a regular closed set containing the diagonal. 
For an answer to this we refer the note following Example 2.3 
in which we have described an A-expansive homeomorphism h on [0,1] 
with Fixh = {0,1} where A is a regular closed set containing D.
It is therefore interesting to inquire whether the set of fixed

/
points of every A-expansive homeomorphism on [0,1], with A as a 
regular closed set containing the diagonal in [0,l]x[0,l], is 
finite. The following example shows that this is not true in 
general.

Example 2. S. Consider the subset T = { 1 - 1/n j n e M } of [0,1] 
and the family j* = { A = [1- 1/n, 1 - l/(n+l)] I n e N }. Thatn
is a locally finite family of closed subsets of [0,1] follows 
easily. For each n in H define g : [0,1] k by

n n
gn(t) = t/[n(n+l) + (n-1)/n].

Also, define f and for a fixed 6 > 0, as it is done in 
the Note following the- Example 2.3. Then h = g fg ~1 is a

n r» n
(g x g } (Bj.)-expansive homeomorphism on A . Now, definen n O n

h : [0,1] - [0,1] by

h|^ = h^ for each n; and

h(l) = 1.
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Obviously, h is a homeomorphism on [0,1]. Set

A = {(1,1)} u [ u { (gnxgn)(B6) I n e H } ]

and notice that h is A-expansive. Finally, observe that A is a 
regular closed set containing the diagonal in [0,l]x[0,l] and 
Fixh = T, an infinite set.

Remark. Given any finite set F in [0,1] containing {0,1}, one can 
give a constructive proof ( as is done in Example 2.5 ) of the 
existence of an A-expansive homeomorphism h on [0,1] such that 
Fixh = F and A is a suitable regular closed set containing the 
diagonal in [0,l]x[0,l]. It will be interesting to know whether 
there exists an A-expansive homeomorphism h on [0,1] for which 
Fixh is a given countable / uncountable set, where A is a 
suitable regular closed set containing the diagonal. We do not 
have a definite answer to this.

We now prove the following result which gives a class of 
spaces on which any A-expansive homeomorphism has a finite fixed 
point set, whenever A is a neighbourhood of the diagonal in the 
product space.

Theorem 2.6. Let X be a first countable, countably compact 
Hausdorff space and let h be an A-expansive homeomorphism on X, 
inhere A is a neighbourhood, of the diagonal in XxX. Then Fixh is a 
finite set.
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Proof. If possible, assume that Fixh is an infinite set. Then it 
has a limit point, say x. As Fixh is a closed set, x € Fixh. Since 
A is a neighbourhood of the diagonal in XxX, there exists a 
neighbourhood Wx of x such that

(x,x) e W x W a A.< X X

Now x being a limit point of Fixh, there exists another fixed 
point y different from x such that y e W . Clearly

X

(x,y) e x c: A.
But this is not possible because h is A-expansive. Hence Fixh is a 
finite set.

3. Extension of A-expansive homeomorphisms.
Suppose h is a homeomorphism on a topological space X, 

A c XxX, and B c X. Then we say h is A-expansive on B if for 
distinct points x, y in B, there exists an integer n such that 
(hn(x) ,hn(y)) « A. Note that here we do not require the invariancy 
h(B) = B. In this Section we consider an extension problem 
for A-expansive homeomorphisms which concerns finding conditions 
under which A-expansiveness on a subset turns out to be 
A’-expansive on the whole space X for some suitable A’ of XxX.
( Refer Theorem 1.5 due to Bryant [ 6 ].)

Theorem 2.7. Let X be a paracompact Hausdorff space and. let Y c X 
be such that X - Y is finite. Suppose h is a 0-expansive homeomox— 
phism. on Y where U is a neighbourhood of the diagonal in XxX. Then 
h is B-expansive on X for some B-

36



Proof. Let X - Y = { x ,x ,.... ,x }. We first show that h iso 1 n
B-expansive on Yu {xQ} for a suitable subset B of XxX and then 
the required result can be proved using induction for finitely 
many steps.

Since X is a paracompact Hausdorff space and U is a
neighbourhood of the diagonal in XxX, there exists a symmetric
neighbourhood V of the diagonal such that VoV c U, where

VoV = { (x,y) I there exists z « X such that (x,z) « V and
(z,y) e V >,

refer f 28, p.137 1. Further, as h is U-expansive we assert that
there exists at most one point p in Y such that 

( hn(p) ,hn(xo) ) e V
for all integers n. In fact, if there are two such points, say p 
and q in Y, then we obtain

( h"(p),hn(xo) ) € V
and

( hn(q),hn(xo) ) e V 
for all integers n, and hence

( hn(p),hn(q) ) « VoV c u
for all integers n as V is symmetric. But this contradicts the 
0-expansiveness of h on Y. Having justified the assertion, we 
consider the following two cases : either such a point p in Y 
exists or there is no such point p in Y. Choose

B = V - {(p,xo),(xo,p)>, if such a p exists 
= V, otherwise.

Now it is easy to observe that h is B-expansive on Y u {xQ>.
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4. A characterization of A-expansiveness.
Recall that Wine l 42 1 has obtained a characterization of 

an expansive homeomorphism on a metric space in terms of a basis 
( refer Theorem 1.8 ). In this Section we give a definition 
about separation of h-orbits in topological setting, obtain a 
characterisation of A-expansive homeomorphisms and then use this 
characterization to obtain one more extension theorem for 
A-expansive homeomorphisms.

Definition 2.2. Let h be a homeomorphism on a topological space X
and let A <= XxX. Then h is said to A -separate h-orbits if given
any basis & = { x \ a e } of X with respect to h, whenever

01

xa, x^ e S with a * ft, there exists an integer n satisfying
(hn(xa) ,hn(x^)) « A.

Theorem 2.8. Let X, A and h be as in the above definition. Then h
is A—expansive iff
(t) h A-separates h-orbits;
(it) given p in X and an integer n svch that hn(p) * p, there 

exists an integer r satisfying
(hr(p),hr-n(p)) 0 A.

Proof. First suppose h is A-expansive. Then (i) is obvious.
For (ii), if p « X and an integer n are such that hn(p) * p, then
apply A-expansiveness of h to obtain an integer k such that

(hk (hn (p)), hk (p)) m A.

Now setting r = k + n one gets (u).
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Conversely, suppose (i) and (it) hold. Let x and y be distinct 
points of X. In case h-orbits 0(x) and 0(y) are disjoint, then 
choose that basis of X with respect to h which has x and y as its 
members. Now use condition (i) of the hypothesis to conclude that 
h is A-expansive. On the other hand if 0(x) = 0(y), then for 
some n, x = hn(y). Clearly y * hn(y). Then condition (tt) with p 
replaced by y gives an integer r satisfying

(hr(y),hr~n(y)) e A.
Substitute y = h n(x) to obtain

(hr"n(x), hr_n(y)) e A.
But this proves h is A-expansive.

We now give a sufficient condition for a homeomorphic 
extension of an A-expansive homeomorphism on a subspace to be 
A-expansive on the whole space.

Theorem 2.9. Let A c XxX and Y £ X. Suppose h is an A-expansive 
homeomorphism on Y. Then a homeomorphic extension f of h to X is 
A-expansive if 
(i ) f | is A—expansive;

(u) there exists a basis 2 of Y with respect to h such that 
(x,y) se A for all x in 2 and y in. X - Y.
Proof. In order to prove that f is A-expansive, we show 
that f satisfies conditions (t) and (tt) of Theorem 2.8. Let
g = { xa I a € ^ } be any basis of X with respect to f. Then for

in 8 we have three possibilities :distinct elements xa>



(a) Xcc’ * Y>

(b) xa, Xp e X - Y, and
(c) x « Y and x„ <s X - Y or x « X - Y and xn « Y.

In case (a) holds we use the A-expansiveness of f|y = h 
and when (5) holds we use the A-expansiveness of anc* °^3'tain
an integer n satisfying (fn(xa),fn(x^)) «e A, i.e., f A-separates 
f-orbits. Now suppose {c) holds. Let xa « Y and x^ <s X - Y. Since 
2 is a basis for Y with respect to h, there exists y in S such 
that xa = hn(y) for some integer n. Further, as f is a 
homeomorphic extension of h, we can therefore write xQ = fn(y). 
But this gives

(f'n(xa),f~n(x/3J) e A,
meaning by f A-separates f-orbits. In case x^ e X - Y and x^ « Y, 
we argue along the same lines. Thus, we have shown that condition 
(i) of Theorem 2.8 is satisfied.

To show that f satisfies condition (u) of Theorem 2.8,
assume there is a p in X and an integer n such that
fn(p) * p. Now, either p <= Y or P e X - Y. But, we know that
restrictions of f to Y and X -Y are A-expansive and therefore: in
both the cases we will find an integer r satisfying

{fr(p),fr’n(p)) * A.
This completes a proof of the Theorem.

5. Generators and A-expansiveness.
Recall that the notions of a generator and a weak generator 

( refer definition 1.5) for a homeomorphism on a compact Hausdorff
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space was defined by Keynes and Robertson in I 29 J and in the 
same paper they obtain a characterization of an expansive 
homeomorphism on a compact metric space in terms of generator 
( refer Theorem 1.9 ). Here we define the notions of a generator 
and a weak generator for homeomorphism on a paracompact Hausdorff 
space ( not necessarily a compact metric space ) and obtain a 
characterization of an A-expansive homeomorphism on a paracompact 
Hausdorff space in terms of generator, when A is a neighbourhood 
of the diagonal in the product space.

Definition 2.3. Let X be a paracompact Hausdorff space and let h 
be a homeomorphism on X. Then
(a) a locally finite open covering of X is called a generator 
for (X,h) if for each bisequence {0 }. of members of U,t i.€EZ
p h *■ (CIO.) is at most one point.
ts-oe \

(b) an open covering j* of X is called a weak generator for <X,h) 
if for each bisequence {A}.^, of members of , , n h (A) 
contains at most one point.

That a generator is a weak generator is immediate. For the 
converse, we have the following result.

Theorem 2.10. Let X be a paracompact Hausdorff space and. let h be 
a homeomorphism. on X. Then (X,h) has a generator whenever it has a 
weak, generator.

Proof. Suppose ^ is a weak generator for (X,h). Then being an
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open cover of X, for each x in X there is an in such
that x <s Ax. Now, regularity of X guarantees the existence of 
an open set G such that x e G £ C1G £ A . Obviously

X xxx

'S = { Gx i x « X > is an open cover of X. Since X is paracompact 
Eausdorff, there exists a locally finite open refinement say, 

= { V^ | {3 <= & } ofWe claim that is a generator for (X,h). 
To establish the claim, choose any bisequence {V };<CT! of members 
of T, For each index t, there exists a G. in § and an A in ■*?I t
such that V. £ G. £ C1G. £ A. Clearly {A}.^ is bisequence of

t X L l X.

oo —imembers of j* and as ^ is a weak generator, . n h (A } contains at
09 00most one point and therefore the inclusion.n h (CIV.) £.n h (A)1%-QB l ts-JO l

00 -%shows that.n h (CIV.) can not contain more than one point. This
|S>M l

establishes the claim.

Now we give a characterization of an A-expansive homeomorphism 
on a paracompact Hausdorff space in terms of generator defined in 
Definition 2.3.

Theorem 2.11. Let X be a paracompact Havsdorff space and. let h be 
a homeomorphiusm on X. Then (X,h) has a generator iff h is 
A-expansive, for some neighbourhood A of the diagonal in XxX- 
Proof. Suppose h is A-expansive, where A is a neighbourhood of the 
diagonal in XxX. Then for each x in X there exists a neighbourhood 
0 of x in X such that 0 x U <r A. Let 2Z={U i x e X }. WeX XX X

first observe that U is a weak generator for (X,h). Clearly V- is 
an open cover of X. Now consider any bisequence {0. _ of members

X.
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of U and suppose x, y e ^nwh ’"(Cl). Then hL(x) « U, h*'(y) « tl
for each integer i and hence

(hL(x),hi(y)) e U. x U. c A

for each i in z. Since h is A-expansive, it therefore follows that
00 -ix = y. But this proves that, n h (U. ) contains at most point i.e.,

Is -00 I.

^ is a weak generator for (X,h). Finally, Theorem 2.10 implies U 
generator for (X,h).

Conversely, suppose (X,h) possesses a generator, say, rf. 
Since X is paracompact and Hausdorff, sS is an even cover, i.e., 
there exists a neighbourhood V of the diagonal in XxX such that 
for each x in X, V[x] = { y « X I (x,y) «s V } c A for some A in * 
l 28, p.156 1. Now we complete the proof by showing that h is 
V-expansive. If contrary, assume that there is a pair of distinct 
points in X, say x, y, such that (hn (x) ,hn(y)) e V for all 
integers n. Then due to the property of V, for each integer n, 
there exists an A in ^ such thatn

hn(y) e V[hn(x)] e An.
Also, since V contains the diagonal in XxX, hn(x) e V[hn(x)] for 
all integers n. Therefore

x, y <s n h~n(A ) c n h“n(ClA ).
Now, applying the fact that & is a generator for (X,h), we get 
x = y. But this is a contradiction to the choice of the pair 
x, y. Hence h is V-expansive.
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