
CHAPTER 3

EXPANSIVE HOMEOMORPHISMS ON G-SPACES

In this Chapter we propose to introduce and study the notion 
of G-expansive homeomorphism on a metric G-space. Observe that 
every metric space (X,d) is a uniform space with uniformity U 
consisting of the sets of the form = {(x,y) « XxX|d(x,y) < 6 }, 
where <5 is any positive real number; and hence, the Definition 1.6 
of expansive transformation group is applicable. Consequently, the 
definition of an expansive metric G-space then will be as follows:
A metric G-space X with metric d is called expansive if there
exists <5 > 0 such that whenever x, y « X, x * y, one can find
a g in G satisfying (gx,gy) m V^, i.e., d(gx,gy) 2: <5. However, 
it may be seen that this concept of expansive metric G-space does 
not involve any kind of expansiveness of a homeomorphism on the 
underlying G-space. Therefore, it will be interesting to define 
and study the notion of G-expansive homeomorphism on a metric 
G-space.

Some results of this chapter are published £ 91 in the 
"Proceedings of the Symposium on Topology", Second Biennial 
Conference of the Allahabad Mathematical Society, Allahabad, 1990.

1. G-expansive homeomorphisms.
Let X throughout denote a metric space with metric d,



H(X) denote the collection of all homeomorphisms on X and G denote 
a topological group. Obviously X is a metric G-space under the 
trivial action of G on X, and then every expansive h in H(X) with 
expansive constant 6 >0 clearly satisfies the following 
condition : "For x,y in X with distinct G-orbits i.e., G(x) s* G(y), 
there exists an n in Z satifying d(h"(u),hn(v)) > 6 for all u in 
G(x) and v in G(y). (If an h in H(X) satisfies the above condition 
for a fixed positive real number <5, then we say that h 6-&xpands 
each pair of distinct G-orbits.)" However, under a non-trivial 
action of a G on X, every expansive homeomorphism h on X need 
not satisfy the above condition. We consider the following 
examples.

Examples. 3.lCal. Consider the space X = { 1/m,1- 1/m I m in N } 
with the usual metric defined through the absolute value. Then the 
h in H(X) which fixes 0 and 1 and sends t e X - {0,1} to the point 
of X which is next to the right of t, is expansive with expansive 
constant 6, where 0 < <5 < 1/6 16 1. Let the topological group 
G = Zz = {-1, 1} act on X with the action defined on X by It 
= t and -It = 1 - t, t « X. It is easily seen that for t, s in 
X - {1/2} with G(t) * G(s), there exists no integer n satisfying 
|hn(u) - hn(v)| > <5 for all u <s G(t), v e G(s), whatever <5 > 0 
may be.

However, in the following examples we see that expansive h 
does <5-expand distinct G-orbits.
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3.1Cb>. Consider the space X = { f : Z -t {0,1} > with metric d 
defined by
d(f,g) = 1/[1 + max {m|f(i) = g(i) for |i| < m }], if f(0) = g(0); 

= 1, if f(0) * g(0).
Then h in H(X) which takes f in X to g where g is defined by 
g(i) = f(i + 1) for all i in Z, is expansive with each positive 
real number 6 less than 1 as an expansive constant. Let the 
topological group G s act on X with action defined by
If = f and -If = 1 - f. Let f4, f2 be in X with distinct 
G-orbits, i.e., G(f ) * G(f ). Put F. = 1 - f. for j = 1, 2 andx 2 J J

k = min { lil j ft(i) * f2(i) }. Then
d(hk(ft),hk(f2)) = d(hk(F4),hk(F2)) = 1

and
d(hk(fi),hk(F2)) = d(hk(Ft),hk(f2)) - 1/2.

Threfore h <5 -expands each pair of distinct G-orbits for each <5 
in (0,1/2).

3.lCcD. Consider the space X = { + 1/m, +(1 - 1/m) I m e N } with 
usual metric. Then the h in H(X) which fixes -1, 0 and 1 and sends 
t e X - {-1,0,1} to the point of X which is next to the right of t 
if 0 < t < 1; while next to the left of t if -1 < t < 0, is 
expansive with expansive constant 6, 0 < 6 < 1/6. If we consider 
the action of the group G = on X defined by It = t and -It = 
-t, t « X, then for any <5, 0 < 6 < 1/6, h 6-expands each pair of 
distinct G-orbits.
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3.1Cd>. For an n in Z, let X = { n + 1/m, n + 1 - 1/m I m e N }n
and consider X = u { X |n<sZ} with usual metric. Then the hn
in H(X) which fixes all integers and sends (n + t) to (n + t’),
where n is an integer, t e Y = { 1/m, 1 - 1/m | m e H - {1} } and
t’ is that element of Y which is next to the right of t, 
is expansive with expansive constant 6, 0 < <5 < 1/6. Under the 
additive action of the group G = Z on X, it can be observed that 
for any 6, 0 <6 < 1/6, h <5-expands each pair of distinct G-orbits.

3. lCeD. Consider the space X = Rz with usual metric and ha in 
H(RZ) defined by sending u in R2 to au, where a. e R - {-1,0,1}.

Then ha is expansive with any <5 > 0 as an expansive constant.
Let G s R act on Rz by x(y, z) = (x + y, z), x, y, z e R. Then 
for any <5 > 0, h <5-expands each pair of distinct G-orbits.

3.lCf). Consider the Euclidean n-space Rn, n ^ 1 and ha in
H(Rn) defined by ha(x) -ax, where a e R - {-1,0,1}. Then ha is 
expansive with any 6 > 0 as an expansive constant. Let the 
orthogonal group G s 0(n) act on Rn with the usual action
defined by the matrix multiplication. Note that the G-orbit of 
any point x in Rn is the (n - 1)-sphere with centre at origin and 
radius equal to the distance of x from origin. Let 6 be any 
positive real number. Then for x, y in Rn with distinct G-orbits
G(x) and G(y), there exists u e G(x), v <s G(y) such that d(u,v) =
d(G(x),G(y)) where d is the Euclidean metric on Rn and hence from 
the expansiveness of h , there exists an integer n, satisfying
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d(han(u) ,han(v)) > S. It can be verified that d(han(p),han(q)) > <5 
for all p in G(x) and q in G(y). Thus h 6-expands each pair of 
distinct G-orbits.

3. lCg). For each positive integer n, we define the space
„<n> . ».2nrclc+t>/n , , „ ,X = { e , where k = 0,1..... ,n~l and

t <s Y = { 1/m, 1 - 1/m; m <s N } }
with usual metric d and consider h in H(X<n>) defined by

n
, . i2fldc+t>/'r>, i2mk+t>/-n , . . , *h (e ) = e , when t = 0 or t = 1;n

L2fr<k-M ’ ) /n , . „ r r, < 1= e ' , when t <s Y - {0,1}
wherein t’ is that element of Y which is next to the right
of t. Then hn is expansive with expansive constant <5, where
0 < 6 < d (elTr/n, eL2n/3n). Under the usual action on Xfn> of the

group G s U(n)' consisting of the nth roots of unity it is easily
seen that hn <5-expands all pairs of distinct G-orbits, where
0 < 6 < d(e ,e ),

The observations made in these examples lead us to the 
following definition.

Definition 3.1. Let X be a metric G~space and h e H(X). Then h is 
called G-expansive if there exists a 6 > 0 such that whenever 
x, y <s X with G(x) s* G(y), there exists an integer n satisfying 
d(hn(u) ,hn(v)) > <5 for all u e G(x) and v e G(y); <5 is then 
called a G-expansive constant for h.
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Note Ca}« Clearly the notion of G-expansive homeomorphism on a 
metric G-space as defined above is completly different from the 
notion of expansive transformation group defined by Eisenberg 
( Definition 1.6 ) in I 11 1.

Note CtD. Under the trivial action of G on a metric space X, a 
G-expansive h in H(X) is expansive. However, under a non-trivial 
action of a G on X, a G-expansive h in H(X) need not be expansive 
as can be seen from the following example.

Example 3.2. Consider X=u{Ck I k = l,..,n } with usual metric, 
where n e N and Cfc is the circle in the Euclidean plane R2 with 
centre at origin and radius k. Under the usual action of G s 0(2) 
on X defined by matrix multiplication, the identity map on X is 
G-expansive with G-expansive constant <5, 0 < 6 < 1, but obviously 
it is not expansive on X.

Also, under a non-trivial action of a group G on a metric 
space X an expansive homeomorphism need not be G-expansive. This 
can be seen from Example 3.1(a). Thus the notions of expansiveness 
and that of G-expansiveness on a metric G-space are independent 
of each other. This naturally therefore raises a question *

When an expansive homeomorphism on a metric G-space is 
G-expansive and conversely, when a G-expansive homeomorphism on it 
is expansive ?
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A look at the Examples 3.1(c), (e) and (f) wherein expansive 
homeomorphisms do turn out to be G-expansive reveals the following 
facts *
(FI) h satisfies h(G(x)) = G(h(x)), x e X;
(F2) G is a subgroup of ISO(X), the group of isometries on X ;
(F3) For each pair of distinct G-orbits G(x) and G(y) in X, there
exists a g e G such that o

(a) d(gQx,y) = d(G(x),G(y)) and
(b) for all gQ in G satisfying (a),

d(hL(gox) ,hl(y)) ^ d(hl(ggox), hl(y)), g « G, i e {-1,1}.
It is then natural to inquire whether an expansive 

homeomorphism satisfying (FI), (F2) and (F3) is G-expansive. We 
show in what follows that this is indeed the case.

Here it may be noted that in Examples 3.1(c) and 3.1(f), 
if x = 0, then G(x) = {0} and every g in G works as a go in
(F3)(a) and all of them trivially satisfy (F3)(b), but if x, y are 
different from 0, then there exists a unique gQ. In Example 
3.1(e) we get unique gQ. However, in Example 3.1(e) if we
consider the action on R2 of the subgroup Z instead of R then gQ 

may not be unique; for instance, consider
G(x,y) and G((x + l)/2, u); x, y, u « R and y * u,

then both 0 and 1 work as gQ, of course, (F3)(b) holds for all
such g ..o

In view of (FI), we call a continuous map f from a G-space X
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to a G-spacce Y to be pse-udoequivariant if f(G(x)I\=
S3 ijfSl ^ <7^

all x € X. ( Recall that f is called equivariant if X'ok all x in X
c ,ca^ ^ 

%N. -31 v tb ■and g in G, f satisfies f(gx) = gf(x). ) Clearly every eq^iv-arr^nt 
map is pseudoequivariant but the fact that the converse is not 
true can be seen by considering the map h^ in the Example 3.1(e). 
The following result concerning pseudoequivariant homeomorphism 
will be used for getting a sufficiency condition for an expansive 
homeomorphism to be G-expansive. We study some more properties of 
pseudoequivariant maps in Chapter 4.

Lemma 3.1. If h in H(X) is pseudoequivariant , then

hn (G(x)) = G(hn(x)), 
fox- each x in X and n in Z.
Proof. When n = 0, the result is obviously true. We prove the 
Lemma for positive integers by applying the induction principle. 
For n = 1, it is true by definition of pseudoequivariany. For n

i

= 2, we have
h2 (G(x)) = h(h(G(x)))

= h(G(h(x)))
= G(h(h(x))) = G(hz(x)).

Suppose the result is true for n = m. Then we have
hm^(G(x)) = h(hw(G(x)))

= h(G(hm(x)))
= G(h(hm (x))) = GOi^U)).

Therefore, the Lemma follows for all positive integers.
Now we show that h 1(G(x)) = G(h_1(x)). Let u e h *(G(x)).
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Then h(u) e G(x). Therefore h(u) = gx for some g in G, i.e.,
x = g 4h(u) e G(h(u)} = h(G(u)).

Thus x = h(g’u) for some g’ e G, i.e.,
u = (g’)"*h_1(x) € G(h_1 (x)).

Hence h 4(G(x)) £ G(h 4(x)). For the reverse inclusion, if
v e G(h 4(x)), then v = gh 4(x) for some g in G. Therefore

g 4v = h 4(x) or x = h(g *v).

This implies
x e h(G(v)) = G(h(v)).

Thus x = kh(v) for some k in G, i.e.,
v = h~4(k"4x> e h~*(G(x)) 

and so we get the desired containment. Hence,
h-4 (G(x)) = G(h-4 (x)).

This proves that f = h 1 is pseudoequivariant. Therefore as proved 
above, G(fm(x)) = fm(G(x)) for for all m in N, and hence we get

G(h~m(x)) = h m(G(x))
for all m in N. This completes the proof of the Lemma.

Lemma 3.2. Let X be a metric G-space and. h <s H(X). Suppose (FI), 
(F2) and (F3) hold. Then, whenever G(x) * G(y), we have

d(hm(ggox),hm(y)) > d(hm(gox),hm(y>) (*)
for all m in Z and g in G„ where gQ is same as described in (F3). 
Proof. Since G(x) * G(y), in view of (F3) for t = 1 in (F3)(b), 
there exists a g„ in G such that d(g x,y) = d(G(x),G(y)) and

d(h(gQx),h(y)) £ d(h(gg0x),h(y)) (A)
for all g in G. We claim that pseudoequivariancy of h then gives
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d(hz(gox),hz(y)) < d(hz(ggQx), hz (y)) 

for all g «= G. For a proof of the claim we proceed as follows. 
As h is given to be pseudoequivariant so for g’e G we have 
gJh(gox) = h(ggQx) for some g in G and hence by (A),

d(g’h(gox),h(y)) = d(h(ggox),h(y)) ^ d(h(gQx),h(y)).
This gives

Inf { d(g’h(gQx),h(y)) I g’e G > > d(h(gQx),h(y)).
On the other hand

Inf { d(g'h(gox),h(y)) I g’e G } < d(h(gox),h(y)) 
by considering g’ to be the identity of G. Thus 

d(G(h(gQx),h(y)) = d(h(gQx),h(y)).
Now by applying (F2) we get,

d(G(h(gox)),h(y)) = d(G(h(gox)),G(h(y))) 
and as h is pseudoequivariant h(gQx) = g^hCx) for some g± in G, 
and hence

d(G(h(x)),G(h(y))) = d^hCxJ.lKy)).
Since G(x) n G(y) = <p implies h(G(x>) n h(G(y)) = <p in view of h 
being bijective, from the pseudoequivariancy of h we have 
G(h(x)) n G(h(y)) = <p. Therefore using (F3)(b), with t =1, g4 in 
the place of gQ and x, y replaced by h(x) and h(y) respectively, 
we get

d(h(gih(x)),h(h(y))) < d(h(g’gih(x)),h(h(y))) 
for all g’ <= G. Here g4h(x) = h(gQx) and hence 

d(hz(gQx),hz(y)) < d(g'h(gox),hz(y)), 
for all g’ in G. Now for a g in G, from the pseudoequivariancy of 
h there exists a g’ «s G such that
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h2 (ggQx) = h(gJh(gox)) 

and hence we obtain
d(hz (ggQx) ,h2(y)) = d{hg’h(gQx)),h2(y)).

This establishes the claim.
Finally, as proved in Lemma 3.1 the pseudoequivariancy of h 

implies hn(G(x)) = G(hn(x}) for all n in 2 and x in X. Thus, it 
can be shown that (*) will hold true for m = k + 1 if one assumes 
(*) to be true for m = k. Hence (♦) follows for all positive
integers. Using (F3)(b) for i = -1, one can similarly show that

\

(♦) holdsfor all negative integers. The m = 0 case follows from 
(F3)(a). This completes the proof of the Lemma.

Theorem 3.1. Under the hypothesis of Lemma 3.2, h is G-expansive 
with G-expansive constant 6 whenever it is expansive with

expansive constant 6.

Proof. Consider x, y in X with G(x) * G(y). Then from Lemma 3.2 
there exists a gQ in G which satisfis (♦). Since h is expansive 
with expansive constant <5, there exists an m in Z satisfying 
d(hm(gQx) ,hm (y)) > <5 and hence

d(hm(gx),h™ Cy) > = d(hm(gg0_1g0x) ,hm(y))
> d(hm(gox),hm(y)) > 6. (#)

for each g e G. Now for any g,k in G, using (B) and (F2) we have 
d(hm(gx),hm(ky)) = d(hm(gx),k’hm(y))

= d((k’ )~*hm(gx),hm(y))
= d(hm(kix),hm(y)) > 6

by (#). This proves that h is G-expansive with G-expansive
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constant <5.

Remark. It may be observed that in Theorem 3.1 the condition of 
pseudoequivariancy of h is not a necessary condition. This is seen 
by considering the usual additive action of the group Z on R and 
the Z-expansive homeomorphism ha : R -*• R, defined by ha(x ) = ax, 
a e R - { -1, 0, 1 }, having any positive real number <5 as 
G-expansive constant. Similarly, since property (F3)(b) is not 
true for Examples 3.1(d) and 3.1(g), clearly the condition (F3)(b) 
too is not necessary. For instance, in Example 3.1(d), if we take 
x = -2/3, y = -1/7 and g = -1, then gQ = 1 and therefore

d(h(ggQx),h(y)) = 3/8
while

d(h(gQx),h(y)) = 5/8.

Regarding the converse of the above theorem we have the 
following result.

Theorem 3.2. Let X be a. metric Gspace and. let h in H(X) be 

G-expansive with Qr-expansive constant 6. Then h is expansive with 

expansive constant 6 if h is expansive on G(x) for each x X 
with expansive constant 6.

Proof. Let x, y be in X, x **= y. Then either x, y lie in same 
G-orbit or they lie in distinct G-Ojrbits. In case they lie in 
same G-orbit, the result follows by the hypothesis. Otherwise, the 
result follows by the G-expansiveness of h.
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It may be noted here that the condition of expansiveness of h
on G(x) for each x in X in Theorem 3.2 is necessary for if we
consider the identity map on X in Example 3.2, then it is
G-expansive but it is not expansive on any G-orbit in X.

2. Properties of G-expansive homeomorphisms.
Here we prove some properties of G-expansive homeomorphisms. 

First is an analogue of the Theorem 1.1 proved by Utz I 37 1 for 
expansive homeomorphisms on metric spaces.

Theorem 3.3. Let X be a compact metric G-space and. let f e H(X). 
Then h is G-expansive iff fm, m 0, is G-expansive.
Proof. First we suppose that fm, m * 0, is G-expansive with
G-expansive constant 6. Fix some integer id in Z. Let x, y e X with 
G(x) * G(y). Then by G-expansiveness of fm, there exists an n in Z 
satisfying

d( (fm )n(gx), (fm)" (ky)) > <5 
for all g, k in G. Substituting m.n = t, we get

d(ft(gx)1fl(ky)) > 6
for. all g, k in G. Hence f is G-expansive with G-expansive 
constant 6.

Conversely, suppose f is G-expansive with <5 as G-expansive 
constant. Since X is compact, any h in H(X) will satisfy the 
following condition :

Given any c > 0, there exists an rj > 0 such that 
d(x,y) > e «* d(h(x) ,h(y)) > r?-
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Let <p - fm, where m is an integer different from 0. Consider f1-,

i = ±1,..... ±m. Then corresponding to <5 >0, there exists 7?^ for

every i <e {±1, . , . ,±m} such that
d(x,y) > 6 «*. dtf^jO.fNy)) > \

for all x, y e X. Let x, y « X with distinct G-orbits. Since f is 

G-expansive with G-expansive constant <5, there exists an integer 
n satisfying d(fn (gx), fn (ky)) > <5, for each g, K « G. Thus, 

d(fl (fn(gx)), f1- (f" (ky))) > min {rj.}, 

i <s {±l,.,,±m>, and g, k e G. Since one can find an integer r such 
that 0 < |r - n/ml ^ 1 or 0 < Irm - n| 5 |ml, therefore (rm-n) 

e {± 1,.... ±m> and hence
d(frm~n(fn(gx}),frm~r,(fn(ky))) > min {nL>, 

or equivalently
d(fm)r(gx), (fm)r(ky)) > min {nt},

where i e { ±1, . . . . ,±m } and g, k « G. Hence <t> = fm is G-expansive 

with G-expansive constant a, where a = min { 7?LI *• <s }.

The following result concerns the restriction of G-expansive 
homeomorphism.

Theorem 3.4. Let X be a metric G-spaee, h in. H(X) be G-expaneive 
and A be a G-nvariartt subspace of X such that h(A) = A- Then h|^ 
is G-expansive on A.
Proof. Let 6 be G-expansive constant for h on X. Choose x, y in A 
with distinct G-orbits. Since h is given to be G-expansive on X, 
there exists an integer n satisfying d(hn (gx) ,hn(ky)) > <5 for all



g, k in G; then A being G-invariant, G(x) £ A and G(y) £ A and 
hence h is G-expansive on A with G-expansive constant <5.

Next, we prove a result regarding product of two G-expansive 
homeomorphisms.

Theroem 3.5. Let (X,d) and (Y,p) be two metric G-spaces, and 
let h in H(X), f in H(Y) be G-expansive homeomorphisms. Then hxf 
e H(X x Y) and is G-expansive when, the product space X x Y is 
given the diagonal action of G i.e. , g(x,y) = (gx.gy), where g <= G 
and (x,y) <= X x Y-
Proof. Suppose D denotes the product metric on X x Y. Let h in 
H(X) be G-expansive with G-expansive constant <5 and let f in 
H(Y) be G-expansive with G-expansive constant s. Obviously h x f 
« H(XxY). Suppose (x,y), (u,v) e X x Y with G(x,y) * G(u,v), i.e., 
(x,y) * g(u,v) for any g in G. Then either x * gu for any g in G 
or y * gv for any g in G. In case x s* gu, by G-expansiveness of h 
there exists an integer n satisfying d(h"(gx),hn(ku)) > <5 for each 
g, k <= G and therefore we obtain

D( {hxf )n(g(x,y)), (hxf )n(k(u, v)))
= D((hn(gx),fn(gy)),(hn(ku),fn(kv)))
= [d(hn (gx) ,hn(ku) )2 + P(fn(gy),fn(kv))2]1'"2 

> «5 > min {£,«},
for each g, k in G. In case y * kv for any k « G, we apply the 
G-expansiveness of f to obtain an integer m satisfying 

D( (hxf )m(g(x,y)), (hxf )m(k(u,v))) > e > min
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for each g, k in G. This proves that (h x f) is G-expansive with 
G-expansive constant a, where a = min

Using the same method it can easily be proved that if h e 
H(Xt), i = 1, ..... ,n; n <s H, are G-expansive, then || h is also 
G-expansive on |j X under the diagonal action of G on f| X^.

The following result is an analogue of Bryant's result 
(refer Theorem 1.4) proved in I 6 1 for expansive homeomorphism on 
metric spaces.

Theorem 3.6. If a pseudaequivariant homeomorphism. from. a.

metric Q-space X to cl. metric G-space Y is such. that 9 1 is 

uniformly continuous, then 4'h4' 1 is Gsxpa.nsive on Y whenever h 
is G-expansive on X.
Proof. Let d and p denote the metrics of X and Y respectively. 
Sine 1 is uniformly continuous so for a given £ > 0 there exists 

cl > 0 such that
p(u,v) ^ a =* d(4' i(u),’i' 1 (v)) < s;

where u, v e Y or equivalently
d(^ *(u) ,*_A(v)) 2: s »> P(u,v) > a 

which means for p, q in X one has
d(p, q) > £ => p(^(p) ,*(q) ) > a.

Now, let h in H(X) be G-expansive with G-expansive constant 6 
and let u, v be in Y with distinct G-orbits. Then

G(u) n G(v) = p * f-1 (G(u)) n ^(Gtv)) = <p.

59



Using pseudoequivariancy of *, we have from Lemma 3.1 
G(*"*(u)) n GC*"1^)) = p.

That is 'J' 1 (u) and «,-1(v) have distinct G-orbits. Thus by 

G-expansiveness of h, there exists an integer n satisfying 
d(hn(g*“1(u)),hn(W"4(v))) > <5

for each g, k in G. Corresponding to 6 there exists a ft > 0 

satisfying
P(*hn(g4'“1(u)),*‘hn(k.>I'“1(v))) > ft 

for each g, k in G. Another use of pseudoequivariancy of * gives 
P(%n«"‘(g,u),*hn^“4(k,v)) > ft 

or equivalently
p((*h»"1)n(B*u),(«h®'-1)n(k,v)) > ft 

for each g‘, k’ in G. Hence 1 is G-expansive with G-expansive

constant ft.

/We next prove a result which is analogue of Theorem 1.10 
obtained by Bryant I 6 J for expansive homeomorphisms on metric 
spaces. /

Theorem 3.7. Let X be a compete t metric G-space with G compact and 
let h in H(X) be G-expansive with G-expansive constant &. Then 
there exists a k(X) in N for each X. 0 < X < 6, such that 
Inf { d(gx,ky ) | g, k e G } > X implies d(hn(gx) ,hn(ky)) > <5, for 

all g, k e G and for some integer n satisfying |n| S k(X).
Proof . Suppose the result is not true. Then there exists a X such 
that 0 < X < 6 and for each i in N, there exist xt, yt with
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Inf { d(gx.lsjr) | g, k <s G } > X (■)
and

d(hn(gx. ),hn(ky. )) ^ <5
for some g, k e G and each integer n such that |n| Si. Since X is 
compact we can assume that sequences {xL> and {5^} converge 
respectively to some elements x and y of X.
Now using (*), one can easily conclude that x and y have distinct 
G-orbits. Next-, choose an integer m. Since 

d(hm(gx),hm(ky.)) < 6
for each it |m| and some g, k € G, we have 

d(hm(gx),hm(ky)) < 6
for some g, k « G. But, as choice of m was arbitrary, we get a 
contradiction to the fact that h is G-expansive with G-expansive 
constant <5. This completes the proof of the Theorem.

3. Fixed points, extension and characterization of G-expansive 
homeomorphisms .

Regarding the fixed points of an expansive homeomorphism, 
recall that an expansive homeomorphism on a compact metric space 
can have only finetely many fixed points. However, this need 
not be true for a G-expansive homeomorphism. For example the 
G-expansive homeomorphism of Example 3.2 on the compact metric 
G-space X has uncountably many fixed points.

We now deal with an extension problem of G-expansive 
homeomorphisms. If X is a metric G-space, As X is G-invariant and

61



h e H(X), then by 6-expansiveness of h on A we mean that there 
exists a positive real number <5 such that whenever x, y e A with 
with distinct G-orbits, there exists an n in Z satisfying 
d(hn(u) ,hn(v)) > <5 for all u « G(x),v <s G(y). Obviously a 
G-expansive homeomorphism h on a metric G-space is G-expansive on 
every G-invariant subspace A of X. Regarding the extension of 
G-expansive homeomorphisms, in the following we prove a result 
which gives condition under which an h in H(X) is G-expansive on 
X whenever it is G-expansive on a G-invariant subspace of X.

Theorem 3.8. Let X be a metric G-space and A be a G-invariant 

subs pace of X such, that X - A is a union of finitely many distinct 
G-orb£ts. Then an h in H(X) which is Q-expansive on A is 

G-expansive on X.
Proof . Let 6 be a G-expansive constant of h on A and let 

X - A = u { G(x.) | i = 1, . . . ,n }, 
where G(xt) # G(xp for i * j. We need to prove that h is
G-expansive on A u G(xi) because then the result will follow by 
induction. To see that h is G-expansive on A u G(xi), first
observe that there can not exist two points p, q in A with
distinct G-orbits such that for given m in Z, one can get g, k, t 
in G satisfying

d (h"1 (gp), hm (tx ) ) < <5/2
X

and
d(hm(kq),hm(txi)) < <5/2.

For otherwise, using the triangle inequality of the metric d, we
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will arrive at a contradiction to the hypothesis that h is G- 
expansive on A with G-expansive constant <5. It follows that there 

exists at most one point p in A such that given m in Z, one can 
find g, k in G satisfying d(hm(gp),hm(kxi)) < 6/2.

Now, in case such a p exists in A, choose c such that 

0 < c < Inf { d(gxi(kp) | g, k « G }, 
otherwise take c = 6/2 and observe that h is G-expansive on 

A u G(x4) with c as a G-expansive constant.

Since in general expansiveness neither implies nor is 
implied by G-expansiveness, the following characterization of 
G-expansiveness will be interesting. First we give a necessary 
definition.

Throughout X denotes a metric G-space with metric d.

Definition 3.3. Given 6 >0, an h in H(X) is said to G-6 separate 
h-orbits if given any basis 3 : { xfl I a e ^ } of (X,h), whenever 
G(xa) * G(x^) there exists an integer r satisfying 

d(hr(gxa) ,hr (kx^)) > 6 

for all g, k in G.

Theorem 3.9. Let h in H(X) be psextdoetfxiivariant. Then h is 
G-expansive with G-expansive constant 6 iff
(i) h-or6£ ts are G~«5 separated by h and
(ii) for p X and. n in Z such that hn(p) 0 G(p), there exists an



integer r satisfying
d(hn+r(gp) ,hr(kp)) > <5 

for all g, k in G.
Proof. From Lemma 3.1, the pseudoequivariancy of h gives

hq (G(x)} = G (hq (x)) (B)
where x e X and q e Z. Suppose h in H(X) is G-expansive with
G-expansive constant <5. Let S = {xa|aej^} be any basis
of X with respect to h. Then whenever G(xa) * G(x^), from 
G-expansiveness of h there exists an integer r satisfying
d(hr(gxa) ,hr (kx^)) > 6 for each g, k in G. Thus, h G-<5 separates
h-orbits. Also, if p in X and n in Z are such that hn(p) G(p), 
then we get G(hn(p)) * G(p). Therefore from G-expansiveness of h 
there exists an integer r satisfying d(hr (ghn(p)) ,hr(kp)) > <5, for 
each g, k in G. Using (B), we obtain gh"(p) = hn(g’p) for some
g’ in G. But this gives

d(hn+r(g’p),hr(kp)) > <5

for all g’,k in G. This completes the proof of (u).
Conversely, suppose both the conditions (O and {«•>■) hold. 

Then we show that h is G-expansive with G-expansive constant <5. 
For this let x, y be in X with distinct G-orbits.. Then either x 
and y are in the same h-orbit or they lie in different h-orbits. 
We consider both the two cases separately.
Case 1. Let x , y be in distinct h-orbits say, CKx^) and O(x^)
respetively. Let x = hn(xa) and y = hm(X0). We put I!

hmn(x^), and write y = hn(xr). Now choose that basis 3 of (X,h)
which has x^ and xy as its members. Since G(x) * G(y), i.e. ,
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G(hn(x )) * G(hn(x )), using pseudoequivariancy of h, we have
i

hn(G(xa)) n hn(G(x^)) = <p

and hence
G(xa) * G(x^).

Now using (t) we get an integer r satisfying 
d(hr(gxa) ,hr (kx^)) > 6 

for all g, k in G, i.e.,
d(hr(gh~n(x)),hr(kh“n(y)}) >6

for all g, k in G. Now we again use pseudoequivariance of h to 
obtain

d(hr_n(g’x) ,hr-n(k’y) ) > 6
for all g’, k* in G. Thus we get an integer t = (r - n) such that 
for all g5, k’ in G

dd^fg’x) ,hl(k’y)) > <5.
It follows in this case that h is G-expansive with G-expansive &. 
Case 2. Let x,y be in the same h-orbit say, 0(xa). Then x = hn(xa) 
and y = hm(xa) for some integers n and m. Since G(x) * G(y), i.e., 

G(hn(xa)) * G(hn(hm_n(xa))), 
using pseudoequivariancy of h we get

bn(G(xa)) n hn(G(hn,~n(xa))) = *
and hence G(x) * G(hm-n(x)). Thus hm_n(x ) « G(x) and hence by

U Cn CX (a

(i-i) there exists an integer r satisfying 
d(hr(gxa),hm~n+r(kxo{)) > 6, 

or equivalently
d[hr(gh‘"(x)), h'n“n+r(kh“m(y))] > 6 

for all g, k in G. Now using the pseudoequivariancy of h we get
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d(hr_r,(g'x),hr“n(k’y)) > <5
for all g’,k’ e G, i.e., there exists an integer q = (r - n) 
such that for all g‘, k’ in G

. d(hq(g’x) ,hq(k’y)) > <5.
Hence, in this case also, h is G-expansive with G-expansive 
constant <5. This completes a proof of the Theorem.

Using the above result, we prove the following result which 
gives a sufficient condition for a homeomorphic extension of a 
G-expansive homeomorphism to be G-expansive.

Theorem 3.10. Let X be a G-invariant subspace of a metric G-space 
Y and let h in H(X) be pseudoequivariant G-expansive with 
G-expansive constant 6. Then a pseudoequivariant extension f of h, 
f e H(Y), is G-expansive with G-expansive constant 6 if
(t) f is G-expansive on Y - X with G-expansive constant <5; and
(u) there exists a basis & of (X,h) such that d(g.x,(Y - X)) > <5
for each g in G end x in &,
Proof . To prove that f e H(Y) is G-expansive with G-expansive 
constant 6, we show that f satisfies conditions (t) and (ll) of 
Theorem 3.9. Let "6 - { | a e jf, jf is an index set } be a basis
of Y with respect to f. Let ya, y^ « 8 with distinct G-orbits. 
Then there are three possibilities :
(a) <s Xj
(b) y*> yft « Y - X, and
(c) ya « x and Yp e Y - X or ya <= Y - X and « X
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In the situation (a) and (b) the Theorem follows by using the fact 
that f|^ and f[y_^ are G-expansive with G-expansive constant <5 and 
also the fact that X is a G-invariant subspace of Y.

Now, suppose we are in the situation (c). Let ya e X and 
e Y - X. As 3 is a basis for (X,h), there exists a x in £ such 

that e 0(x), i.e., for some integer n, ya = hn(x). From the 
hypothesis we get

d(g'f_n(ya),f_n(ky/?)) > 6
for each g’and k in G. Since f is pseudoequivariant, Lemma 3.1 
gives

d(f n(gya),f n(ky^)) > 6
for each g, k in G. Thus, f-orbits are G-<5 separated by f. For
condition (u ), let p € Y and n e Z be such that hn(P) tfs G(p).
Then either p e X or- p « Y - X. In case p e X, X being
G-invariant G(p) S X and therefore by G-expansiveness of
fly = h, there exists an integer r satisfying 

d(fn"(gp),fr(kp)) > 6
for each g, k in G. Similarly if p «= Y - X, G-expansiveness of 
f on Y - X gives the required condition. Hence f in H(Y) is 
G-expansive with G-expansive constant <5.

Remark . If the action of G on X is trivial, then Theorems 3.9 and 
3.10 reduce to respectively Theorems 1.8 and 1.9 due to Wine 1421 
stated in Chapter 1.

The following example shows that the sufficiency condition
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concerning basis in Theorem 3.10 is not necessary.

Example 3.3. Let the space X and the homeomorphism h in H(X) 
of Example 3.1(c) be here denoted by W and <p respectively. On 
Y = W x W let G = Z2 act by

l.(s,t) = (s,t) and -l.(s,t) = (-s, -t).
Then

X = [ (W - {-1,0,1}) x (W - {-1,0,1}) ] 
is a G-invariant subspace of Y and the function h = 4> x <p on 
X is a pseudoequivariant G-expansive homeomorphism on X with 
G-expansive constant <5, where 0 < <5 < 1/6. Also, the function 
f=#x#onYisin H(Y) and is obviously a pseudoequivariant 
extension of h to Y such that f is G-expansive oh Y - X as well 
as on Y with the same G-expansive constant 6. But, for the 
h-orbit 0(l/m,l - 1/m) of any point (l/m,l - 1/m) with 1/m < <5 
one has d(gt, Y - X) £ <5 for any g in G and t in 0(l/m,l - 1/m). 
Since any basis of X with respect to h contains a point of such 
h-orbit 0(l/m, 1 - 1/m), it follows that the condition concerning 
the basis in Theorem 3.10 is not necessary.
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