CHAPTER 3

EXPANSIVE HOMEOMORPHISMS ON G-SPACES

In this Chapter we propose to introduce and study the notion of G-expansive homeomorphism on a metric G-space. Observe that every metric space (X,d) is a uniform space with uniformity \mathcal{U} consisting of the sets of the form $V_{\delta} = \{(x,y) \in X \times X | d(x,y) < \delta\}$, where δ is any positive real number; and hence, the Definition 1.6 of expansive transformation group is applicable. Consequently, the definition of an expansive metric G-space then will be as follows: A metric G-space X with metric d is called expansive if there exists $\delta > 0$ such that whenever x, $y \in X$, $x \neq y$, one can find a g in G satisfying $(gx,gy) \notin V_{\delta}$, i.e., $d(gx,gy) \geq \delta$. However, it may be seen that this concept of expansive metric G-space does not involve any kind of expansiveness of a homeomorphism on the underlying G-space. Therefore, it will be interesting to define and study the notion of G-expansive homeomorphism on a metric G-space.

Some results of this chapter are published [9] in the "Proceedings of the Symposium on Topology", Second Biennial Conference of the Allahabad Mathematical Society, Allahabad, 1990.

1. G-expansive homeomorphisms.

Let X throughout denote a metric space with metric d,

H(X) denote the collection of all homeomorphisms on X and G denote a topological group. Obviously X is a metric G-space under the trivial action of G on X, and then every expansive h in H(X) with expansive constant $\delta > 0$ clearly satisfies the following condition : "For x,y in X with distinct G-orbits i.e., $G(x) \neq G(y)$, there exists an n in Z satifying $d(h^{n}(u),h^{n}(v)) > \delta$ for all u in G(x) and v in G(y). (If an h in H(X) satisfies the above condition for a fixed positive real number δ , then we say that h δ -expands each pair of distinct G-orbits.)" However, under a non-trivial action of a G on X, every expansive homeomorphism h on X need not satisfy the above condition. We consider the following examples.

Examples. 3.1(a). Consider the space $X = \{ 1/m, 1-1/m \mid m \text{ in } N \}$ with the usual metric defined through the absolute value. Then the h in H(X) which fixes 0 and 1 and sends $t \in X - \{0,1\}$ to the point of X which is next to the right of t, is expansive with expansive constant δ , where $0 < \delta < 1/6$ [6]. Let the topological group $G \equiv Z_2 = \{-1, 1\}$ act on X with the action defined on X by 1t = t and -1t = 1 - t, $t \in X$. It is easily seen that for t, s in X - $\{1/2\}$ with $G(t) \neq G(s)$, there exists no integer n satisfying $|h^n(u) - h^n(v)| > \delta$ for all $u \in G(t), v \in G(s)$, whatever $\delta > 0$ may be.

However, in the following examples we see that expansive h does δ -expand distinct G-orbits.

3.1(b). Consider the space $X = \{f : \mathbb{Z} \rightarrow \{0,1\}\}$ with metric d defined by

 $d(f,g) = 1/[1 + \max \{m|f(i) = g(i) \text{ for } |i| < m \}], \text{ if } f(0) = g(0);$ = 1, if $f(0) \neq g(0)$.

Then h in H(X) which takes f in X to g where g is defined by g(i) = f(i + 1) for all i in Z, is expansive with each positive real number δ less than 1 as an expansive constant. Let the topological group $G \equiv Z_2$ act on X with action defined by 1f = f and -1f = 1 - f. Let f_i , f_2 be in X with distinct G-orbits, i.e., $G(f_i) \neq G(f_2)$. Put $F_j = 1 - f_j$ for j = 1, 2 and $k = \min \{ |i| \mid f_i(i) \neq f_2(i) \}$. Then

$$d(h^{k}(f_{i}), h^{k}(f_{2})) = d(h^{k}(F_{i}), h^{k}(F_{2})) = 1$$

and

$$d(h^{k}(f_{1}), h^{k}(F_{2})) = d(h^{k}(F_{1}), h^{k}(f_{2})) = 1/2.$$

Threfore h δ -expands each pair of distinct G-orbits for each δ in (0,1/2).

3.1(c). Consider the space $X = \{ \mp 1/m, \mp (1 - 1/m) \mid m \in N \}$ with usual metric. Then the h in H(X) which fixes -1, 0 and 1 and sends $t \in X - \{-1,0,1\}$ to the point of X which is next to the right of t if 0 < t < 1; while next to the left of t if -1 < t < 0, is expansive with expansive constant δ , $0 < \delta < 1/6$. If we consider the action of the group $G \equiv Z_2$ on X defined by 1t = t and -1t =-t, $t \in X$, then for any δ , $0 < \delta < 1/6$, h δ -expands each pair of distinct G-orbits. **3.1(d).** For an n in Z, let $X_n = \{ n + 1/m, n + 1 - 1/m \mid m \in N \}$ and consider $X = \cup \{ X_n \mid n \in Z \}$ with usual metric. Then the h in H(X) which fixes all integers and sends (n + t) to (n + t'), where n is an integer, $t \in Y \equiv \{ 1/m, 1 - 1/m \mid m \in N - \{1\} \}$ and t' is that element of Y which is next to the right of t, is expansive with expansive constant δ , $0 < \delta < 1/6$. Under the additive action of the group $G \equiv Z$ on X, it can be observed that for any δ , $0 < \delta < 1/6$, h δ -expands each pair of distinct G-orbits.

3.1(e). Consider the space $X = R^2$ with usual metric and h_{α} in $H(R^2)$ defined by sending u in R^2 to αu , where $\alpha \in R - \{-1,0,1\}$. Then h_{α} is expansive with any $\delta > 0$ as an expansive constant. Let $G \equiv R$ act on R^2 by $x(y, z) = (x + y, z), x, y, z \in R$. Then for any $\delta > 0$, h δ -expands each pair of distinct G-orbits.

3.1(f). Consider the Euclidean n-space \mathbb{R}^n , $n \ge 1$ and h_{α} in $\mathbb{H}(\mathbb{R}^n)$ defined by $h_{\alpha}(x) = \alpha x$, where $\alpha \in \mathbb{R} - \{-1,0,1\}$. Then h_{α} is expansive with any $\delta > 0$ as an expansive constant. Let the orthogonal group $\mathbb{G} \equiv O(n)$ act on \mathbb{R}^n with the usual action defined by the matrix multiplication. Note that the G-orbit of any point x in \mathbb{R}^n is the (n - 1)-sphere with centre at origin and radius equal to the distance of x from origin. Let δ be any positive real number. Then for x, y in \mathbb{R}^n with distinct G-orbits $\mathbb{G}(x)$ and $\mathbb{G}(y)$, there exists $u \in \mathbb{G}(x)$, $v \in \mathbb{G}(y)$ such that $d(u,v) = d(\mathbb{G}(x), \mathbb{G}(y))$ where d is the Euclidean metric on \mathbb{R}^n and hence from the expansiveness of h_{α} , there exists an integer n, satisfying

 $d(h_{\alpha}^{n}(u),h_{\alpha}^{n}(v)) > \delta$. It can be verified that $d(h_{\alpha}^{n}(p),h_{\alpha}^{n}(q)) > \delta$ for all p in G(x) and q in G(y). Thus h δ -expands each pair of distinct G-orbits.

3.1(g). For each positive integer n, we define the space

$$X^{(n)} = \{ e^{i2\pi(k+i)/n}, \text{ where } k = 0, 1, \dots, n-1 \text{ and}$$

 $t \in Y \equiv \{ 1/m, 1 - 1/m; m \in N \} \}$
with usual metric d and consider h in $H(X^{(n)})$ defined by

$$h_{n}(e^{i2\pi i k + i Y n}) = e^{i2\pi i k + i Y n}, \text{ when } t = 0 \text{ or } t = 1;$$
$$= e^{i2\pi i k + i Y / n}, \text{ when } t \in Y - \{0, 1\}$$

wherein t' is that element of Y which is next to the right of t. Then h_n is expansive with expansive constant δ , where $0 < \delta < d(e^{i\pi/n}, e^{i2\pi/3n})$. Under the usual action on $X^{(n)}$ of the group $G \equiv U(n)$ consisting of the nth roots of unity it is easily seen that $h_n \delta$ -expands all pairs of distinct G-orbits, where $0 < \delta < d(e^{i\pi/n}, e^{i2\pi/3n})$.

The observations made in these examples lead us to the following definition.

Definition 3.1. Let X be a metric G-space and $h \in H(X)$. Then h is called G-expansive if there exists a $\delta > 0$ such that whenever x, $y \in X$ with $G(x) \neq G(y)$, there exists an integer n satisfying $d(h^{n}(u),h^{n}(v)) > \delta$ for all $u \in G(x)$ and $v \in G(y)$; δ is then called a G-expansive constant for h.

Note (a). Clearly the notion of G-expansive homeomorphism on a metric G-space as defined above is completly different from the notion of expansive transformation group defined by Eisenberg (Definition 1.6) in [11].

Note (b). Under the trivial action of G on a metric space X, a G-expansive h in H(X) is expansive. However, under a non-trivial action of a G on X, a G-expansive h in H(X) need not be expansive as can be seen from the following example.

Example 3.2. Consider $X = \bigcup \{ C_k \mid k = 1, ..., n \}$ with usual metric, where $n \in N$ and C_k is the circle in the Euclidean plane \mathbb{R}^2 with centre at origin and radius k. Under the usual action of $G \equiv O(2)$ on X defined by matrix multiplication, the identity map on X is G-expansive with G-expansive constant δ , $0 < \delta < 1$, but obviously it is not expansive on X.

Also, under a non-trivial action of a group G on a metric space X an expansive homeomorphism need not be G-expansive. This can be seen from Example 3.1(a). Thus the notions of expansiveness and that of G-expansiveness on a metric G-space are independent of each other. This naturally therefore raises a question :

When an expansive homeomorphism on a metric G-space is G-expansive and conversely, when a G-expansive homeomorphism on it is expansive ?

A look at the Examples 3.1(c), (e) and (f) wherein expansive homeomorphisms do turn out to be G-expansive reveals the following facts :

(F1) h satisfies $h(G(x)) = G(h(x)), x \in X$;

(F2) G is a subgroup of ISO(X), the group of isometries on X ; (F3) For each pair of distinct G-orbits G(x) and G(y) in X, there

exists a $g_{\alpha} \in G$ such that

(a) $d(g_{\alpha}x,y) = d(G(x),G(y))$ and

(b) for all g in G satisfying (a),

 $d(h^{i}(g_{o}x),h^{i}(y)) \leq d(h^{i}(gg_{o}x),h^{i}(y)), g \in G, i \in \{-1,1\}.$

It is then natural to inquire whether an expansive homeomorphism satisfying (F1), (F2) and (F3) is G-expansive. We show in what follows that this is indeed the case.

Here it may be noted that in Examples 3.1(c) and 3.1(f), if x = 0, then $G(x) = \{0\}$ and every g in G works as a g_0 in (F3)(a) and all of them trivially satisfy (F3)(b), but if x, y are different from 0, then there exists a unique g_0 . In Example 3.1(e) we get unique g_0 . However, in Example 3.1(e) if we consider the action on \mathbb{R}^2 of the subgroup Z instead of R then g_0 may not be unique; for instance, consider

G(x,y) and G((x + 1)/2, u); x, y, $u \in \mathbb{R}$ and $y \neq u$, then both 0 and 1 work as g_0 , of course, (F3)(b) holds for all such g_0 .

In view of (F1), we call a continuous map f from a G-space X

to a G-spacee Y to be *pseudoequivariant* if f(G(x)) = G(f(x)) = forall $x \in X$. (Recall that f is called *equivariant* if for all x in X and g in G, f satisfies f(gx) = gf(x).) Clearly every equivariant map is pseudoequivariant but the fact that the converse is not true can be seen by considering the map h_a in the Example 3.1(e). The following result concerning pseudoequivariant homeomorphism will be used for getting a sufficiency condition for an expansive homeomorphism to be G-expansive. We study some more properties of pseudoequivariant maps in Chapter 4.

Lemma 3.1. If h in H(X) is pseudoequivariant, then

 $h^{n}(G(x)) = G(h^{n}(x)),$

for each x in X and n in Z.

Proof. When n = 0, the result is obviously true. We prove the Lemma for positive integers by applying the induction principle. For n = 1, it is true by definition of pseudoequivariany. For n = 2, we have

$$h^{2}(G(x)) = h(h(G(x)))$$

= $h(G(h(x)))$
= $G(h(h(x))) = G(h^{2}(x)).$

Suppose the result is true for n = m. Then we have

$$h^{m+i}(G(x)) = h(h^{m}(G(x)))$$

= h(G(h^{m}(x)))
= G(h(h^{m}(x))) = G(h^{m+i}(x))

).

Therefore, the Lemma follows for all positive integers.

Now we show that $h^{-1}(G(x)) = G(h^{-1}(x))$. Let $u \in h^{-1}(G(x))$.

Then $h(u) \in G(x)$. Therefore h(u) = gx for some g in G, i.e.,

$$x = g^{-1}h(u) \in G(h(u)) = h(G(u)).$$

Thus x = h(g'u) for some $g' \in G$, i.e.,

$$u = (g')^{-i}h^{-i}(x) \in G(h^{-i}(x)).$$

Hence $h^{-1}(G(x)) \subseteq G(h^{-1}(x))$. For the reverse inclusion, if $v \in G(h^{-1}(x))$, then $v = gh^{-1}(x)$ for some g in G. Therefore $g^{-1}v = h^{-1}(x)$ or $x = h(g^{-1}v)$.

This implies

$$\mathbf{x} \in \mathbf{h}(\mathbf{G}(\mathbf{v})) = \mathbf{G}(\mathbf{h}(\mathbf{v})).$$

Thus x = kh(v) for some k in G, i.e.,

$$v = h^{*}(k^{-x}x) \in h^{*}(G(x))$$

and so we get the desired containment. Hence,

$$h^{-1}(G(x)) = G(h^{-1}(x)).$$

This proves that $f = h^{-1}$ is pseudoequivariant. Therefore as proved above, $G(f^{m}(x)) = f^{m}(G(x))$ for for all m in N, and hence we get $G(h^{-m}(x)) = h^{-m}(G(x))$

for all m in N. This completes the proof of the Lemma.

Lemma 3.2. Let X be a metric G-space and $h \in H(X)$. Suppose (F1), (F2) and (F3) hold. Then whenever $G(x) \neq G(y)$, we have

$$d(h^{m}(gg_{o}x),h^{m}(y)) \geq d(h^{m}(g_{o}x),h^{m}(y)) \qquad (*)$$

for all m in Z and g in G, where g_0 is same as described in (F3). Proof. Since $G(x) \neq G(y)$, in view of (F3) for i = 1 in (F3)(b), there exists a g_0 in G such that $d(g_0x,y) = d(G(x),G(y))$ and $d(h(g_0x),h(y)) \leq d(h(gg_0x),h(y))$ (A)

for all g in G. We claim that pseudoequivariancy of h then gives

$$d(h^{2}(g_{o}x),h^{2}(y)) \leq d(h^{2}(gg_{o}x),h^{2}(y))$$

for all $g \in G$. For a proof of the claim we proceed as follows. As h is given to be pseudoequivariant so for $g' \in G$ we have $g'h(g_0 x) = h(gg_0 x)$ for some g in G and hence by (A),

 $d(g'h(g_0x),h(y)) = d(h(gg_0x),h(y)) \ge d(h(g_0x),h(y)).$

This gives

Inf { $d(g'h(g_0x),h(y))$ | $g' \in G$ } $\geq d(h(g_0x),h(y))$. On the other hand

Inf { $d(g'h(g_0x),h(y))$ | $g' \in G$ } $\leq d(h(g_0x),h(y))$ by considering g' to be the identity of G. Thus

 $d(G(h(g_0x),h(y)) = d(h(g_0x),h(y)).$

Now by applying (F2) we get,

 $d(G(h(g_x)),h(y)) = d(G(h(g_x)),G(h(y)))$

and as h is pseudoequivariant $h(g_0 x) = g_1 h(x)$ for some g_1 in G, and hence

 $d(G(h(x)),G(h(y))) = d(g_{+}h(x),h(y)).$

Since $G(x) \cap G(y) = \varphi$ implies $h(G(x)) \cap h(G(y)) = \varphi$ in view of h being bijective, from the pseudoequivariancy of h we have $G(h(x)) \cap G(h(y)) = \varphi$. Therefore using (F3)(b), with i = 1, g_i in the place of g_0 and x, y replaced by h(x) and h(y) respectively, we get

 $d(h(g_i h(x)), h(h(y))) \le d(h(g'g_i h(x)), h(h(y)))$ for all g' \in G. Here $g_i h(x) = h(g_i x)$ and hence

 $d(h^{2}(g_{0}x),h^{2}(y)) \leq d(g'h(g_{0}x),h^{2}(y)),$

for all g' in G. Now for a g in G, from the pseudoequivariancy of h there exists a g' \in G such that

 $h^{2}(gg_{o}x) = h(g'h(g_{o}x))$

and hence we obtain

 $d(h^{2}(gg_{o}x),h^{2}(y)) = d(hg'h(g_{o}x)),h^{2}(y)).$ This establishes the claim.

Finally, as proved in Lemma 3.1 the pseudoequivariancy of h implies $h^{n}(G(x)) = G(h^{n}(x))$ for all n in Z and x in X. Thus, it can be shown that (*) will hold true for m = k + 1 if one assumes (*) to be true for m = k. Hence (*) follows for all positive integers. Using (F3)(b) for i = -1, one can similarly show that (*) holdsfor all negative integers. The m = 0 case follows from (F3)(a). This completes the proof of the Lemma.

Theorem 3.1. Under the hypothesis of Lemma 3.2, h is G-expansive with G-expansive constant δ whenever it is expansive with expansive constant δ .

Proof. Consider x, y in X with $G(x) \neq G(y)$. Then from Lemma 3.2 there exists a g_0 in G which satisfis (*). Since h is expansive with expansive constant δ , there exists an m in Z satisfying $d(h^m(g_0x), h^m(y)) > \delta$ and hence

$$d(h^{m}(gx), h^{m}(y)) = d(h^{m}(gg_{o}^{-1}g_{o}x), h^{m}(y))$$

$$\geq d(h^{m}(g_{o}x), h^{m}(y)) > \delta. \qquad (\ddagger)$$

for each $g \in G$. Now for any g,k in G, using (B) and (F2) we have $d(h^{m}(gx), h^{m}(ky)) = d(h^{m}(gx), k'h^{m}(y))$ $= d((k')^{-i}h^{m}(gx), h^{m}(y))$ $= d(h^{m}(k,x), h^{m}(y)) > \delta$

$$= u(n (n_1), n (y)) / 0$$

by (#). This proves that h is G-expansive with G-expansive

constant δ .

Remark. It may be observed that in Theorem 3.1 the condition of pseudoequivariancy of h is not a necessary condition. This is seen by considering the usual additive action of the group Z on R and the Z-expansive homeomorphism h_{α} : $R \rightarrow R$, defined by $h_{\alpha}(x) = \alpha x$, $\alpha \in R - \{ -1, 0, 1 \}$, having any positive real number δ as G-expansive constant. Similarly, since property (F3)(b) is not true for Examples 3.1(d) and 3.1(g), clearly the condition (F3)(b) too is not necessary. For instance, in Example 3.1(d), if we take x = -2/3, y = -1/7 and g = -1, then $g_0 = 1$ and therefore

 $d(h(gg_0x),h(y)) = 3/8$

while

 $d(h(g_{0}x),h(y)) = 5/8.$

Regarding the converse of the above theorem we have the following result.

Theorem 3.2. Let X be a metric G-space and let h in H(X) be G-expansive with G-expansive constant δ . Then h is expansive with expansive constant δ if h is expansive on G(x) for each x in Xwith expansive constant δ .

Proof. Let x, y be in X, $x \neq y$. Then either x, y lie in same G-orbit or they lie in distinct G-orbits. In case they lie in same G-orbit, the result follows by the hypothesis. Otherwise, the result follows by the G-expansiveness of h.

It may be noted here that the condition of expansiveness of h on G(x) for each x in X in Theorem 3.2 is necessary for if we consider the identity map on X in Example 3.2, then it is G-expansive but it is not expansive on any G-orbit in X.

2. Properties of G-expansive homeomorphisms.

Here we prove some properties of G-expansive homeomorphisms. First is an analogue of the Theorem 1.1 proved by Utz [37] for expansive homeomorphisms on metric spaces.

Theorem 3.3. Let X be a compact metric G-space and let $f \in H(X)$. Then h is G-expansive iff f^m , $m \neq 0$, is G-expansive.

Proof. First we suppose that f^m , $m \neq 0$, is G-expansive with G-expansive constant δ . Fix some integer m in Z. Let x, $y \in X$ with $G(x) \neq G(y)$. Then by G-expansiveness of f^m , there exists an n in Z satisfying

 $d((f^m)^n(gx), (f^m)^n(ky)) > \delta$

for all g, k in G. Substituting m.n = t, we get

 $d(f^{t}(gx), f^{t}(ky)) > \delta$

for all g, k in G. Hence f is G-expansive with G-expansive constant δ .

Conversely, suppose f is G-expansive with δ as G-expansive constant. Since X is compact, any h in H(X) will satisfy the following condition :

Given any $\varepsilon > 0$, there exists an $\eta > 0$ such that $d(x,y) \ge \varepsilon \Rightarrow d(h(x),h(y)) > \eta$.

Let $\phi = f^m$, where m is an integer different from 0. Consider f^i , $\iota = \pm 1, \ldots, \pm m$. Then corresponding to $\delta > 0$, there exists n_i , for every $\iota \in \{\pm 1, \ldots, \pm m\}$ such that

 $d(x,y) \geq \delta \Rightarrow d(f^{L}(x),f^{L}(y)) > \eta_{i}$

for all x, $y \in X$. Let x, $y \in X$ with distinct G-orbits. Since f is G-expansive with G-expansive constant δ , there exists an integer n satisfying $d(f^{n}(gx), f^{n}(ky)) > \delta$, for each g, $K \in G$. Thus,

$$d(f'(f''(gx)), f'(f''(ky))) > \min \{\eta_i\},$$

 $i \in \{\pm 1, \dots, \pm m\}$, and g, $k \in G$. Since one can find an integer r such that $0 < |r - n/m| \le 1$ or $0 < |rm - n| \le |m|$, therefore $(rm-n) \in \{\pm 1, \dots, \pm m\}$ and hence

$$d(f^{rm-n}(f^{n}(gx)), f^{rm-n}(f^{n}(ky))) > \min \{\eta_i\},\$$

or equivalently

 $d(f^m)^r(gx), (f^m)^r(ky)) > \min \{\eta\},\$

where $i \in \{\pm 1, \ldots, \pm m\}$ and g, $k \in G$. Hence $\phi = f^m$ is G-expansive with G-expansive constant α , where $\alpha = \min \{\eta_i \mid i \in \{\pm 1, \ldots \pm m\}\}$.

The following result concerns the restriction of G-expansive homeomorphism.

Theorem 3.4. Let X be a metric G-space, h in H(X) be G-expansive and A be a G-nuariant subspace of X such that h(A) = A. Then $h|_A$ is G-expansive on A.

Proof. Let δ be G-expansive constant for h on X. Choose x, y in A with distinct G-orbits. Since h is given to be G-expansive on X, there exists an integer n satisfying $d(h^n(gx), h^n(ky)) > \delta$ for all

g, k in G; then A being G-invariant, $G(x) \subseteq A$ and $G(y) \subseteq A$ and hence h is G-expansive on A with G-expansive constant δ .

Next, we prove a result regarding product of two G-expansive homeomorphisms.

There 3.5. Let (X,d) and (Y,ρ) be two metric G-spaces, and let h in H(X), f in H(Y) be G-expansive homeomorphisms. Then h × f $\in H(X \times Y)$ and is G-expansive when the product space $X \times Y$ is given the diagonal action of G i.e., g(x,y) = (gx,gy), where $g \in G$ and $(x,y) \in X \times Y$.

Proof. Suppose D denotes the product metric on $X \times Y$. Let h in H(X) be G-expansive with G-expansive constant δ and let f in H(Y) be G-expansive with G-expansive constant ϵ . Obviously $h \times f \in H(X \times Y)$. Suppose (x,y), $(u,v) \in X \times Y$ with $G(x,y) \neq G(u,v)$, i.e., $(x,y) \neq g(u,v)$ for any g in G. Then either $x \neq gu$ for any g in G or $y \neq gv$ for any g in G. In case $x \neq gu$, by G-expansiveness of h there exists an integer n satisfying $d(h^n(gx),h^n(ku)) > \delta$ for each g, $k \in G$ and therefore we obtain

$$D((h \times f)^{n}(g(\mathbf{x}, \mathbf{y})), (h \times f)^{n}(k(\mathbf{u}, \mathbf{v})))$$

$$= D((h^{n}(g\mathbf{x}), f^{n}(g\mathbf{y})), (h^{n}(k\mathbf{u}), f^{n}(k\mathbf{v})))$$

$$= [d(h^{n}(g\mathbf{x}), h^{n}(k\mathbf{u}))^{2} + \rho(f^{n}(g\mathbf{y}), f^{n}(k\mathbf{v}))^{2}]^{1/2}$$

$$> \delta \ge \min \{\delta, \varepsilon\},$$

for each g, k in G. In case $y \neq kv$ for any $k \in G$, we apply the G-expansiveness of f to obtain an integer m satisfying

 $\mathbb{D}((h \times f)^{m}(g(x, y)), (h \times f)^{m}(k(u, v))) > \varepsilon \geq \min \{\delta, \varepsilon\}$

for each g, k in G. This proves that $(h \times f)$ is G-expansive with G-expansive constant α , where $\alpha = \min \{\delta, \varepsilon\}$.

Using the same method it can easily be proved that if $h_i \in H(X_i)$, i = 1, ..., n; $n \in N$, are G-expansive, then $\prod h_i$ is also G-expansive on $\prod X_i$ under the diagonal action of G on $\prod X_i$.

The following result is an analogue of Bryant's result (refer Theorem 1.4) proved in [6] for expansive homeomorphism on metric spaces.

Theorem 3.6. If a pseudoequivariant homeomorphism Ψ from a metric G-space X to a, metric G-space Y is such that Ψ^{-1} is uniformly continuous, then $\Psi h \Psi^{-1}$ is G-expansive on Y whenever h is G-expansive on X.

Proof. Let d and ρ denote the metrics of X and Y respectively. Sine Ψ^{-1} is uniformly continuous so for a given $\varepsilon > 0$ there exists $\alpha > 0$ such that

 $\rho(\mathbf{u},\mathbf{v}) \leq \alpha \quad \Rightarrow \quad \mathbf{d}(\Psi^{-\mathbf{i}}(\mathbf{u}),\Psi^{-\mathbf{i}}(\mathbf{v})) < \varepsilon;$

where u, $v \in Y$ or equivalently

 $d(\Psi^{-1}(u),\Psi^{-1}(v)) \geq \varepsilon \Rightarrow \rho(u,v) > \alpha$

which means for p, q in X one has

 $d(p,q) \geq \varepsilon \Rightarrow \rho(\Psi(p),\Psi(q)) > \alpha.$

Now, let h in H(X) be G-expansive with G-expansive constant δ and let u, v be in Y with distinct G-orbits. Then

 $G(u) \cap G(v) = \varphi \implies \Psi^{-1}(G(u)) \cap \Psi^{-1}(G(v)) = \varphi.$

Using pseudoequivariancy of Ψ , we have from Lemma 3.1

 $G(\Psi^{-1}(\mathbf{u})) \cap G(\Psi^{-1}(\mathbf{v})) = \varphi.$

That is $\Psi^{-1}(u)$ and $\Psi^{-1}(v)$ have distinct G-orbits. Thus by G-expansiveness of h, there exists an integer n satisfying

$$d(h^{n}(g\Psi^{-1}(u)),h^{n}(k\Psi^{-1}(v))) > \delta$$

for each g, k in G. Corresponding to δ there exists a $\beta > 0$ satisfying

$$\rho(\Psi h^{n}(g\Psi^{-1}(u)),\Psi h^{n}(k,\Psi^{-1}(v))) > \beta$$

for each g, k in G. Another use of pseudoequivariancy of Ψ gives

$$\rho(\Psi h^{n}\Psi^{-1}(g'u),\Psi h^{n}\Psi^{-1}(k'v)) > \beta$$

or equivalently

 $\rho((\Psi h \Psi^{-1})^{n}(g'u), (\Psi h \Psi^{-1})^{n}(k'v)) > \beta$

for each g', k' in G. Hence $\Psi h \Psi^{-1}$ is G-expansive with G-expansive constant β .

We next prove a result which is analogue of Theorem 1.10 obtained by Bryant [6] for expansive homeomorphisms on metric spaces.

Theorem 3.7. Let X be a compact metric G-space with G compact and let h in H(X) be G-expansive with G-expansive constant δ . Then there exists a $k(\lambda)$ in N for each λ , $0 < \lambda \leq \delta$, such that Inf { d(gx, ky) | g, $k \in G$ } > λ implies $d(h^{n}(gx), h^{n}(ky)) > \delta$, for all g, $k \in G$ and for some integer n satisfying $|n| \leq k(\lambda)$. Proof. Suppose the result is not true. Then there exists a λ such that $0 < \lambda \leq \delta$ and for each i in N, there exist x_i , y_i with

$$\inf \{ d(gx_i, ky_i) \mid g, k \in G \} > \lambda$$
^(*)

and

 $d(h^{n}(gx_{i}),h^{n}(ky_{i})) \leq \delta$

for some g, $k \in G$ and each integer n such that $|n| \le i$. Since X is compact we can assume that sequences $\{x_i\}$ and $\{y_i\}$ converge respectively to some elements x and y of X.

Now using (■), one can easily conclude that x and y have distinct G-orbits. Next, choose an integer m. Since

 $d(h^{m}(gx_{i}),h^{m}(ky_{i})) \leq \delta$

for each $i \ge |m|$ and some g, $k \in G$, we have

 $d(h^{m}(gx), h^{m}(ky)) \leq \delta$

for some g, $k \in G$. But, as choice of m was arbitrary, we get a contradiction to the fact that h is G-expansive with G-expansive constant δ . This completes the proof of the Theorem.

3. Fixed points, extension and characterization of G-expansive homeomorphisms.

Regarding the fixed points of an expansive homeomorphism, recall that an expansive homeomorphism on a compact metric space can have only finetely many fixed points. However, this need not be true for a G-expansive homeomorphism. For example the G-expansive homeomorphism of Example 3.2 on the compact metric G-space X has uncountably many fixed points.

We now deal with an extension problem of G-expansive homeomorphisms. If X is a metric G-space, $A \subseteq X$ is G-invariant and $h \in H(X)$, then by G-expansiveness of h on A we mean that there exists a positive real number δ such that whenever x, $y \in A$ with with distinct G-orbits, there exists an n in Z satisfying $d(h^{n}(u),h^{n}(v)) > \delta$ for all $u \in G(x), v \in G(y)$. Obviously a G-expansive homeomorphism h on a metric G-space is G-expansive on every G-invariant subspace A of X. Regarding the extension of G-expansive homeomorphisms, in the following we prove a result which gives condition under which an h in H(X) is G-expansive on X whenever it is G-expansive on a G-invariant subspace of X.

Theorem 3.8. Let X be a metric G-space and A be a G-invariant subspace of X such that X - A is a union of finitely many distinct G-orbits. Then an h in H(X) which is G-expansive on A is G-expansive on X.

Proof. Let δ be a G-expansive constant of h on A and let

 $X - A = \cup \{ G(x,) | i = 1, ..., n \},$

where $G(x_i) \neq G(x_j)$ for $i \neq j$. We need to prove that h is G-expansive on $A \cup G(x_i)$ because then the result will follow by induction. To see that h is G-expansive on $A \cup G(x_i)$, first observe that there can not exist two points p, q in A with distinct G-orbits such that for given m in Z, one can get g, k, t in G satisfying

 $d(h^{m}(gp), h^{m}(tx_{i})) \leq \delta/2$

and

 $d(h^{m}(kq),h^{m}(tx_{t})) \leq \delta/2.$

For otherwise, using the triangle inequality of the metric d, we

will arrive at a contradiction to the hypothesis that h is G-expansive on A with G-expansive constant δ . It follows that there exists at most one point p in A such that given m in Z, one can find g, k in G satisfying $d(h^m(gp), h^m(kx_1)) \leq \delta/2$.

Now, in case such a p exists in A, choose c such that

on

 $0 < c < Inf \{ d(gx_i, kp) | g, k \in G \},$ otherwise take $c = \delta/2$ and observe that h is G-expansive

 $A \cup G(x_{1})$ with c as a G-expansive constant.

Since in general expansiveness neither implies nor is implied by G-expansiveness, the following characterization of G-expansiveness will be interesting. First we give a necessary

Throughout X denotes a metric G-space with metric d.

Definition 3.2. Given $\delta > 0$, an h in H(X) is said to G- δ separate h-orbits if given any basis $\mathscr{B} = \{ x_{\alpha} \mid \alpha \in \mathscr{A} \}$ of (X,h), whenever $G(x_{\alpha}) \neq G(x_{\beta})$ there exists an integer r satisfying

 $d(h^{r}(gx_{\alpha}),h^{r}(kx_{\beta})) > \delta$

for all g, k in G.

definition.

Theorem 3.9. Let h in H(X) be pseudoequivariant. Then h is G-expansive with G-expansive constant δ iff (i) h-orbits are G- δ separated by h and (ii) for p in X and n in Z such that $h^{n}(p) \notin G(p)$, there exists an

integer r satisfying

$$d(h^{n\tau r}(gp), h^{r}(kp)) > \delta$$

for all g, k in G.

Proof. From Lemma 3.1, the pseudoequivariancy of h gives

$$h^{q}(G(\mathbf{x})) = G(h^{q}(\mathbf{x}))$$
(B)

where $x \in X$ and $q \in Z$. Suppose h in H(X) is G-expansive with G-expansive constant δ . Let $\mathscr{B} = \{x_{\alpha} \mid \alpha \in \mathscr{A}\}$ be any basis of X with respect to h. Then whenever $G(x_{\alpha}) \neq G(x_{\beta})$, from G-expansiveness of h there exists an integer r satisfying $d(h^{r}(gx_{\alpha}),h^{r}(kx_{\beta})) > \delta$ for each g, k in G. Thus, h G- δ separates h-orbits. Also, if p in X and n in Z are such that $h^{n}(p) \notin G(p)$, then we get $G(h^{n}(p)) \neq G(p)$. Therefore from G-expansiveness of h there exists an integer r satisfying $d(h^{r}(gh^{n}(p)),h^{r}(kp)) > \delta$, for each g, k in G. Using (B), we obtain $gh^{n}(p) = h^{n}(g'p)$ for some g' in G. But this gives

 $d(h^{n+r}(g'p),h^{r}(kp)) > \delta$

for all g',k in G. This completes the proof of (ii).

Conversely, suppose both the conditions (i) and (ii) hold. Then we show that h is G-expansive with G-expansive constant δ . For this let x, y be in X with distinct G-orbits. Then either x and y are in the same h-orbit or they lie in different h-orbits. We consider both the two cases separately.

<u>Case</u> 1. Let x, y be in distinct h-orbits say, $O(x_{\alpha})$ and $O(x_{\beta})$ respetively. Let x = $h^{n}(x_{\alpha})$ and y = $h^{m}(x_{\beta})$. We put $x_{\gamma} = h^{m-n}(x_{\beta})$, and write y = $h^{n}(x_{\gamma})$. Now choose that basis \mathcal{B} of (X,h) which has x_{α} and x_{γ} as its members. Since $G(x) \neq G(y)$, i.e.,

 $G(h^{n}(x_{\alpha})) \neq G(h^{n}(x_{\gamma}))$, using pseudoequivariancy of h, we have

$$h^{n}(\mathfrak{G}(\mathbf{x}_{\alpha})) \cap h^{n}(\mathfrak{G}(\mathbf{x}_{\gamma})) = \varphi$$

and hence

$$G(\mathbf{x}_{\alpha}) \neq G(\mathbf{x}_{\gamma}).$$

Now using (i) we get an integer r satisfying

$$d(h^{r}(gx_{\alpha}),h^{r}(kx_{\gamma})) > \delta$$

for all g, k in G, i.e.,

$$d(h^{r}(gh^{-n}(x)),h^{r}(kh^{-n}(y))) > \delta$$

for all g, k in G. Now we again use pseudoequivariance of h to obtain

$$d(h^{r-n}(g'x),h^{r-n}(k'y)) > \delta$$

for all g', k' in G. Thus we get an integer t = (r - n) such that for all g', k' in G

$$d(h^{t}(g'x),h^{t}(k'y)) > \delta.$$

It follows in this case that h is G-expansive with G-expansive δ . <u>Case</u> 2. Let x,y be in the same h-orbit say, $O(x_{\alpha})$. Then $x = h^{n}(x_{\alpha})$ and $y = h^{m}(x_{\alpha})$ for some integers n and m. Since $G(x) \neq G(y)$, i.e.,

$$G(h^{n}(x_{\alpha})) \neq G(h^{n}(h^{m-n}(x_{\alpha}))),$$

using pseudoequivariancy of h we get

$$h^{n}(G(x_{\alpha})) \cap h^{n}(G(h^{m-n}(x_{\alpha}))) = \varphi$$

and hence $G(x_{\alpha}) \neq G(h^{m-n}(x_{\alpha}))$. Thus $h^{m-n}(x_{\alpha}) \notin G(x_{\alpha})$ and hence by (ii) there exists an integer r satisfying

$$d(h^{r}(gx_{\alpha}), h^{m-n+r}(kx_{\alpha})) > \delta,$$

or equivalently

$$d[h^{r}(gh^{-n}(x)), h^{m-n+r}(kh^{-m}(y))] > \delta$$

for all g, k in G. Now using the pseudoequivariancy of h we get

$$d(h^{r-n}(g'x), h^{r-n}(k'y)) > \delta$$

for all g', k' \in G, i.e., there exists an integer q = (r - n)such that for all g', k' in G

 $d(h^{q}(g'x),h^{q}(k'y)) > \delta.$

Hence, in this case also, h is G-expansive with G-expansive constant δ . This completes a proof of the Theorem.

Using the above result, we prove the following result which gives a sufficient condition for a homeomorphic extension of a G-expansive homeomorphism to be G-expansive.

Theorem 3.10. Let X be a G-invariant subspace of a metric G-space Y and let h in H(X) be pseudoequivariant G-expansive with G-expansive constant δ . Then a pseudoequivariant extension f of h, f $\in H(Y)$, is G-expansive with G-expansive constant δ if (i) f is G-expansive on Y - X with G-expansive constant δ ; and (ii) there exists a basis B of (X,h) such that $d(g.x,(Y - X)) > \delta$ for each g in G and x in B.

Proof. To prove that $f \in H(Y)$ is G-expansive with G-expansive constant δ , we show that f satisfies conditions (i) and (ii) of Theorem 3.9. Let $\mathcal{E} = \{ y_{\alpha} \mid \alpha \in \mathcal{A}, \mathcal{A} \text{ is an index set }\}$ be a basis of Y with respect to f. Let $y_{\alpha}, y_{\beta} \in \mathcal{E}$ with distinct G-orbits. Then there are three possibilities :

(a) y_{α} , $y_{\beta} \in X$; (b) y_{α} , $y_{\beta} \in Y - X$, and (c) $y_{\alpha} \in X$ and $y_{\beta} \in Y - X$ or $y_{\alpha} \in Y - X$ and $y_{\beta} \in X$.

In the situation (a) and (b) the Theorem follows by using the fact that $f|_X$ and $f|_{Y-X}$ are G-expansive with G-expansive constant δ and also the fact that X is a G-invariant subspace of Y.

Now, suppose we are in the situation (c). Let $y_{\alpha} \in X$ and $y_{\beta} \in Y - X$. As \mathscr{B} is a basis for (X,h), there exists a x in \mathscr{B} such that $y_{\alpha} \in O(x)$, i.e., for some integer n, $y_{\alpha} = h^{n}(x)$. From the hypothesis we get

$$d(g'f^{-n}(y_{\alpha}), f^{-n}(ky_{\beta})) > \delta$$

for each g'and k in G. Since f is pseudoequivariant, Lemma 3.1 gives

$$d(f^{(n)}(gy_{\alpha}), f^{(n)}(ky_{\alpha})) > \delta$$

for each g, k in G. Thus, f-orbits are G-5 separated by f. For condition (ii), let $p \in Y$ and $n \in Z$ be such that $h^{n}(p) \notin G(p)$. Then either $p \in X$ or $p \in Y - X$. In case $p \in X$, X being G-invariant $G(p) \subseteq X$ and therefore by G-expansiveness of $f_{X} = h$, there exists an integer r satisfying

$$d(f^{n+r}(gp), f^{r}(kp)) > \delta$$

for each g, k in G. Similarly if $p \in Y - X$, G-expansiveness of f on Y - X gives the required condition. Hence f in H(Y) is G-expansive with G-expansive constant δ .

Remark. If the action of G on X is trivial, then Theorems 3.9 and 3.10 reduce to respectively Theorems 1.8 and 1.9 due to Wine [42] stated in Chapter 1.

The following example shows that the sufficiency condition

concerning basis in Theorem 3.10 is not necessary.

Example 3.3. Let the space X and the homeomorphism h in H(X) of Example 3.1(c) be here denoted by W and ϕ respectively. On $Y = W \times W$ let $G = Z_2$ act by

$$1.(s,t) = (s,t)$$
 and $-1.(s,t) = (-s, -t)$.

Then

$$X = [(W - \{-1, 0, 1\}) \times (W - \{-1, 0, 1\})]$$

is a G-invariant subspace of Y and the function $h = \phi \times \phi$ on X is a pseudoequivariant G-expansive homeomorphism on X with G-expansive constant δ , where $0 < \delta < 1/6$. Also, the function $f = \phi \times \phi$ on Y is in H(Y) and is obviously a pseudoequivariant extension of h to Y such that f is G-expansive on Y - X as well as on Y with the same G-expansive constant δ . But, for the h-orbit O(1/m, 1 - 1/m) of any point (1/m, 1 - 1/m) with $1/m < \delta$ one has $d(gt, Y - X) \leq \delta$ for any g in G and t in O(1/m, 1 - 1/m). Since any basis of X with respect to h contains a point of such h-orbit O(1/m, 1 - 1/m), it follows that the condition concerning the basis in Theorem 3.10 is not necessary.