
CHAPTER 5

A-EXPANSIVENESS ON G-SPACES

Motivated by the concept of expansiveness of a homeomorphism 
on a metric space, in Chapter 2 we defined the notion of 
A-expansiveness of a homeomorphism on a topological space X 
relative to a subset A of XxX; while in Chapter 3 we defined the 
notion of G-expansiveness of a homeomorphism on a metric G-space 
wherein G is any topological group acting on the metric space. It 
is therefore natural to consider the general case of a G-space X, 
that is, a topological space X on which a topological group G 
acts; and to define and study the notion of expansiveness of a 
homeomorphism h in this setting. We take up this task in the 
present chapter. In fact, we define the notion of expansiveness of 
a homeomorphism h on a G-space X relative to a subset A of XxX and 
terming it GA-expansive homeomorphism we carry out their study 
obtaining some interesting results. Naturally, in case of a metric 
G-space, for a specific choice of A, the concept of GA-expansive 
homeomorphism coincides with that of G-expansive homeomorphism.

Let H(X) throughout denote the collection of all 
homeomorphisms on the topological space X.

1. GA-expanslveness.
The considerations of the following examples help us to 

motivate the concept of GA-expansiveness.



Examples S.lCal. Let X = [0,1] with usual metric. Choose either 

A = [b,l]x[c,d] where b <s (1/2,1) and c, d e X or A = [0,a]x [c,d]

where a e (0,1/2) and c, d e X. Define h : X •* X by h(x) = 1 - x.
Then h is A-expansive :

Let x,y « X be such that x * y. If (x,y) « A, then for n = 0,
(hn(x) ,hn(y)) A 

and if (x,y) e A, then
(h(x),h(y)) «b A.

Next, let the topological group G s Z2 = {-1,1} act on X with the
action It = t and -It = 1 - t, where t <s X. Then it can be easily

seen that there exist x, y in X - {1/2} with distinct G-orbits 
such that for no n in Z

[ hn(G(x)) x hn(G(y)) ] n A = p.

S.lCbl. Let X be as in Example 5.1(a), A = [1/5,1/2] x [1/3,2/3] 
c XxX and h:X -*■ X be defined by

h(x) = 3x, if x e [0,1/5];
= (llx+5)/12, if x e [1/5,1/2], and 
= (x+3)/4, if x e [1/2,1].

It can be easily seen that h is an A-expansive homeomorphism on X. 
Let G = act on X as defined in Example 5.1.(a). Then it can be 
observed that whenever x, y <s X with distinct G-orbits, there 
exists an n in Z satisfying [ hn(G(x)) x hn(G(y)) ] n A = <p.

In Example 5.1(b), given any A = [a,b] x [c,d] c XxX, where 
a, b, c, d ^ {0,1}, one can construct a suitable h satisfying the
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same property, namely given any pair of distinct G-orbits G(x) and 
G(y), there exists an n in Z such that

[ hn(G(x)) x hn (G (y)) ] n A = <p.

In fact one may define h in such a way that h([a,b]) n [c,d] = <p. 
But here we observe that A does not contain the diagonal in XxX. 

However, we do have similar situation even if A is a regular 
closed set containing the diagonal as can be seen in the 
following example.

5.1 Cc). Let X = [0,1] with the usual metric and consider the 
subset A*5 of XxX given by !

A& = { ( x/Cx+1), y/(y+l) )|x, y > 0 with lx - y| £ <5 } u {(1,1)>,
\

where <5 > 0 is a fixed real number. Define h : X ■> X by 

h(x) = ft.x / i (ft - l).x + 1 ],
x e X, where ft is a fixed positive real number and ft * 1. Then as 
observed in the Note following Example 2.3 of Chapter 2, h is 
A6-expansive on X. Let G s Zz act on X as in Example 5.1(a). Then 

it can be seen that whenever x, y e X with G(x) * G(y), there 
exists an r in Z satisfying [ hr(G(x)) x hr(G(y)) ] n A = <p. For 

example take ft = 2. Then Fixh = {0,1} and for any x « X - {0,1}, 
hn(x) ■* 1 and hn(x)-*Oasn-*oo. '

Thus, there exist integers t, m, n, k such that 
(hl(x), 0) e AS; (0,hm(y) ) 0 A6;

(hn(l - x),0) A6 and (0,hk(l - y)) € A6.

If r = max {i, m, n, k}, then it follows that 
t hr(G(x)) x hr(G(y)) ] n A* = f".
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5.1 CcD. Consider the unit circle S1 and the usual action of the 
multiplicative group 6 == U(n) of nth roots of unity on S1. bet Cfc 
denote the arc ^el2n:k/njet2mk+1>''nj of S1, k = 0,1,...,n-1 and ffc
denote the homeomorphism from Ifc= [0,1] to Cfc given by

. . . i2T7(c+k)/nffc(s) = e
where s ® [0,1] and k = 0,..,n-l. Since the homeomorphism ^ on I
defined by gfc(x) = ftx/t (ft-1 )x+l], for a fixed ft, ft > 0 and ft * 1
is A*5-expansive, where A*5 is as described in Example 5.1(c), it 

follows from Theorem 2.3 of Chapter 2 that \ is
[(fk x fk) (A*5)]-expansive on Ck. Define h : S* -* S* by hl^ = ,

k
where k = 0,1,......,n-l. Obviously h is in EKS1). In fact h is

n»i (5 ian u ((f.xf )(A ))-expansive homeomorphism on S and the subset te=o * *®r> = K^o C(fkxfk JCA*5)] of S1 x S1 is a regular closed set which
contains the diagonal in S1 x S*. In this example also one can 

verify that for distinct G-orbits G(x) and G(y), there exists an n 
in Z satisfying [ hn(G(x)) x hn(G(y)) ] <"> B = «?.

n

The observations made in the above examples lead us to the 
following definition of GA-expansiveness.

Definition 5.1. Let X be a topological space on which a topological 
group G acts, A c XxX and h e H(X). Then h is called GA-expansive 
if whenever x, y e X with G(x) * G(y), there exists an integer n 
satisfying [ h"(G(x)) x hn(G(y)) ] n A = <p.

Observe that a metric space can always be regarded as a 
metric G-space by considering the trivial action of any group G on



it; and hence by choosing A = s d 1[0,<5] for some 6 > 0 when X 

is a metric space with metric d in this definition, one sees that 
GA-expansiveness of h in H(X) is equivalent to expansiveness of h 
with expansive constant 6. However, if X is any G-space with 
action of G on X trivial, then the GA-expansiveness of h in 
H(X) is equivalent to A-expansiveness of h. Also, in case X is a 
metric G-space and A = A& for some 6 > 0, then GA-expansiveness of 
h in H(X) is equivalent to G-expansiveness of h with G-expansive 
constant 6.

, Example 5.1 (a) shows that an A-expansive homeomorphism need 
not be GA-expansive and on the other hand Example 3.2 of Chapter 3 
shows that a GA-expansive homeomorphism is not necessarily an 
A-expansive homeomorphism.

2. Properties of GA-expansive homeomorphisms.
We study some properties of GA-expansive homeomorphisms. To 

begin with, the following result regarding the restriction of a 
GA-expansive homeomorphism follows from the definition.

Theorem 5.1. Let X be a G-space, Y be a G-invariant svbspace of X, 
h e H(X) be GA-expansive where A c XxX - and h(Y) = Y. Then h|y 
GB—expansive, tdiere B ie trace of A in YxY.
Proof. Suppose x and y are two points in Y with distinct G-orbits. 
Then GA-expansiveness of h on X gives an integer n satisfying 
[ hn(G(x)) x hn(G(y)) ] r» A = <p. Now the Theorem follows if we 

take B = A n YxY.
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Next, we have a result regarding product of two GA-expansive 
homeomorphisms.

Theorem 5.2. Let X, Y be Q-spaces, A c XxX, B c YxY, h e H(X) be

Gh-expansive and. f e H(Y) be GB-expansive. Then y = hxf is

G(q 1 (AxB) )-expansive on W = XxY, -where q : WxW -* (XxX)x(YxY) is 

defined by q(x,y,x’,y') = (x,x‘,y,y’), x,x' e X, y,y‘ e Y and W is 
considered to be a G~space under the diagonal action of G.
Proof. Let (x,y), (x’.Y’) « W be such that G(x,y) * G(x’,y’)-
Since action of G on W is diagonal action, i.e., g(x,y) = (gx.gy),
g « G, (x,y) e W, the following cases arise * (l) G(x) * G(x’)
or (u) G(y) * G(y'). In case (c) since G{x) s* G(x’), from 
GA-expansiveness of h there exists an n in Z satisfying
[hn(G(x))xhn(G(xs)) 3 n A = p which implies

[ hn(G(x))xhn(G(x’))xfn(G(y))xf(nG(y’))] n (AxB) = p.

Further, as q is a homeomorphism we obtain
q-4 C hn(G(x))xhn(G(x*))xfn(G(y))x(£nG(7')> ] rx q_1(AxB) = p

which implies
[ (hxf)n(G(x)xG(y)) x (hxf )n(G(x’)xG(y’)) ] n q~*(AxB) = p. 

Since G(x,y) £ G(x)xG(y) and G(x’,y’) £ G(x’)xG(y'), we therefore 
obtain

[ (hxf)n(G(x,y)) x (hxf)n(G(x’,y’)) ] n q_1(AxB) = p 
and hence hxf is G(q 1(AxB))-expansive on W. Similarly Case(u) 
follows from GB-expansiveness of f on Y.

The above result extends to any finite product of GA-expansive
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homeomorphisms and can be proved in a similar way by using 
induction principle. Next we obtain a result regarding integral 
powers of a GA-expansive homeomorphism.

Theorem S. 3. Let X be a paracompact Hausdorff G-space, 'll be the 

uniformity on it consisting of all the neighbourhoods of the 
diagonal in XxX and h <= H(X) be such that hm, m ** 0 is uniformly 

continuous with respect to %L. Then h is GA-expansive for some 
A e V. iff hm, m 0, is QiB-expansiue for a suitable B <s U.

Proof. Consider any integer m different from 0. Suppose «- e
{±1.... ,±m}. Since for each t. h”1 is uniformly continuous, there
exists a B in tz for each »• such thatL

(h-1 x hn)(E) £ A 

or equivalently
(hL x hl)(XxX - A) £ XxX - B,

where
B = n { B. | i e {±1,....,±m} }.

Let x, y e X with G(x) * G(y). Then from the GA-expansiveness of h 
there exists an n in Z satisfying [ hn(G(x)) x hn(G(y)) ] n A = <p. 

But this gives
[ h*'(hn(G(x))) x hl(hn(G(y))) ] n B = p (*)

for each i e {±1, . ,±ia}. Let r be in Z such that 0 < |r - n/ml £ 1, 
i.e., 0 < | rm -n| £ |m| . Then putting t = rm - n in (*) we get 

[ (hm)r(G(x)) x (hm)r (G(y)) ] n B = p 
Thus hm is GB-expansive, where B « V..

Conversely, let h in H(X) be such that hm is GA-expansive
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for some m in Z-{0>. Then, for x, y in X with G(x) * G(y), the 
GA-expansivness of hm implies that there exists an n in Z
satisfying

[ (hm)n(G(x)) x (hm)n(G(y)) ] n A = p.

Now put r = m.n to see that h is also GA-expansive.

The following result shows that admitting a GA-expansive 
homeomorphism is a topological property for G-spaces under some 
condition.

Theorem 5.4. Let X and Y be G-spaces, A e XxX and f : X -* Y be a

pseudoeQ-ui van i an t homeomor oh 5. sro_ Then ccn h in E(X) is GA -expansive
iff fhf 1 is a G{ (f xf ) (A) )-expansit)e homeomorphism. of Y.

Proof. Let y,y’ e Y with G(y) * G(y’). Since f is a homeomorphism, 
there exist x, x’ in X such that f(x) = y, f(x’) = y’; and
therefore

G(f(x)) * G(f(x*)).
Now, pseudoequivariancy of f implies 

f(G(x)) n f(G(x’)) = p 
and therefore, f being bijective, we get 

G(x) * G(x’).
Now, GA-expansiveness of h implies the existence of an integer n 
satisfying

C hn (G(x)) x hn{G(y)) ] n A = p.
Again using bijectivity of f, it follows that

[ fhn (G(f-1 (y))) x fhn (G(f-± (yJ ) ) ) ] n (fxf)(A) = P.
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As f is pseudoequivariant, from Lemma 3.1 of Chapter 3 it follows^ 
that f 1 is also pseudoequivariant. Hence

[ (f hn f _1) (G (y)) x (fhnf"1)(G(y*)) ] n (fxf)(A) = P 

or equivalently
[ (fhf-1 )n (G(y)) x (fhf-1 )n (G(y ’ )) ] n (fxf)(A) = P.

This proves that fhf 1 is G( (fxf) (A) )-expansive on Y.

Conversely, suppose x, y e X with distinct G-orbits, i.e., 
G(x) * G(y). Then bijectivity of f gives f(G(x)) n f{G(y)) = p. 
Since f is pseudoequivariant, we have G(f(x)) n G{f(y)) = p, i.e., 
f(x) and f(y) also has distinct G-orbits. Further, since fhf 1 is 
G( (fxf) (A))-expansive on Y it follows that there exists an integer 
n satisfying

[ (fhf-1)n(G(f (x))) x (fhf-1)n(G(f (y))) 3 n (fxf)(A) = e
that is

t (fhn f-1) (G(f (x))) x (fhnf ) (G(f (y)}) ] n (fx"f)(A) = p. 

Another application of pseudoequivariancy of f then gives 
[ fhn(G(x)) x fhn(G(y)) ] n (fxf)(A) = p.

Finally, apply bijectivity of f to obtain 
[ hn(G(x)) x hn(G(y)3 3 n A = p.

Hence h is GA-expansive on X.

3. Extension and characterization of GA-expansive homeomorphisms.
Next result is regarding extension of GA-expansive 

homeomorphisms. If X is a G-space and S is a G-invariant subspace 
of X, then by GA-expansiveness of an h in H(X) on S we mean 
there exists a subset A of XxX such that whenever x, ye S with
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G(x) * G(y), an integer n will exist satisfying 
[h"(G(x}) x hn(G(y))] n A = P.

Theorem 5.5. Let X be a paracompact Hausdorff Q-space, S £ X be 
such that S is G-irivariant and X - S is finite. If h in H(X) is 

GG~expansive on S, where U is a neighbourhood of the diagonal in 

XxX, then h is GV-expansive on X for a suitable neighbourhood V of 
the diagonal in XxX-
Proof. Let X - S = {x ,x .... x }. We first show h is GV-expansiveo i n
on S u {xo}. Since X is a paracompact Hausdorff space and U is 
a neighbourhood of the diagonal in XxX, there exists a symmetric 
neighbourhood V’ of the diagonal in XxX such that V’oV’ c U, where 
V’oV’ = { (x,y)e XxX I there exists z in X satisfying (x,z) e V’

Since V’ contains the diagonal, V’c V’oV’c U.
First note that h being GU-expansive on S, there does not 

exist two points p , pz in S such that G(pt) ** G(p ) and for some 
gi, \, Sj, in G

for each integer n, i.e., there exists at most one point p in S 
such that for some g, in G,

for each integer n. In case no such p exists in S then h is 
GV-expansive on S u {xQ}, where V = V . On the other hand if such 
a point p exists, then by taking

and (z,y) e V’ }

(hn(gp),hn(k1xQ)) e V

C [ (G(p)xG(xo)) u (G(xo)xG(p)) ] n V’ },V = V’



one can easily verify that h is GV-expansive on S u {xQ}.
Finally, the required result is proved using induction on the 

number of elements in X - S.

Recall that at the end of Section 1 of the present Chapter, 
we have observed that the notion of A-expansiveness and the 
notion of GA-expansivenss are independent of each other. In 
view of this the following characterization of GA-expansive 
homeomorphism is interesting. We first give a definition.

Definition 5.2. Let X be a G-space, A e XxX and h e H(X). Then h 
is said to Gk-separate h-orbits if given any basis £ = { xa I « e 

> of X with respect to h, whenever G(xa) ** G(x^), there exists 
an integer n satisfying [ h"(G(xa)) x hn(G(x^)) ] n A = p.

Theorem 5.6. Let X be a. G-space and. A c XxX. Suppose h in H(X) is 
pseudoecfuivariant. Then, h is GA-expansive iff
(a) h Ghseparates h-orbits
(b) given p in X and n in Z such that hn(p) «£ G(p), there exists 
an. integer r satisfying

[ hr(G(p)) x hr-n(G(p)) ] n A = <p.

Proof. Suppose h is a GA-expansive homeomorphism. Then we show 
that (a) and (b) are true. For (a), let .2 = { xa I ae^Jbe any 
basis of X with respect to h. Consider xa and <s £ with distinct 
G-orbits. Then by GA-expansiveness of h, there exists an n in Z 
satisfying [hn(G(xa) )xhn(G(x^))] n A = p. This proves (a). For
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(b), we recall that ( Lemma 3.1 ) as h is pseudoequivariant, so we 

have
hn (G(x)) = G(hn(x)) (*)

for each x in X and n in Z. Now, suppose there is a p e X and

an n in Z such that hn(p) « G(p). Then we obtain an r in Z for

which (b) holds. As h is GA-expansive, so we find an integer m
satisfying

[hmG(hn(p)) x hmG(p)3 n A = p.

Using (*) we get
Chm+n(G(p)) x hm(G(P))] n A =

On substituting m + n = r, we finally obtain
[hr(G(p)) x hr_n(G(p))] n A - <p.

Conversely, suppose (a) and (5) hold. Then we prove that h is 
GA-expansive. Let x, y e X with G(x) * G(y). Then two cases arises 
Either x and y have disjoint h-orbits or they intersect. In case 
0(x) n 0(y) = <p, we choose that basis of X with respect to h which 

has x and y as its members and then apply (a) to obtain an integer 
r satisfying [hr(G(x)) x hr(G(y))] n A = <p. This proves that h is 

GA-expansive in this case. In the other case when the h-orbits of 
x and y intersect, there exists an integer n for which x = hn(y). 
Since x and y are having distinct G-orbits, we get G(y) * G(hn(y)) 
which implies hn(y) «r G(y). Now we apply (b) and obtain an integer 

r satisfying
[ hr (G (y)) x hr_n(G(y)) ] n A = p

which implies
[ hr (G(h-0(x))) x hr_n(G(y)) ] n A = <p.
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Once again we make use of (*) and obtain
[ hr_n(G(x}) x hrn(G(y)) ] r> A = p.

This establishes the GA-expansiveness of h in this case.

The above characterization of GA-expansive homeomorphisms 
gives the following sufficient condition for the homeomorphic 
extension of a GB-expansive homeomorphism on a G-invariant 
subspace Y of a G-space X to be GB-expansive on the whole space.

Theorem S. 7. Let Y be a. G-invariant subspcuce of a G-space X and 

let h in H(Y) be pseudoeQuivariant GB-expansive, xahere B c XxX. 
Then a psexudoequivariant homeomorph.ic extension f of h to X is 
GB-expansive on X if 
(i) f is GB-expansive on X - Y and
(tt) there exists a basis S of Y v>ith respect to h such that

[ G(y) x (X - Y) ] n B = <p,
for each y in S.
Proof . For proving the GB-expansiveness of f in H(X), we show that 
conditions (a) and (b) of Theorem 5.6 are satisfied by f.

For (a), choose any basis S’ = { xal a e } of X with respect 
to f and consider any two members, say x_ and Xf3, in S’ with

CL (7

distinct G-orbits. We have following cases *•
(i) xa, Xp e Y;
(a) xa, Xf3*X-Y and
(Ui) xa e Y and x^ e X - Y or xa « X - Y and x^ « Y.

In cases (t) and («.), we appply the fact that fl^ = h and
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fI£_y are GB-expansive homeomorphisms and get the desired result

( here we use the fact that a point lies in a G-invariant set iff 
the entire G-orbit of that point lies in that set ).

Next we consider case («.«.). Let us assume xa « Y and
x^ <s X-Y. Then xa <e 0(y) for some y « 33., i.e., xa = hn(y) for some

integer n and therefore by condition (i-i) of the hypothesis
__ " /

[ G(h (xa)) x (X-Y) ] n B = v.
Now X-Y being G-invariant subspace of X, 6(x^) £ X - Y. Also 
f n(G(x^)) £ X - Y. Therefore using pseudoequivariancy of fi^ = h, 

we obtain
[ f"n(G(xa)) x f"n(G(x/3)) ] n B = p.

Hence f-orbits are GB-separated by f, i.e., f satisfies condition 
(a) of Theorem 5.6. For condition (b), let p in X and integer n be 
such that fn(p) G{p). Again, either p « Y or p « X-Y. If p « Y,

then Y being G-invariant one gets G(p) c Y. Also, as f|^ = h is
GB-expansive Theorem 5.6 is applicable to the map f on Y and hence 
there will exists an integer r which satisfies 

[ fr(G(p)) x fr-n(G(p)) 1 r, B = <p.

For the case when p « X-Y we use the fact that X-Y is G-invariant 
and fIx_y is GB-expansive and argue exactly as we did when p « Y 
to obtain an n e Z such that

[fr(G(p)) x fr_n(G(p) )3 n B = ■ p.

Thus we obtain that f is GB-expansive on whole of X.

It may be noted here that Theorems 5.6 and 5.7 reduce to 
respectively Theorems 1.8 and 1.7 stated in Chapter 1 due to
Wine I 42 J . 97


