CHAPTER-6

CERTAIN RESULTS INVOLVING THE POLYNOMIAL gg(x,r.s:q)

6.1 INTRODUCTION

In view of the general nature of the class of polynomials
{gﬁ(x,r.s)} introduced by Rekha Panda {1}, it is natural that its
g—-analogue {gs(x.r,s;q}} introduced in chapter-4 would yield the
g-analogues of a large number of polynomials included in
gg(x,r,s). A systematic and detailed study of the class of
polynomils {gﬁ(x.r.s:q)} is , thexfore, very much desirable and
nesded. Motivated by such a need we present in this chapter
certain miscel laneous results involving the polynomial
gﬁ(x.r,s;q).

In what follows we shall make use of the following Xknown

results in this chapter.

n
(6.1.1) (x:q) = [x] =L (-1 ghkt)/e [:] <"
X=0
(6.1.2) [al., = (a:q°), (aqg:q°)y
. . 2k ﬂ-q k Qqu k
(6.1.3) (a:q"), = (Va:q), (VA:q), . Y3 = q®/?
- (1-a) faly (a**
(6.1.4) v t [tq]ﬁ_1 dqt = = (Hahn{1].[2])
o i1, 1
1 - fql
(6.1.5) £ t%7' E (tq) at = (1-q) —=
o [q ]m
© - [q]
(6.1.6) &y t* 1 e (-t) dt = (1-q) g2 V2 "®©  (yumn [27).
o q q [dm]m
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n n _~-n{n-1)/2

Dy f(x) = (1) q k k(k-1)/2.

n (-1)

0

THMo

(6.1.7) x™ (1-q)"

n n-k
) [k ] f(xq ),

where the g—derivative operator mq is defined by

f(x)-f{gx)

it

D f(x) ., g is fixed.
d x (1-q) ,

tn

(6.1.8)  f(i5mroy VP - E oTn TXIYT,

w

(6.1.9) f(tix-Jyl) =L a  [x~]yl t" (Khan [11]),
n=0

o
where f(x) = [ a, x™, and (Jackson [5])

[x=]yl, = (x-y) (x-yq) (x-yqd®).... (x-yd" ).
. [t]
k sk
(6.1.10 F 1-t = —
) N (z[ LSQ xEo Cx 2 Qi «
N k
in which FN(Z) =¥ Cy N
k=0 [q]
N~k
[n/8] Xk [n/s8] [n/s]-j
(6.1.11) [ £ A(n,kx.j) = ¢ T A(n.k+n, i),
k=0 j=0 j=0 k=0
N [n/s] [N/B] N-sk
(6.1.12) ¢ r A(n.k) = ¢ r A(n+sk.k).
n=0 k=0 k=0 n=0

It may be seen first that in view of the definition of (x-|yl_
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and, the relations (6.1.1) and (6.1.11),.

[n/s] . 2 2 . .
rs-s8 +1) i +(r—-s~1)j-2(r-s8inj)/2
gggtx—ly].r.s:q) = ¥ (-1 q(( . ] 12z,
=0
i (n/s]-j [c rk+r§
y? /8173 gk(sk-zn+zsj+l)/2 q n-sj-sk
(ql, - 1
i k=0 (q,: qs’n—s;—sk
(ady,; PR
tal, ktj
wherein q, = q{r-s)/s_ This polynomial representation when

particularized by means of the substitutions s=1, r=2, c=l+a+3,

and k
la3ql, g (-

[aql, [al,

yields the corresponding expression involving 1little g~Jacobi

polynomial as given below.,

fofal é_ . [opql,. yI
TaT— Pn (Ix-|¥l:a.fi@) = }:q nJ nt+J
n j=0 [aq]j [q]n,j [q]j
n-j (a1, repd™Ity
. 3+1 X" q .
k=0 {aq I [91y

Since, the inner series in this last expression also

represents the same 'little polynomial’' of degree (n-j). one

obtains
+
n s e ™Yy
(6.2.1) p_ (Ix-|yl:a.f: = E q3 nj T3 3
j=0 laql,
pnmj(x:a+j.ﬁ+j:q).
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Next, we prove the summation formula

N
(6.2.2) L gﬁ(xqsn sN S.ZS.s;qD qn = g§+1(x.28.s;q),
n=0

by making use of the easily verifiable (by induction) result

N (a]n n

(6.2.3) 1 4+ £ ——— q =
n=1 {Q3n

[aq]N

[q]N

In fact, in the light of the relation (6.1.12), it is not
difficult to see that

N

L o xa® N % 25,5:0 ¢
n=0
2sk
N [n/s] fcq 1 _
= r > qsk(sk—zN+1)/z n-sk 6k xk qn sk
n=0 k=0 a1 _gx
[N/8] . 2 N-sk [cq 25K
= T q(slvasN+s)k/h 6k xk T n qn
k=0 n=0 {q]

The inner series occuring in (6.2.4) above may be further

simplified with the aid of the result (6.2.3), in the form

28k+1

lcq IN-sk

faly-sx
and thus, one obtains

23k+

N ” (N/s]) [cq

c sn-—-sN-g n sk(sk—zN+1) /2 N-sk
T g (xq .28,8;q) 9 = YL g 6. %
n=0 ° k=0 (9] N_gx k

= g§+1(x.28,s;q).

and hence the proof of (6.2.2).
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A worth mentioning special case of the result (6.2.2)

corresponding to the polynomial pn(x;a,ﬁ;q) may be deduced by

taking s=1, ¢ =a+3,and

tozql,, (-1)F
5 - 2k
. =

[cnq]k [q]k

In this case, one obtains after some simplificataion,

P4

-n n
fe@l, n [q "1, [opa™), [opal,,

n

(x X g

i

P (x.2.150)

{aﬁq]N
[q]N

il

pN(x:a.ﬁ:q) .

which with an appeal to the formula (6.1.2) and (6.1.3), leads to

the summation formula

N [aﬂJDIQJN
(6.2.5) pN(x;a.{i;q) = §

n=0 [aﬁq]N [q}n

a ", aq”, /e, -a¥af; q. xq
%3 q
) aq, faﬁ. “ﬁ§§:
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6.3 BASIC DIFFERENCE OPERATIONS

Let
(6.3.1) %P (x.r.5,(a) . (b);q) = [zé:}qfk(8k~zn+l)/g
{cqu]n_sk [(ap)]ak xK
[(bi)}ﬁk taly (q;:a0p o
(q = q(r—a)/s)'

1

The basic polynomial in (6.3.1), henceforth abbreviated as

ﬁ g(x q), is a special case of the general class {gg(x,r,s;q)}

when
[(ap)]ak

&, = ., with {(ayp)]l = [a,]1 [a,1 ... [&a ] .
P 'n 1°n 2°n p'n
[(by) ) [aly

Now, in view of the definition of the q-derivative operator

mq given by (6.1.7), it follows that

_ aLf3 i N Y £ P _ya.3 .
(6.3.2) x{1-q) mq(x s (x:q)) An’c(x.q) Kn'c(xq.q).

But since,

k

{n/s] ak q

- aLi, . -
x(1-q) :oq(x 'C(x,q)} REO

tea ™1, (e

qsk(sk—zn+1)/2

1
[(b;)1gy (30,0, [aly

= qs(s—enﬂ)/z {(ag)] {néslqsk(sszn%sh)/z

1 APt
[(bi)]ﬁ k=0

+

rk+r k

{eq Ih-s-sx [(@pt) I g

[(b, +ﬁ)]ﬁk (4,19, _p_ o [qlk

136



s{s-z2n+1) /2 “ap)]a oLf3 52

SRR § {xq" :q).
1 [(b;)] s DTS, c+r' T
the expression in (6.3.2) assumes the form :

[(a )]
(6.3.3) qs(s—znﬂ)/z Py (x) Ka,ﬁ (xqs

,r.8,{a _+a),(b.+3);:q)
{(b‘}] n-sg,ct+r P 1

]

a,pB, 0 a,f3 )
xn.cix.q) .\n’c(xq.q)

The relation (6.3.3) may be put in a more general form by

applying the operator mq (m-1) - times. In fact, one finds in

this case that

[(a_)]
(6.3.4) (1..q)m &8 P {k ﬁ(x :q)} = ms(ms-znﬂ)/z p’ ‘mx
d [(bi)]w

4
o.f3 ms ]
n-ms,ctmr X9y -¥-8.(atmx), (b,403) ;q)

which with an appeal to the formula (6.1.7), becomes

{(a )] &2
ms(ms-zn+ ) /2 p m.,«,f3
(6.3.5) q, Tb31 XA o+ (xq .r,s,(apﬂm),
i’ 'ms3

(biﬂn@):q)

= (-1)™ q-—m(m—-t)/z EO( 1)k k(k—) /2 {X}I:] A ﬁ(xqm~k .q) .
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6.4 BASIC INTEGRAL FORMULAE
In this section, the basic integral formulas (6.1.4) to
(6.1.6) will be used to derive the following basic integral

representations of the polynomial gﬁ(x.r.s;q) for rzs.

(6.4.1) (1-q) fql gg(x.r.s:q)
i
=r Sy 6¥

W8, T8 .
! ,C(Xt f1 t](m)dqt’

4
c+n-1

c _ . B r-s
(6.4.2) (1-q) [ql, g (x.r.s;q) = i t E,(ta) f;'c(xt ) dgt.
and
(6.4.3) (1-q) [q]l_ g°(x.r,s;q) = fm £l o ()
. . q qmgn ’ .S-q “o q

.8 c.ry—s
i Hi'c(x(t/q 7Ty 4t

where
k sk

(n/s] [ea”™ 1 [q°"]
r.s 8., - sk(sk-z2n+1}/2 n 0
(6.4.4) Gn,c(Xt (1-t1.) kEO q, .

(q,:9, ) gk
k ,rk-sk
'6k Xt (t.q)sk .
k
_. [nssl fcg"™ 1 & _
(6.4.5) Fz. (xtr s) = T qisk(skﬂnﬁ)/z ® Kk xk trk sk
k=0 (q,:q, ) _gx
and
Y.s c.r-s, _ _—(c+n)(c+n+)/2 (n/s] ck~rck k-8k

(6.4.6) H-Z(x(t/q$)7™") = q E g £EsE

[ea™®1, ¥

k
(CERL PR

q((zrs?- 2 sz*rz)k +(r-s)k—-4(r-s)n)/2 5

where, as before,<a=q(r~s)/s.

The proof of the formula (6.4.1) as sketched beiow. useg the
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notation cited in (6.1.10).

Let 'I' denote the right hand member of ({6.4.1)., then in

view of (6.4.4), one gets

r s
I = {néslqsk(sk-2n+¢)/2 Leq Jjn [a ljm 5 xk
= . X
k=0 (q,: q, )n-—sk
1
s tc+n+rk sk~-1 [tQJsk~1 dqt.

8]

In this, the g~integral on right hand side may be evaluated

with the help of the formula (6.1.4).

Thus,

X
{n/s] sk(sk-zn+s1) /2 lcq rﬁn fq sﬁm (q c+n+r5w ék x

(1-q)[ql, I 4q, c+n+rk-sk sk
k=0 (q,:9), o [a 1o, (a7

]
i

o

r
[n/s] {cq 5 -
(1-q)[ql, I qfk(sk—?n+a)/z n-sk 6k k
k=0 (q‘ 9, )n-sk

]

(1-q) [ql, gg(x.r.s:q)-

which proves (6.4.1).

In a similar manner, the results stated in (6.4.2) and
(6.4.3) may be proved by employing the formulae (6.1.5) and
(6.1.6) respectively.

The particular instances of these results (i.e. (6.4.1) to
(6.4.3)) corresponding to the reducibilities of gg(x.r,s;q) to
the different polynomials., may be obtained by specializing the

various parameters involved thersin.
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For sxample, the formula (6.4.2) when specialized by setting

g=l, r=2, c=1l+o43, and

logql,, (-1)¥

{aq}k (q]k

gets reduced to the form :

[aﬁqn+1]m 1
(6.4.7) p_(x;a.8:q) = ) s
(1-q) (g "], [aq) o
in which
1
n [q ], («q]
L0 = L k0 (xq¥
k=0 [qly [eql,

ig another basic analogue of the Laguerre

(Khan [1]).
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