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Recently, Singhal and Savita Kumari [Indian J. pure appl. Math. 13 (8) (1982), 907-11]
established an elegant inversion theorem which provides an effective tool to obtain
the inverse relation for a class of polynomials {g5 (x, r, s)}, introduced earlier by
R. Panda [Glasgow Math. J. 18 (1977), 177-84].

We have defined in this paper a g-analogue of the class {g5 (x, r, 5}] and discuss-
ed the inverse relations under certain conditions on the parameters involved.

1. InTrRODUCTION

~—

A few years égo; some known polynomials like Jacobi, Laguerre, Hermite etc.
were unified by the introduction of a new class of polynomials {g5 (x, r, s)} by
Panda’.

These polynomials are defined by means of the explicit representation
[n/s] - - rk
< = _1yn-sk k
g sy =Y (-1 (n__sk)'ykx. (1D
k=0
The study of this class of polynomials was further extended by Singhal and Savita

Kumari*$ who studied these polynomials from the viewpoint of inverse series rela-
tions. They proved that (1.1) admits the inverse relation

R ctrk/s —c+sn-rm-k
X" = B C(x,1,5) ~a(1.2
Tn kz::() c+rn - sn+k ( sn -k )g" (%ns) ( )

. In fact, the inverse pair of relations (1.1) and (1.2) are contained in the follow-
ing general theorem due to Singhal and Savita Kumari*,

Theorem —
[n/s}
_ yynesk D+ gsk ~ sk
F(n) EO (-1) ( w0 (1)
implies
! sn
prgk -k [p+agsn-k
= e F(k). ..{1.4
J(n) E p+qsn-k<sn—k ) (%) a4

k=0
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In this paper we first define a g-analogue of (1.1) in the form
[n/s}
g: (X, r, sjq) = 2 (_l)n—sk q(sk(sk+l)—23nk)/.22
k=0

[q—c+sk—rk-n+ 1]m

. 8, x* ...(1.9)
[0 e [g)n-sk
and prove two inversion theorems suggested by the above cited theorem and thereby

deduce the inverse relations for (1.5).

In what follows, we shall make use of the notations

-ay(l-aq).. (1-ag"Y, n=1,2,...
1, n=20
[al, = [(I] ]
—=, n is arbitrary  ...(1.6)
[eg"]
[de = J] (1-ag™, 0<g<1 (L
n=0 ”/‘__,/'
n — {Q]n . . L e
v — -

...(1.8)
[q]n—-k [q]lf// ,.,//

and the known-result (Polya and Szegd?, p. 11, Problem 60.3)

E gktk-nr2 [Z} (-x)* = H (1 - xg&h (1.9
k=0 k=1

which is a particular case of the basic binomial theorem [Srivastava and Karlsson®,
p. 348, eqn. 9.4 (274)] )

e e o M 00y (1.10) .
k=0 [q}k {x]oa

2. Inversion THEOREMS

The inversion theorems that we propose to prove here are as given below.
Theorem I— ‘

[n/s] bsk-n+1
ok PG o G(K)
F(n) (_l)n—sk qsk(sk+1)/2 snk , ...(2.1)
J'cz::() [qu skosk+ l]oo [‘ﬂn-—sk
implies

G(n) i qk(k—l)/Z {pq?sn—sn-&l]w
Paard [p'qu‘k]oo [@lon-x -
where b 1, and g, is another base. .

i

F(k) ..2.2)
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Theorem IT—

fn)

I

z”: (—l)k g{((k+1)/2—uk {quk]‘” g(k) ."(2.3)
= leq™™* * o (@1 d1)nsk

if and only if

g(n)

n — entk ra-n+k+1
Yt ghoenn LoD T e iy o
k=0

[Cqm]on (q1 B QI)n—k
wherein ¢; = ¢}, r # 1.

In order to prove Theorem I, we observe that in view of (2.1), the right hand
member of (2.2), denoted for brevity by &, can be expressed in the form

k(k-1)£2 bsn-sn+1 [k/s]
[pg?”" ™" " Jo E (__l)k’sj QSJ(S.HI)/Z-SICJ

sn
q
¢ =
}(zz:() [pq bsn—k]m [qlsn—k

j=0
T :
G
lpgts-s+1],, [gle.y v
b . .
-y BT o) T <~i>"q""‘"‘>’2[m“s]}
sn-si+ 1y - -
=0 [pql }on ~ k=0 k
[pg"s k1],
X {p q bsn»—SJ-k] -
_ E et GG) Ry
7=0 Ipq{,sj_sj+l]m (g)on-sy m=0 "
% Sg’ (-1)k ghtk-Dr2 I:S" - SJ] g™
where 4y = 1. k=0 k
Now making an appeal to (1.9), we get
n bsn-bsy i

gt "+ 1. G(j) i ke
d = -1y Am (1_ m+k l)
)y pgt¥ v+, [gloy L b g e

J=0 m=0

_ ,ifb=1l,andj #n
- G{n), when j=n,

which completes the proof of Theorem I.

Theorem II is a special case of our result given in Theorem 1 of Singhal and
Dave’ therefore we merely give the outlines of its proof as follows.
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Since the matrix corresponding to (2.3) has its all diagonal elements nonzero,
it has unique inverse and because (2.4) satisfies (2.3), it follows that (2.3) and (2.4)
are inverses of each other.

3. Particurar Cases

On making the substitutions b = (s-r)/s, g1 = q, p = -¢, and G(k) = &;
x* in (2.1) and comparing with the defining relation (1.5), we get F(n) = g (x, r,
slq), and consequently (2.2) would yield its inverse relation in the form

sn K (k-1)72 [q-c—m+ l]

n_ L q
x 5n,§0

i W (7) IS

The particular case of (3.1) corresponding to the reducibility of (1.5) under the
substitutions ¢ =1 + o, 7 = s = 1 and & = (~1)¥ gF>**+D72 (g7, 11 viz,

o

gk (x, r, siq). (3.1

n qk(k+1)i2-nk [aq]n

L}ga} B
(x {?) tg) foqly [glnx lale

(-x)* ...(3.2)
may be given as

n (—l)k k(k-1)72 [(Xq] o -
= [ql, L L{®-(x|q) ..(3.3)
Ll ,;0 [‘JIQ]k.Jg]n P *la

where L,ﬁfi‘l,(x!q) is 4 basic Laguerre polynomial.
In fact, (3.2) holds if and only (3.3) holds.

On the other hand, taking s=1, r=2 and replacing x by 4x in (1.5) and comparing
it with (2.3) one readily gets the following pair.

foxlg) = ) (- ~1)k gktk+D/2-nk -[—‘5[97]3—’& 5 (4x)¥ ..(3.49)
An-x

if and only if

k(k—l 2 ( I_CqZIC)

[€la+i+1 [lnr

xn = Lo }j (1) fi xl) 3.5)

5,4"

in which f,, (x|q) is a g-analogue of the polynomial f, (x|q) considered by Rainville?
(p. 137).

Finally, we consider the polynomial
bl ¢ - rn+mk
y

fieynm =Y ek

)v,,_mk x"mk, ..(3.6)
k=0

introduced by Singhal and Savita Kumari’. If we define its g-analogue for m=1
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as follows :
-rk
fxyrnllg = f: yr qtenrnne 477
— (@15 @)
X oy x"K ..(3.7)

where g; = q""!, r # 1, then it is easy to see that the choice g(k) = o x* in
Theorem II yields the interesting relation

[

PN

S (% -Lr 1g) = gn (61, 1lg).
ACKNOWLEDGEMENT
Thanks are due to the referee for his valuable suggestions.
Reprrences

R. Panda, Glasgow Math. J. 18 (1977), 105-108.

G. Pélya and G. Szegd, Problems and Theorem. in Analysis (Transiated from German by D. Aeppli),
Vol. 1, Springer-Verlag, New York, Heidelberg and Berlin.

E. D. Rainville, Special Functions, Mac Millan Co., New York, 1960.

J. P. Singhal and Savita Kumari, Indian J. pure appl. Math.13 (1982), 907-11.

J. P. Singhal and Savita Kumari, Bull. Inst. Math. Acad. Sinica 10 (1982), 171-75.

J. P. Singhal and Savita Kumari, Bull. Inst. Math. Acad. Sinica 15 (1987), 81-87.

J. P. Singhal and B, 1. Dave, Math. Student 58 (1980), 101-108.

H. M. Srivastava and P. W. Karlsson, Multiple Gaussian Hypergeometric Series, Ellis Horwood Ltd.,
Chichester, England, 1985. i



Tae MATHEMATICS STUDENT
Vol. 58 No. 2 (1990) pp. 101-108

ON A g-INVERSION THEOREM
By
™ J. P. SINGHAL AND B. I, DavE
[Received : July 11, 1988]

ABSTRACT

In this paper, an attempt has been made to establisha g-inversion
theorem, which on particularization yields the inverse relatioms for several
classes of polynomials including the g-Hahn polynomials due to W. Hahn
{3, and the g-analogue of the polynomials Wa®# (x; k) considered by
1. P. Singhal and Savita Kumari [5].

1. INTRODUCTION

As long ago as 1949, W. Hahn [3] introduced a new class of polyno-
mials known as g-Hahn polynomials by means of the relation

”» . X g e ()
WD Qi b N "”"‘% gl T3 B T

-

When g~ 1, Qs (% ; &, B, N| ¢g) reduces to the ordinary Hahn poly-
nomials @, (x ; «, 8, N) represented by

(1) 0use M= = "’(’a‘j‘,‘j)’fi’_’fﬁ)t’j(?x)’

=0

where Re(a, £) > —1, Na non»negatxve integer, and n=0,1.., , N. These
polynomials include Jacobi polynomials, Meixner, Krowtchouk Charher,
Laguerre polynomials and Bessel functions as special cases.

G. Gasper [2] obtained the inverse relation of (1°2) in the form

(—n)y (@4B4+142)) O; (x ; o, B, N)
(B T4n+)) (adBF1+0a1

(13) (—X)a=(—N)n (@+1)s
=0

It would be of interest to look for an analogous inverse relation of
(I'1). Our attempt in this direction led us to a general g-inversion theorem
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which not only yields the inverse relation of (1*1) but also includes the
inverse relation of another interesting class of g-polynomials defined as

. . 7q]n —firt k 5 n-+1 (l...,.x) k4
A q)“(.c}k["q;k) Z et ()

where Re(x, ) > — 1,and k is a positive integer ; which defines the g-ana-
logue of the polynomials W,@# (x ; k) representable in the form

(1'5) W8 (x; k)=

(xt s - (—n), (@Bt Dy (1—% )kv ,
[CERIVA \ 2

=0

where Re(x, f) > —1, and k is a positive integer;

The polynomial set {Wa(®#(x ; k)} and its companion set {X®'® (x; k)}
which form a pair of biorthogonal polynomials associated with Jacobi
weight function, were introduced by Singhal and Savita Kumari [5] (see
also [4]) who also gave the inverse of (1 5) in the form

1

o () n~—~(a+nk C 2y (et BE XKD, o (x5 k).

(oc+ D)7 (adB+ T4 Diniy

For obtaining the general g-inversion theorem we consxder the
followmg extensxons of (1'1) and (1°4).

7 YY) _ (q"M qP)j {pqn]w [H-Q”]oo [CI—N“’]
(1 ) Q,;vv (x Oy B: q) z [a]w [5qn+w}°° [q—N]oo Q*; ¢*);

e .,
[ w o, T

where Re(a, B, u) > 0, and n=0, I, .., N.

(18) P2 (0B 83 x| @)= rprlBlo0 @ g,
) (B | D= (o Tm ),

179%]e0 18900 g (1-x )"’
{0 [Bgrrtnly, 2
where Re(a, B, ¥, u) > 0.

Obviously, (1'7) would réduce to (1'1) when A=v=u=5=1 and « and
B are replaced by ag and «Bg, respectively; whereas (1-8) would reduce
to (I'4) when v=ai=8=k, \==1. and bnoth zand y are replaced by ag,
and B is replaced by «8g. :
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In what follows, we shall make use of the following notatjons :
(t—a) (1—ag}...(1—ag™?), n=1,2, ..

P 1, n=0
(19 (a; gn=[al,= [ :
2. n is arbitrary complex,
[aq"]o0 ry p

Q0
where {aloo =H (1—agn), 0 < q < 1.

nety

n _.(1,_.453) (},l...q:n~1)81__:(1___q(n-k-l-l)d) 5> 0
kb T =gy (0—¢%..(I—q®) °-

and [ZL -—-—[Z],whens——:l.
(111} Z q“*‘{”“ [ : ] x"=H (1 +xg*1),
Bw(

Frel

(1-10)

[‘I]oo —X
. P P alldeeiing !_.«—- 1 s O < < 1'
112y I (x) g (1—7) q
‘ 2. THE INVERSION THEOREM

The general inversion theorem that we propose to prove may be
stated in the form

Theorem 1. For n=0, 1, ...... s

. == - i g - (aqs™ ; g)r (¥, ; qa)s .
21 F(n)= —1) guiGtDliz—pns
2:'1) n) Z (—1Y q [3{{»11'»}'"_”” kq» s 9 )ay i)

Je=i¥

if and only if

X - l—ﬁq.wﬂ [ﬁqﬂ-nﬂ]m e F('! /
22) ¢ 11)=Z — 1)t geit=nr 17 b D
@2 ¢ (=g 1=Bg*™7  (ag™; a0 (y.% ;43, (@30 *

3=
where Re(a, 8, ¥, u} > O.

The proof of this theorem runs parallel to the method used by Carlitz
{1] which we summarize as below :

As the diagonal elements

— 1y g-enin=z (207 5 g1)r fygs 5 gy,
( ) 7 [‘qun-rn]m
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of the matrix formed by {2:1), are all non-Zero % n==0, 1, ..., it has unique
inversé, So, if we show that (2°2) satisfies (2°1), then (2'1) and (2'2) would
become inverse of each other.

On substituting (2'2) into the right hand member of (2'1), which we
denote as ¥, we get

n

;rl"‘"""' {—17 q‘w(i-i-l)m-pm (aqlw s ?1)@2’_?2” 5 q’g)_{
7=0 ' [Bg*7 " Lmnsj (@* 2 §*Iny
i
(—1) qu(z—q)/z i—pBgritt Iﬁfl"’*‘]mm F([)

ppr 1= Bg%t (aq™ 5 90 (Y85 420~ (9" 5 g*)is

which may be put in the form

n—1

wl3—pin 1""1997*1”
@3 y=F0+D g R e

12

n=1

. Z (— 1)) gui=urzbait-nt1) [”‘f ] (Bge e g,y

J [BQ‘“ ACa

witpltied . N

+ {qzﬁ-i-s‘u.l q2l+s + q2!:|-5 S qzn—3 )} q2be + ... +_(___, 1)n—-f—~1

.{q(n"l"l) Bip ) Ha-l-1) (l+1+z+2---+(u-1))} q(m-l—l),u.j

Since,

n-1—
=2 (=1 Apertom,

-
~ w9

—

where A4f*'wi=1, consequently the right hand member of (2-3) assumes
the form

net-1
plt—pln 1—pgritt .
F<">+E e T D e
& (@* 5 ¢)os -
-y
) Z (—1) gt G=Diz [” ]l } gUmmHItus
=0

wherein the use of (1'11) transforms jts inner-most sum to

n=y
H (1 — q(lr-n+t‘+a)il),
Jut

which vanishes when i=0, 1,..., n—I—1.
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’

Hence the theorem.
The rotated version of this theorem may be stated as follows.

Theorem 2. For n=0, 1,...,

24 Fln) = 2 (—1)7 grnta+Diz=pni (ngy™ [é‘;{}z‘:’](:fi —; 92)s - { (q{:;,_m

if and only if .

1— {3 qm+n [43 q#“’%ﬂ]mum” )

. = N (1) gantn-niz LTF
@5) fo) =3 (~1) groo T

Gty
F(j) ,
’ (')’ ‘Iza';%)s (Q“ N q")j._n

where Re (a, B, ¥, n) > G.
3. PARTICULAR CASES

On making m, r and stend to inﬁnity, and substituting y=—N,
q1=¢,==4, in theorem 1, we obfain

n .
1 F 2 \ ;[0 Voo [4™V %] :

3 = 1Y ged(31y[2~pni
en Fo ~0 (- g [B g™ )eo (" §q*)ni 740

if and only if

F 4 N
. S O TN I ™ F(j)
- —1)7 g#d G=Die
. (32) fn) . (=D gt 1 =B [ag™oo [0 (g* :9*Jns

~

Choosing F(it)= ﬁg'z*l.,]ﬁ_%}i]wq“) Q:’ 2 °(x; =, B, Nig),

and f(n)= {q_m'f]q:g;; - » we are led to the faverse of (17 in the form

7 [0 [@eo z w 18gHY
(3 3) [q—-x+Vn] [qu'H"]oo[aqum q* 1"3‘1'-"-&) ‘

B

(g q); [Bg*™*lee unis
- x 'S s

[Bq'lee (% 5 4*)s 0" (x5 8
which, on setting v-u-l-8 =1, and replacmo « and 8 by eg and -aByg
respectively, s:mphﬁes to the inverse of (1°1) in the form

Nig),

. A g s 1) (L —aBg'+)
3 4) [g")=I1g Rln {“q}n; g7 {aﬁq’*l‘nﬂ [q]' “Qy(x;a B, N ‘1)
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Next, if we take r=0, g,=¢q, and make s and m tend to infinity in
theorem 1, we obtain . )

\ Z" - (74" oo_
. — e FPElel o TEors T
(3 5) F(n)-—- 0( 1)’ ?('i') [Bq“f*”}oo(q* q‘u)ﬂ f(])
J=

if and only if

1 — Byt [Bq* " ) .
—1) gre = .
(36)  fim= Z( W R i peims g, (g s ey L)

F F ‘ufg.,j.??._[zl@ “,’A y Vs a x dﬁd
‘”.(”’ [l (Brlee [ (B8O

[ (m)y= 2\"} (q&)f} P (3'5) gets transformed 1nto (1'8), whereas
(3'6) yields the corresponding inverse relation

oy (1o X ™ nr @5 9% (l—ﬁq”“)
37 ( 2 ) {74‘5’]001 Oq“ (7Moo '

[Bq» 1] oo[2gM oo Pl (2, B, 7, 85 x| Q).

{37) can be further particularized by taking A=1, p=—d=v=£k, and
replacing o and v both by g, and B by «8¢, to the inverse series of
W8 (x ; k | q) as given below :

(3*8) (}_—;_3() 1‘?}/{" Z qk"f (q ~Ba qk)i (1 — a‘gql]—l-;-ﬂ)

[“B‘I} +1}7~ﬂ+1 lxgl;
R (5 k| g)-
4. LIMITING CASE |

Theorem 1, may be stated in a slightly different form as given
below : .

Theorem 3. For n=0, 1, ...,

n 1
Mg (vad : g,
41 F(in= (—1)J gpiiyiz—usy (g™ ; @) yg,% ;g .
@) Fon ~,-._=§0 g e 24 e ‘
(1- g (1—ga¥
=9 @ ¢*)ns 77

ifand only if
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e > o 1—fqrits 1B9*" \ming
{4 = E — 1Y qel(3-D12 .
(4 2) f(”) < ( ) q* I_pqw;—t-f (aqlln ; q1)f (l*ql)ln
1._ Y] oy
d—¢) F(j)

. T(r:™ 5 o) (1—qy)™
Replacing F(n) and f(n) by :
: U= [qiloo [goloo F1) 4 S0
. (1=q)** (1—9s)" [qloc (@* 5 G g 59
tespectively, and then making », s and m tend to infinity we, on making use
of (1°12) get

“3) F(n)xz qrl (g ¢)1 g (B+ntu)) e
J=0

Fq, (a+xj) I'q, (r+87) (g* 5 4*)s

if and only'if

. S 1 —Bqrits (g~ ; q*)p I'g; (a-+2n) ;
= 7 L7 F + F
(4 4) f(n) : Oq‘a " 1 _.pq»n+] (q. s 471 I"q (B i ‘j) 9 () 8”) (‘1)9
J=

which on making ¢;, ¢, and ¢ tend to 1, further simplify to
Theorem 4. For n=0, 1, ...

‘ N (—n)y PEnbui; -
@5 F=3 0:1“ i) Fo+5 FGFn’ )
Fom N

if and only if

@6) f(n)=1’(m+?~n}1‘(7+8n)z;(p. j;;iﬁf;*;ifh F(j),
) 2 -

where Re(x, 8, ¥, u) > 0.

By choosing F(n) and f{(n) appropriately, the above pair would vield
the inverse relations for the limiting cases ¢ — 1 of the polynomials defined
by (1-7) and (1-1).

\
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AR EXPANSION FORRULA ALKD ASSOCIATED GERVERATING RELATIONS

J.P.SINGHAL and E. 1. DAVE
communicated by H. M, Srivastava

Following the work of L.Carlitz [11 ., and of S,Rumeari
and J.F.Singhal [2], we derive an expansion for the product
of séveral generzlized Laguerre polynomials vhica are included
in the generzl class of polynomials {gg(x.r,s)} due to

R, Panda T3], We slso obtain tne associzted generzting relation

for the coefficients occurring in the expansion,
1. TNTROCDICTIOH

Let
[Ln/m] )k {c+rn - k),

(1.1} I‘g(x,:',r,m} = £ (-y r-mk

(n - mx)d x!

denote the gensrglized Laguerre polinorial of degree n which
ig a particuler czse 0f ths cless of polvnomizls {fgkx,y,r.n‘)}
intrcduced by Sinchal and Xumari [41 . With & view to preoviding
an extension of z result &ie to Carlitz [1] , ¥urari =n4

[2] Qerived a generataing function for the ccefficients D

3
which oeccur in the exgansion for-mla
C

C
1 5 ©
(1.2) T “axs vyo ryem) wow T.F Lo
n, "1 1 1 np(%x,}p,‘.pm)
'l’* {
~ b5 Dxnl. vees np) rc LGy
= ’_;0 s K ms il

* Q= . - - o :
where N = {X/m], The clogse reserblance of %he definmition (1.1
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(1.3 A (xr,e) = [n{SI ﬂ)_n'_s]i_. x*

k=0 (n~-sk)! k|
suggests that it would be of interest to obtain an analogous
expansion formula and tt}e assoclated generating relation. It
should be mentioned her:e that the polynomizls kg(x,r,s) are
included, as a particular case, in the class of polynomials
fkgg(x,r,s}]y introduced by Panda [3], We also mention that
the expansion formula,and the generating relation derived nere,
vrovide an extension of the corresponding results due to Carlitz
[1) as well as of the important particulsr cazse m=1 of the

results of Kumari and Singhal [2] . ,

The expansion formulea that we prove in this paper is as
given below i

C

{1

C
pN 1
(1.4) a, (alx,rl,sl) A

n X, I 8,
p(ap . po p)

a tnl,...,nn) )\c
= T E {x,r,si,
pen m m
vhere == [ny/s,1+ ...+ [n/s ]
1”1 P’ : ,

{n,reeawn)
- 324

znd the ccefricients G

- as given by (2.2) are generated

(nl....,n ) n

'~ 1 -
{1.8) < 3 Pt el S
Ny se e, 0 =0 &
1 b
! - /s LIS
= (l-w,} =~ ... (l-xn'p\ P ZR yEFITsS,
vhere sy 5,
ER -
. 1 Fod 7
(1.6) z=_+ 2 & ¥y
- +oaee + T sne
R
. T
(L=vyd ~ o]
4 — 1%
b (1-:)
1/s
v I
(1.7) v= 1= (CzZv} |
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2. DERIVATION OF (1.4) AND (1.5)
In view of the pair of inverse sevies relations given by
Singhai and Kumari [57 , 2t is easy to deduce that

sk
(2.1) x =k! %

=0 gk ~m))

(-c ~ rm/s)

<
{ 1-c -rk )s}c- km(x,r,s).

m=1

Now making use of the notztions

*
(ni/sij = N i=10210-tlp

il
* * * -
n, o+ n2‘+... +np = n
3:1 - k2 4 aee +kp = K
*
m = {m/s] ,

it is sasv to sgee from (1.3) ané (2.1) that

c c
A Max,ro.s,) AP
n, T ,np(apx,rp,sp) .
* * (c_+r.k;)
Dyseeesny P _1 lini'siki % sK o
_ : { m Rt - K |
Kyrees sk =0 i=1 (ni - siki)! ki}. * m=0 {sK - )}

. e
< (-emm/s ) Qee-rllyy oy —)\m(x.r,s),

which, in view of the essily estsbiishzble relation

* *

nll;.llnp sK B(m,kla...'k>
PR SRR - 1
z R
) s5 Byo aes g B(m'k1'°"'kp)
Ead »
- -
= STAREE ’kp'c { K - m) |

leads us *o (1.4}, where
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) x * ( k)
(nl,....np Dieecesny P e +r ik, ng-sk K,
(2.2) ¢ = { TT : ay .
kl' “on Ikp=0 ia] (ni“slki) ’l ki'

Kl(-c-m/s) 1 -c-18 4 .

( sk ~m) !

Now to obtain the generating relation (1,35), we observe that

- . (nl.....np) Wnl n,
= m ses W
Dllo.. .np—O i ol
_ - -C _ y =€ " | (s _-ceri
_(1w1) 1ee. {1 w) P : K.(crm/s)(lc,.-)s:,,_m_l
kl"“'kp=O kll vee kK1 (sKem)!
D
°1 1 sy X,
. 3y vy ... a v, =
r, I
(1-wy) (1-—wp) *
- - [ 1=C=ri
~c, - - tegezm/e} (i-c rf)sk-m—l K
= (1~w1) veoll=w) P 5 o«
P K=m {sk -m )}
where 2Z is given by (1.6). Th2 right-hand side ¢f the above
expression mzy te put in the form
-C - - c + /s + rj/s
/s (1-,) 1 iewy P07 fermm/e)
= 3=0 {crrm/s + ri/s)
-i
Sz /8
vhich can ke further sirmpiified with the h‘el?p of the reletion
,— M‘A
( cf. [6: p. 355, ec.(9)] ) %
N ; a a +Ibk &
k=3 a + bk K ‘
ol = {x -1} X-.!3
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to vyield the generating relation (1,5},
3., SPECIZL CASES

When s = 1, the expansion formula (1.4) and generating relation

{1.5), in view of
c (o]
Kn(xrrrl) = I‘nﬁx, -l, T, 1),

would vield the expansion formula and the associated generating
relation deraived earlier by iumari and Singhsl [2, p.56,eq. (1.6)

and (1,733 .

Cr the other hand, the application of the relztion

i G0 = AL 1,0

vould reduce the cenerating rel=zticn (1.5) to Carlatz's result

{ see [1,p.3v5, ec.t6)] ).
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