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Recently, Singhal and Savita Kumari [Indian J. pure appl Math. 13 (8) (1982), 907-11] 
established an elegant inversion theorem which provides an effective tool to obtain 
the inverse relation for a class of polynomials J g£ (x, r, s)), introduced earlier by 
R. Panda [Glasgow Math. J. 18 (1977), 177-84],

We have defined in this paper a g-analogue of the class [gc„ (x, r, s) J and discuss­
ed the inverse relations under certain conditions on the parameters involved.

1, Introduction

A few years ago, some known polynomials like Jacobi, Laguerre, Hermite etc. 
were unified by the introduction of a new class of polynomials (g£ (j;, r, j)) by 
Panda1.

These polynomials are defined by means of the explicit representation
(n/d /_ c _ fk \

gn (x, r, s) = (-1)'M*( , ...(1.1)
*=0

n - sk

The study of this class of polynomials was further extended by Singhal and Savita 
Kumari4,6 who studied these polynomials from the viewpoint of inverse series rela­
tions. They proved that (1.1) admits the inverse relation

1 cf-rk/s
„ c+rn-sn+k k=0

c+s/t - rn - k' 
sn - k

gck (x,r,s). -.,(1.2)

In fact, the inverse pair of relations (1.1) and (1.2) are contained in the follow­
ing general theorem due to Singhal and Savita Kumari4.

Theorem

F(n) =

implies
I

An) =

E*=o

(-1)™*
fj+qsk - sk' 
, n - sk

f(k)

E*=0

p+qk - k 
p+qsn - k

tp+qsn - k 
. sn - k

F(k).

...(1.3)

...(1.4)
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In this paper we first define a g-analogue of (1.1) in the form
[<i/4

gcn (x, r, s\q) = Y, (-D*1* ?W*+1)'2sB*,/.2 
*=o

-c-Krfr-rt-n + l-i[<7 % SkX* ...(1.5)[q~c rk+% [q]„_sk

and prove two inversion theorems suggested by the above cited theorem and thereby 
deduce the inverse relations for (1.5).

In what follows, we shall make use of the notations

(1 - a) (1 - aq) ... (1 - aqnA), n — 1, 2,.,.

1,

M-
Mn

[aqn3c

n = 0

n is arbitrary ...(1.6)

[«]» = n (1 “ aqn)’0 < q < 1
n — Q

Mn

lq]n-k [Q\k

and the known-result (P61ya and SzegO2, p. 11, Problem 60.3)

£ «k(k-\)/2

k=0

(-*)*= n (i-v-1)

...(1.7)

•(1.8)

...(1.9)

k= 1
which is a particular case of the basic binomial theorem [Srivastava and Karlsson8, 
p. 348, eqn. 9.4 (274)]

£ #.** = J^(W<i).

k=0
[q)k Mo

2. Inversion Theorems

..(1.10).

The inversion theorems that we propose to prove here are as given below. 

Theorem I—

implies

[n/s]
Fin) = £ (-1 q

sn
G(n) = £ qk^n

k=0

sk{sk+l) /2-~snk [pqhsk~n+iU G(k)

[p9l"+1]„ [?U
[pgfOT-CT+1]^

F{k)

...(2.1)

...(2.2X

where 6^1, and q\ is another base.
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Theorem II-

/(«) = D ,k{k+\)!2-nk Wk]
[cqrk~k+n]x {qA; qx)n.k

k—0

g(k) ...(2.3)

if and only if

" n - cork\ rcarn-n+k+ h*(«) = £ (-D* qr i)/2 (\ 1 }- ^-----r-^/W -(2.4)

£ = 0
[cgra]«, (q\ ; <7i)„-

wherein qx = qr , r A 1.

In order to prove Theorem I, we observe that in view of (2.1), the right hand 
member of (2.2), denoted for brevity by 4>, can be expressed in the form

$
sn k(k-1)/2 r-^ten-OT + li (*/•*]

tPviJ»_ yi \ )/2-®t/Li x„„bsn-kx r^l Li ' '\pqbsn-kU \q]
k—0 sn-k y~o

[pgbsj-k+ li

\pq^v+lu \q\k-sj G{j)

1 r „,,bsn-stl — 11 sn-^
= ^ ■ 1_____ an\ V r_n* nk(k~\)n

j=o
[wf"M,+i]«' G(J) ^ (~1} q

k=0

sn - sj 
k

\pqbsjyk+])c

X
n rn/i^ff_CT+ii r'(i\ bsn-bsj~\

__ y* __________Joo J ys r nffl a

“?0 \pqiSJ'SJ+1]co [«U

srt-sj

where A0 = 1. *=o
Now making- an appeal to (1.9), we get

x £ (~t)k <? k(k-l)/2 sn - sj 
k

-mk

« r„„tol-.sn + Ii bsn-bsj-\ sn-sj

* = £ r^tll ,, £ II~ [pgr w+,]a. AX
*=i

0, if b < 1, and j A n 
G(n), when j — n,

which completes the proof of Theorem I.

Theorem II is a special case of our result given in Theorem 1 of Singhal and 
Dave7 therefore we merely give the outlines of its proof as follows.
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Since the matrix corresponding to (2.3) has its all diagonal elements nonzero, 
it has unique inverse and because (2.4) satisfies (2.3), it follows that (2.3) and (2.4) 
are inverses of each other.

3. Particular Cases

On making the substitutions b = (s - r)/s, <h = q, p = -c, and G(k) = 8k 
xk in (2.1) and comparing with the defining relation (1.5), we get F(n) — gcn (x, r, 
s|g), and consequently (2.2) would yield its inverse relation in the form

1 * V(*',,/2
2j6" "o [g-c+—[q]sn_k

gck (x, r, s|g). ...(3.1)

The particular case of (3.1) corresponding to the reducibility of (1.5) under the 
substitutions c=l + a, r = s = 1 and 8k = (-1)* viz.

n „k(k+l)/2-nk r„,,iL<“> (x\q) = £ Qr■■■■■■ rT {.xy

k=0
{aqh Mn-k Mk

may be given as

£ ( \-q—,....l q]n (x\q)

..(3.2)

...(3.3)
*=o {uq)k.Mn^

where L,|a_).(jc| q) is a basic Laguerre polynomial.

In fact, (3.2) holds if and only (3.3) holds.

On the other hand, taking s=l, r=2 and replacing x by 4x in (1.5) and comparing 
it with (2.3) one readily gets the following pair.

/„<*!*>= t (-iy qw+w2-«k
" Mn-k

h (4x)J ...(3.4)
k=0

if and only if

x" =
Ichn £ {_l)k qm-l)n (1 -cq2k)S„4 k=o

[C\n +*+l \q\n-
fk (x\q) ...(3.5)

in which fn (x\q) is a ^-analogue of the polynomial f„ (x\q) considered by Rainville3 
(p. 137).

Finally, we consider the polynomial

t/-c-rn+mk\ „ ,fn (X, y, r, m) = Y, y I _ ) yn-mk *

k=0
n-mk .(3.6)

introduced by Singhal and Savita Kumari5. If we define its ^-analogue for m — \
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as follows :

fn (x, y, r, 1| q)
n

y"~k gp-n><*+n-I)/2
k=0

[cqm-rk]k 

(Q\ > Ql)k

X an-kXn-k ...(3.7)

where q1 = qr~l, r then it is easy to see that the choice g(k) = <xk xk in 
Theorem II yields the interesting relation

fn (x, -l, r, 1|q) = g% (x, r, 1|q).
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ABSTRACT

In this paper, an attempt has been made to establish a (/-inversion 
theorem, which on particularization yields the inverse relations for several 
classes of polynomials including the q-Hahn polynomials due to W. Hahn 
[3], and the (/-analogue of the polynomials Wn(*,0} (x ; k) considered by 
J. P. Singhal and Savita Kumari [5],

1. INTRODUCTION

As long ago as 1949, W. Hahn [3] introduced a new class of polyno­
mials known as (/-Hahn polynomials by means of the relation

(11) Q»(x;«,p,N V [«Ar*xL- lr*b q’-

When q -> 1, Q„ (x ; «, j3, N | q) reduces to the ordinary Hahn poly­
nomials Q„ (a; ; «, p, N) represented by

(1-2) Qn{x (*+!)/ (-N)jj !

where Re(a, p) > — 1, N a. non-negative integer, and n=0, 1... , N. These 
polynomials include Jacobi polynomials, Meixner, Krowtchouk, Charlier, 
Laguerre polynomials and Bessel functions as special cases.

G. Gasper [2] obtained the inverse relation of (1-2) in the form

(1-3) (™x)„=( -#)„(«+!)„ S£irV

—n)j (a 4- P 4T + 2j) Qj (x ; «, g, N) 
(*+3+1 +n+j) (S5+3+1 +j)„ j!

It would be of interest to look for an analogous inverse relation of 
(IT). Our attempt in this direction led us to a general ^-inversion theorem
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which not only yields the inverse relation of (IT) but also includes the 
inverse relation of another interesting class of ^-polynomials defined as

(1-4) (x ; k | q)- iqk
V (-q~

qk)n
kn qk)j M?"+rh,
bqhj (qk

where jRe(«, 8) > — 1, and k is a positive integer ; which defines the ^-ana­
logue of the polynomials W„(a’01 (x ; k) representable in the form

d-5)
_(<*+!)« V (~-n)j (*+[H-n-HWl-x \*» 

nl («+l )kjjl V 2 /

where Re{a, j8) > —1, and k is a positive integer;
The polynomial set {Wn^’^x ; k)} and its companion set (x; k)}

which form a pair of biorthogonal polynomials associated with Jacobi 
weight function, were introduced by Singhal and Savita Kumari [5] (see 
also [4]) who also gave the inverse of (1*5) in the form

(1'6) ( n)j (g+f}+1 +kj+j) 
(a+l,b («+^+1+J)s«+i rVjW' (x ; k).

, For obtaining the general ^-inversion theorem we consider the 
following extensions of (M) and (1'4).

(1-7) Q?* (X ; «, g, N i q)^ Or'*": qf-)j fir^loo
Woo [q~N]oo (<r; rh

where Re(a, p, #*) > 0, and «=0, I, , N.

irxloo
[r*+viJ oo

0-8) Kit (*, y, 8 ; x </)= Wc
[*9Xn]oo (r; r>

;S (<rm; <r)j 'r irh ’

irxloo I ftr'ioo r11 i-x yJ 
Moo rarMco \ 2 }

where Re(<x, p, j, u) > 0.
Obviously, (1-7) would reduce to (Tl) when A = v=u=8=l and a and 

p are replaced by aq and ofyq, respectively; whereas (1-8) would reduce 
to (T4) when v=»j,=8=fc, \=1, and both % and y are replaced by aq, 
and p is replaced by v.pq.
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In what follows, we shall make use of the following notations 
(l-a) (1 —aq)...(1 —«?n_1), «=], 2, ...

1, n=0
Wo

(1-9) (a; <7}„=[a]„=,

WTIm '

oowhere [«]«, =JJ (1— aq”), 0 < q < 1.

n**1* ' f

L *Je (l-9»)(l-9“)...(l-9">

[tHil’wheBS-1'

- n n

Y q^~v>n f 11 *-IT(1I ft I in>i 9t

n is arbitrary complex,

(1-10)

and

(I'll)

(M2) r, (*)=(I-?)1-*, 0 < q < 1. '

2. THE INVERSION THEOREM

The general inversion theorem that we propose to prove may be 
stated in the form

Theorem I. For k«0, 1, ...... .

n(2'1) Fin)=(—1)» o<*J0+ 3 > ?i)r (yQ-/} (Js), r, .
4 w; r)-r /{J}

if and only if

n
(2-2) /(/I)r=\' (—l )* qrX*~»f* F (j)

fa l-Prn+i

where J?e(a, 0, y, > 0.

The proof of this theorem runs parallel to the method used by Carlitz 
[1] which we summarize as below :

As the diagonal elements

{__n<r fl-,nin-iwa (*?>*" 1 ftV fy<?san : 9s\
/ [^n+n]m
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of the matrix formed by (2-]), are all non-zero V- n—0, 1, ... , it has unique 
inverse. So, if we show that (2*2) satisfies (2*1), then (2*1) and (2*2) would 
become inverse of each other.

On substituting (2*21 into the right hand member of (2*1), which we 
denote as t/i, we get

(__] j qiHS+hlZ-itni («-qF3; qiir m*3; &).
(r ■ qn«-j

,pi(H)/a 1—
1 -

___WJ+l]m+J-i____ F(l)
(«<7ik;; <h)r (yqf3; ?*), ' t<r ; q-h~i ’

which may be put in the form

(2-3) f-fw+j? t*-* nn-

lm a

Since,

«-!

^ (_j y ^)ij(i-n/2+i-/(i-n+i) ..1 .
Wq^^U-^+ui'

(9Z!+3+(?2I+5+ ^3 _j_
(W-j*1)+{b-8-1) (I+l+I+2...+(n-I))| qin-l-lW

rt-I-1

/«0
(—I)'

where consequently the right hand member of (2*3) assumes
the form

F(n)+ fj./2—pin
(r

-pgpl+l
; qu)»-i F(l)

n- l-l

I (—iy A/'*1*'1

n~i

z <-^2-0

<3—1)^2

wherein the use of (I’ll) transforms its inner-most sum to
n-l

JJ (1—
}-i

which vanishes when i—0, i,..., n—l—1.
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Hence the theorem.
The rotated version of this theorem may be stated as, follows.

Theorem 2. For n—Q, 1,...,

' J 2/' q [3(q“ ; q^j-n
j-n

if and only if
(2-5, m <-!rr*~{^££ ‘TSr' ■

m ,
' (y ?**'»*). (r ; r)/-«

where Re (a, (i, y, u) > 0.

3. PARTICULAR CASES

On making m, r and s tend to infinity, and substituting y——N, 
<h=qi~q, in theorem 1, we obtain 

n
<3T) F(n)=’V (-1V gyKMm~*ni ... [g ..../( /)

/=o
if and only if

(3-2) /7n)=\f' f—ly gfi o—1)/2 j__fig'4**
( } K) 2, ( )q l-W* WU{cr^

F(j)

J—0
v+toJoo (r -,q%~j

Choosing F(n)= Q”. ' ^ % N,<?)’

and /(«) 

(3-3)

frt
[r*+VB]« (r; r)» 

t<rY]~ m,
[r*+'",]~ t</“A'+a',]co[ag‘"]M

we are led to the inverse of (1-7) in the form

n’
yr~* 1—‘In.1'***0 X, {inns __ r

4*Mil l|^ l-sr”*1

fr'*'’; r)i
Q?,r (x ; a, 3, N i ?),t/VJoo (r; r)j ^

which, on setting v—u=X=8=l, and replacing a and ,8 by a# and «fiq 
respectively, simplifies to the inverse of (IT) in the form

n

(3-4) ir'I-lr*]. Ml. £ r' (*;«. ft «I »)•
i=0
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Next, if we take .r=0, q«=q, and make s and m tend to infinity in. 
theorem I, we obtain

n
r"‘"a’igp--------f(i)

LHT- JOO vr
y=o

if and only if

(3-5)

(3-6) Inprjl*
PO) J(n) ^ i i -$?■<*> l79 n]>o(f J Th>-1 ( J

/= 0

For .^-'ppwte p-:■ *• *5; * i “> “O
(l ■—"X)Vn

/ (n)=-'-7 -;-; --. - , (3-5) gets transformed into (1-8), whereas 
* v9‘ »

(3"6) yields the corresponding inverse relation

n-71 fk^V"=JrLo V n-/
( > \ 2 ) [ycn^Z*q b^ioo Woo

y=o

[/*T+'+1J ooN^lco («, ft 7, S ; x i q).

,(3*7) can be further particularized by taking >,= 1, ^=6=v=k, and 
replacing a and y both by ay, and j6 by «3q, to the inverse series of 
Wn^!^ (x ; k | q) as given below :

(3-8) ^L^Y=[3q]kn M
7=o

(1 -
[afiqmbn-n l«?]/

W-y-’W (JC ; * I ?)-

4. LIMITING CASE

Theorem 1, may be stated in a slightly different form as given 
below :

Theorem 3. For n—Q, 1, ... ,

(4-1) F(n)=,V (—1^ grhmi*-**} 1*^ ; q^r :-£»)» .
fPrj+B]«.-n+ii=0
(I-ft)*' (1-y^

(
if and only if

( } (<T ; f(j)
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ft<4-2} /();)=V (-1)> qM-W
4kmm4
y-o

(1—<?P*
(y^/a ; ?a)» (1—-9a)*" F(.7).

Replacing F(«) and /(«) by
• , {L-q)**”-1 [<?iL 'K/gloo F(n) and /(«)

(i-q*f~l Woo (r; W» (r; r)»
respectively, and then making r, s and m tend to infinity we, on making use 
of (1-12) get

(4-3j f(»i)=2 r}
if and only' if

Or1*"; r)] rq (ff+«+q) f( n
rql (a+A/) C?* (y+8/j (?** ; ?-)J

<4*4) 1
1 ~pq*n+}

(?-'• " ; I?11); (a+An)
(<?■' ; q~)} rq [p+^n+j)

•F?2(y+S«)F(./),

which on making qu q.z and q tend to 1, further simplify to 
Theorem 4. For n=0, 1, ...

/A. c\ F(n\__XT ( n)/
{45) ( ) 2, F (a+ >./) r (r+Bj) r(j+i)fij)

i=0
if and only if

(4-6) /(„)=r («+»») r (7+6„) J ^

/=0
where Re (a, 0, y, n) >0.

By choosing F(n) and f(n) appropriately, the above pair would yield 
the inverse relations for the limiting cases q -*■ 1 of the polynomials defined 
by (1-7) and (1-1).

1.

2.
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AN EXPANSION FORkULA AND ASSOCIATED GENERATING RELATIONS 

J.P.SINGHAL and E. I. DAVE

communicated by H. M. Srivastava

Following the work of L.Cariitz Ll3 , and of S,Kumari 

and J.r.Singhai 121 , we derive an expansion for tne product 

of several generalized Laguerre polynomials vhicn are included 
in the general class of polynomials {c£(x,r,s)} due to 

R. Panda C 3 J « We also obtain tne associated generating relation 

for the coefficients occurring in the expansion,

1. INTRODUCTION

Let
_ Cr./n] v tc+rn - rink)-.(l.l) r (x/T, r,m) = I (-y)K t-nk

(n - mk).‘ k !

denote the generalized Laguerre polynomial of degree n which 
is a particular case of the class of polynomials { f®lx,y,r,jr)} 

introduced by Sinchal and Num.ari C4l . With a view to providing 

an extension of a result due to Carlitz fl] , Durari aid Sinchal
123 derived a generating function for the coefficients D^

which occur in the expansion formula 
c c(1.2) r_1(s,x, y., r, ,if.) ... T5

RptV,yP*rp':n)

=o

rc * (x,y, r,r.)

where K = [K/rn3 . The close resemblance of the definition (l.l) 

with tnat of another generalization of the Laguerre polyr.orrials 

civen by (see also 13 1 i
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_ rn/s] (c+rk) .(1.3) <x,r,a) - r n 5K xk
n k=0 (n-sk) I k j

suggests that it would be of interest to obtain an analogous 

expansion formula and the associated generating relation. It 

should be mentioned here that the polynomials X^(x,r,s) are 

included, as a particular case, in the class of polynomials 
^g^(x,r,s)\ introduced by Panda [3] , We also mention that 

the expansion formula,and the generating relation derived nere, 

provide an extension of the corresponding results due to Carlitz 

C13 as well as of the important particular esse m=l of the 

results of Kumari and Singhal C2] .

The expansion formula that we prove in this paper is as 

given below :

(1.4) ' (a^x.r. , Sj) xcp,n (ax.r , 
I> o p

s ) 
P

n
VIw=rQ

In,,G 1 

m
(x,r, s,, 

m

where n = Tn./s,] + ... + C n J
k'

s 3
? /

and t.his coefficients
(n,,... ,n ) 

G * 
m as given by (2.2) are generated

by the relation

(1.5)
(n,,...,n ) 

G 1 * ni
wx • • • rp

‘*p

, -ci
= (l-W, J

~c••• (1-v ^ J 
p

P z^i/s yC+rm/s

vhare S1
(1.6) bi ‘1

Zj — + • « * +
Wp

sac
(i- r■: > ?

r l/s
(1.?: v = i - ( zvr;
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2. DERIVATION OF (1.4) AND (1.5)

In view of the pair of inverse sevies relations given by 
Singhai and Kurr.ari [5] , it is easy to deduce that

(2.1) xk = k ! I
m=Q
sk (. rm/s)

( sk - m ) 1 

Kow making use of the notations
tvv - ni * 1 - 1 # 21 * * • /P

★ * *nl + a2 + . •. + nP = n
*1 + k2 4* •.» k »p K

( 1-c -rk ) . . X (x,r,s),
sK-m-1 m

v. m = r ra/s ] ,

it is easy to see from (1.3) and (2.1) that

c c^n. (slx'rl'sl* V(a x,r ,s )
1 P P P P

nl'' r p{ JT ^ k,

k^,..., kD=0 1 issl (n± - s^) I ^
sK
Im=0 (sK - a)\

sK- m-1 ^^(x.r.s).. ( -c -rm/s ) (l-c-rk), 

which, in view of the easily estsbiis'neble relation

sK 3 (m, k.,... ,k )
z ----- 11------ s~

k, /...» k_ = 0 m=0 (sK - m) I

sn
I

nl' **• 'np
V z. ,ko = 0

B(m,k^>...,kQ)
( sK - m) I

leads us to (1.4), where
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(2.2) G_

t \ *
S • • a / II9 • * • 9 , p Cc.+r.k1)_ _ v

I jl i 1 jl n. -s. k.I TT _ _ _ _ _ _ _ _ x xx
k1»...,Hp=0 i=l (ni_sxki) j \!

•M •

Kj ( - C - rm/s ) (1 rK) sK-m-1
( sK - m ) i

Nov to obtain the generating relation tl.5)» we observe that

(n./... |H ) n.

.np—0 .. w„

= (l-wJ"cl .. (1-w ) p Z K 1 (-c~rm/s) (l-c-rK>sK-m-i
\,...'.kp*0 . I ... k I (sX-m)i

alWl

(1-Wj) 1

(l-vj

...d-wp)"CP

a,w/O P
o

■d-w )r?
p

(,-c-rm/s) (1-c-rK)

1 * 
k=tn

sk-ra-1 2k

l sk - m ) !

where Z is given by 11.6). The right-hand side of the above 

expression mgy be put in the form

z*’/3 (1-w,)'01 ... (i-w )'CP I Is^M-------------
1 5 j=0 (c-rrm/s + rj/s)

c + rm/s + rj/s

(-Z)X i/s

vhicn can re

l cf. C6; p. 3E5, ec. (9) ] )

k=2 + bk
ZK (

( X - 1 ) x~
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to yield the generating relation 11.5)

3. SPECIAL CASES

When s*l, the expansion formula (1.4) ana generating relation 

11.5). in view of

X°(x,r,l) = l£lx, -1, r, 1).

would yield the expansion formula and the associated generating 

relation derived earlier by Kurnari and Singhsl C2, p.5S,eg.11.6) 

and (1.7)3 .

On the other hand, the application of the relation 

' l4‘\x) = \fX( -x,l,l>

would reduce the generating relation U.5) to Carlitz's result 

( see [l,p,395, ec. (6)3 ).
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