
CHAPTER-4
INVERSE SERIES RELATIONS AND EXTENSIONS OF 

CERTAIN POLYNOMIALS

4.1 EXTENSIONS OF CERTAIN POLYNOMIALS AND RIORDAN'S INVERSE 

RELATIONS

The inversion formula (1.2.35) quoted in chapter-1, namely,

F(n) = lT <PT^kSk> f<*>
- if

P+qX~X ,p+qsn-k. 

p+qsn-k v sn-k J
cP+n-k*> F(k) = 0, n * ms,

by Singhal and S.Kumari, with the help 

the inverse relation of the

polynomial

(4.1.1)

if, and onl> 

f (n) =
snEk=0

and 
nf P+qk-k

n4.nn-Vt k!=o p+qn_k 
(m=l,2,3,...) was proved 

of which they obtained

(4.1.2) gn(x,r,s) =
[n/s]
Ek=0

(c+rk) n-sk
(n-sk)! yk x

in the form

(4.1.3) n
n sn= Ek=0

(-! )-sn~k(C4-(rk/s) ? - 
{c5rn-sn+k+l (sn"k)!

cgk (x,r,s) .

Here, a particular case of 

polynomial ( H.M.Srivastava [5])

(4.1.2) viz. the extended Jacobi
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(4.1.4) FnJ.s 1<X1---*°V^1 :x]

[n/s] (-n)sk (c+n)^ (a^. 
k-0

'V* X_£-- X
•'Vx k!

Is worth mentioning, which occurs when r-s (=1) is a positive
integer and.

, , ,sk , , (otl)k ‘ '' (“p}k
' sk+a ^i’x •••"Vx'

The inverse series relation of this polynomial is easily 
obtainable in the form :

(4.1.5) (sn) (tx )In (oc )P n n
n! (ft )' q n

sn (-sn), (c+k+ {ik/s})
E ------ ---------------------k=° <c+3i)/n+l k!

p(c) rk,£,s l<*1, 'ap :X],

by making use of the substitutions mentioned above, in the 
relation (4.1.3).
This explicit representation of the extended Jacobi

polynomial suggests that an analogous extension could
also be carried out for the Hahn polynomial Qn(x;oc,/?,N), the 
Racah polynomial Rn(x(x+y+6+l.); <x,ft,y,6), and for the Wilson 
polynomial Pn(xz) (cited in (1.1.8.9,10)).

In fact, it is quite interesting to see that the pair of 
inverse relations (4.1.1) when written in an alternative form .-
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[n/s]
F(n) = E l~n)gk (c+n)£k f(k) 

k=0

(4.1.6)

if, and only if
sn (-sn), (c+k+(/k/s))

, f(n) = £ ----- ---------------
k=0 (c+k)^n+1 (sn)! k!

and

F(k)

n (-n). (c+k+(/k/s))E ---- *-------------  F(k) =0, n* s.2s,3s, . . .
k=0 <c+kWl *!

(/-r-1)
enables one to carry out the extensions of the above 
mentioned polynomials. The proposed extensions as obtained below 
by means of the pair (4.1.6), are denoted respectively by 
CL , (x;«»/3,N) , R . lxlx+y+6+1) -.tx.ft.r .&), and , (x2).

In order to obtain an extended form of the Hahn polynomial.
set c = l+ac+/3, and 

f(k) =
(—x).

(a+l)k (~N)k k!

in (4.1.6). In this case, one gets the following explicit 
representation of extended Hahn polynomial:

(4.1.7) Q . (x;«,/3,N)* I #»»s
[n/s] (-n) . (a+/3+n+l)
E ---- —---------- — (-x),k=0 («+l)k (-N)k k! J

The inverse series relation of this follows from the pair 
(4.1.6) in the form :

(sn)! (—x) sn (-sn). (a+/?+l+k+(/k/s))(4.1.8) --------- 2--- = £ ----- 5------------------  Q (x;ct,/3,N).
(oc+1) (-N) n! k=0 («+/3+k+l), , k! K’ 'S

n n cn+l
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When c = oc+ft+1, and

f(k) =
(-x)k Cx-fr+<5+i)k 

(oc+l)k (ft+6 + l)k (r+l)k ki

then the pair (4.1.6) provides an extension of the Racah 

polynomial in the form :

(4.1.9) R_ . _ (x(x+r+6+l) ;a./3,y,6) 
n »v i d

[n/s] (-n) sk (a+{3+n+l) (-x)k (x+y+^+D^

k=0 («+l)k (/?+6 + 1)k (^+1)k ki

along with its inverse relation

(4.1.10)
(-x) (x+y-h5+l) (sn)!
nn

(oc+l)n (tf4t5+l)n (r+l)n n!

sn
= £ (-sn),

k=0 J

«4f?+k+l+(/k/s)

(oc4f?+k+l )^n+1 k! s
Cx(x+y+t5+l) -.oc.ft ,y .6)

Similarly an extended version of the Wilson polynomial 

together with its inverse series relation follow from (4.1.6) 

with ‘c'= a+b+c+d+n-1, and

f (k) =
(a+ix) (a-ix) (sn) ! 

nn
(a+b) (a+c) (a+d) n!

n n n

which are as given below.
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[n/s]
E

(-n) k (a+b+c+d+n-1)^
(a+b) (a+c) (a+d) n n n k=0 (a+b)k (a+c)k (a+d)k k!

(4.1.11) - .(a+ix)k(a-ix)k>

(a+ix) (a-ix) (sn) ! n n E
sn (-sn)k(a+b+c+d+k-l + (£k/s))

(a+b) (a+c)n(a+d) k=0 (a+b+c+d+k-1 )^n+1 (a+b)k£n+l

(a+c)k (a+d)k k!

Besides yielding the aforementioned extended polynomials, 
the inverse pair (4.1.1) also provides an effective tool for 
carrying out the extensions of certain inverse series relations 
belonging to the Riordan's classification. As a matter of fact, 
the Gould classes (1) and (2) (Table-2), the simpler Legendre 
classes (1) and (2) (Table-5) and, the Legendre-Chebyshev 
classes (1), (3), (5), and (7) (Table-6), admit extensions in 
the light of the formula (4.1.1) and its several alternative 
forms which are deduced below.

First, replacing F(n), f(n), and p by F(n)/p+qn-n+l. 
f(n)/p+qsn-sn+l, and p+1 respectively, in (4.1.1), one gets

p+qn-n+1 <P+n-^S* ^ m>
k=0 p+qsk-n+1

£4.1.12)-
) F(k).

Next, with the aid of the formula
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and with p replaced by -p-1. the inverse relations in (4.1.1) 

assume the forms:

F(n)
(4.1.13) <

tn/s]
Ek=0

. p+n-qsk . ^ n-sk J f (k) .

f (n)
sn sn-k 
E (-1) 
k=0

p-qk+k+1
p-qsn+k+1

p-qen+sn pv sn-k

In this, 
f(n)/p-qsn+sn+1

replacing F(n) 
and p by p-1

by F(n)/p-qn+n+l, f(n) by 
one finds the pair:

F(n)
(4.1.14) -

f (n)

[n/s]
Ek=0

p~qn+n
p-qsk+n c p-qSk+n

n-sk

snEk=0 (-1) sn-k C p-qsn+sn . p sn-k }

On choosing the parameter q appropriately in these inverse 
series relations, one arrives at the extended versions of the 
above mentioned classes in the forms which are given in the 
following table.
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Table-20 Extensions of Riordan’s inverse relations

[n/s]
F(n) « £ A 

k=0 n. k
sn sn-k

n) = £ (-D Bnk=0 n'K f (k)

Bn,k Extension of 
class (No.)as 
in Tables- 

2,5,6

p+qk-k .p+qsn-k. p+qsn-k 1 sn-k 3
Gould class(l) 

Table-2

.p+qsn-k. sn-k 3
Gould class(2) 

Table-2

p+2k+l .p+2sn. p+sn+k+11 sn-k' simpler Legendre 
Class (1)
Table-5

,p+2sn.1 sn-k' simpler Legendre 
Class (2)

Table-5
.p+scn.1sn-k 3

Legendre-
Chebyshev
Class (1) 
Table-6

p+ck .p+scn+sn-k-1. p+scn 1 sn-k 3
Legendre- 
Chebyshev 
class (3) 
Table-6

p+ck+1 fp+scn.p+scn-sn+k+1 sn-k' Legendre- 
Chebyshev 
class (5) 
Table-6

.p+scn+sn-k.
sn-k

Legendre- 
Chebyshev
Class (7) 
Table-6

Citation n,k

(4.1.15

(4.1.12)

(4.1.13)

(4.1.14)

(4.1.14) -c+1

(4.1.1) c+1

(4.1.13) -c+1

(4.1.12) c+1

,p+qsk-sk. 1 n-sk 3

p+qn-n+1 .p+qsk-sk. p+qsk-n+1( n-sk 3

,p+n+sk. * n-sk 3

p+2n .p+n+sk. p+n+sk 1 n-sk 3

p+cn ,p+n+sck-sk-l. p+sck 1 n-sk 3

.p+sck. 1 n-sk'

.p+n+sck-sk.
n-sk

p+cn+1 fp+sck.p-n+sck+sk+I ’ n-sk'
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The result appearing above in the forms of the 

generalizations of various polynomials and the inverse series 

relations, can also be viewed as the limiting cases of their 

corresponding basic analogues (also called q-extensiions), which 

put them into further extended forms. In fact, an attempt made 

in obtaining the proposed basic analogues led to certain 

interesting and seemingly new results which are incorporated in 

the following sections.

4.2 A BASIC INVERSE RELATION

In this section, a basic analogue of the polynomial
£g (x.r.s) will be defined first whose inverse series will be n

obtained by proving a more general pair of inverse series 

relation.

Let,
r , , sk(sk-2n+i )/2 . -c+sk-rk-n+1 n,, „ c, , , tn^sI, ,,n-sk q !q ]«,

(4.2.1) g (x.r.S|q)- E (-1) ------ -c-rk+t,------- ----------
k=0 [q 1 [q],oo n-sk

.6. x k
which may be considered to define a basic analogue of the 
explicit representation (4.1.2) of the polynomial g^(x,r,s).

Then in the light of the first relation occuring in (4.1.1), 

-it is not difficult to see that the polynomial defined above is 

contained in a more general expression given by

F(n)
[n/s] n-sk sk{sk-2n+* )/z
l i * t q
k=0

j.^p+bsk-n+1 ^
oo G(k)

, p+bsk-sk+1, r ,iq i- tqin.»j,
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Thus in order to obtain an inverse relation of the
polynomial (4.2.1), it would be worthwhile to prove an inverse 
relation corresponding to the above general expression. In fact, 
having guided by the related work of Singhal and S.Kumari [2], a 
basic inverse relation is proved here in the form of the 
following relations.

rn/sl p+bsk-n+1.
(4.2.2) F(n) « £ (-l)n"sX qsk(sk^n-H. )/z _ 3oo G(k)

k=0 r p+bsk-sk+1, r ,[a ] fa]14 <» 4 n-sk
implies

p+bsn-sn
sn k(k+l) /2 ^(4.2.3) G(n) = £ qKtK+-U/z _ ]qo F(k)

k=0 [qP+bsn-k3m [q]sn_k

where the positive integer bs < s,

The proof, as given below, is based on the technique used 
by Carlitz [3].

Let,
j, qk(k-l)/2 [qP+bsn snj^ G(k)snEk=0 [<JP+bsn'i')„ tqj8n-k - 4> •

Then on making use of the relation (4.2.2). one gets

sn4> = £ q
k*0

k (k-i) /2 [q [*/s]
if+bsn-k 3 [q] v. i=0co l4Jsn-k J

(-1) k-s j

sj(sj-2k+* )/2
tqp+b»i-k+lt G(j)

[ P+bsj-sj+1 [ ]
ool4J k-sj
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r p+bsn-sn, n [qK ]
= £ CD S£ sj r -vX k£k-l)/2 sn-sj, j-o [qp+b3j-sj+1]„ (q],_ k-0 t-l) q 1 V 1

'a» ’-"■•'sn-sj
, p+bsj-sj-k+1..( _____________ ]f5! \

t rnp+bsn-sj-k1 j
00

r p+bsn-sj-k,
l M J0

If bs is a positive integer then the expression in braces 
assumes its equivalent series form

bsn-bsj-1
m=0

A q m ^
-mk

with which one further gets

n-1 [qP+bsn-s"] G(j)
(fr-GdD+E p+bsj-sj+1. r , “ mj-o tqP ]„ [qJsn_sj ">"0

bsn-bsj-1
E A-

I (-l)k q1"11-1^2 rB";S:il q-mksn-s j
• £
k=0

Now on making an appeal to the formula {Carlitz [3])

E qk(k_l)/2 [n1 xk = JJ Cl+xqk
k=0 k=l

the above expression gets transformed to

n-1 [q 
<J> = G(n) + £

p+bsn-sn.
oo G(j) bsn-bsj-1

j-o [qP+taj-Bj+l]^ [qJ
sn-s j

E
m=0 m

■{ 0. if j*n 
G(n), if j=n ,

sn-sjn Cl-qm=0
-m+k-j
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provided be £ s; thus (4.2.2) implies (4.2.3).
Since the relation (4.2.2), under the substitutions bs=s-r,

]rp*=-c, and G(k) = «$k x readily yields the basic polynomial 
gn(x.r,s|q), one finds by employing the same substitutions in 

(4.2.3), its inverse relation in the form:

(4.2.4) .n
n

sn- Ek=0
qk(k-l)/2 [q

-c+sn-rn-k^
-c-rnj 

co ™
00

sn-k
g°(x,r,s|q).

A worth mentioning particular case of the basic polynomial 
(4.2.1) iB a basic analogue of the Laguerre polynomial given by 
(M.A.Khan [1]):

„ k(k-zn+i )/2(a) n *3 _ v(4.2.5) L;a,(x) = £ -------------------- - (~x)K
q n k=0 [«q]k [q]n_k (q]k

to which it would reduce when c=l+oc, r=s=l, and 
<5k*B^~1^ *1 ^^_2a+i^2{[q3k>“t. An inverse relation of this basic 

Laguerre polynomial follows from (4.2.4) under the same 
substitutions, which is as given below :

(4.2.6) xn tq]n En k*0

n (-l)k qk^-‘>/2 [«q]n
(«q3k [q]n_k

T (a) qLk (x) .

In view of the inverse series relations proved in the form 
of th.eorem-2 (chapter-3), it is quite natural to examine whether 
the converse of the relations (4.2.2) and (4.2.3) holdB true. In 
fact, an attempt made in this direction led us to consider a 
slight variant of the defining relation (4.2.1) in the form :
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(4.2.7) (x,r,s;q)n
(r-s)k(sk-2n+i )/zE qk»0

r c+rk,tq 3n-sk
, R-l R-l,(q ;q ) n-sk

where R = r/s, r * s.
In order to obtain an inverse series relation of the basic 

polynomial (4.2.7), a more general inversion formula will be 
proved ; wherein the converse of the series relations would also 
hold. This forms the subject matter of section-4.3.

4.3 A GENERAL PAIR OF INVERSE SERIES RELATIONS
The proposed general inverse series relations which will be 

proved in this section, is stated below as

THEOREM -3- If b * 0, and s « 2,3,4, 
En/sJ

• • • i then
j.^p+bsk-n+1,

(4.3.1) F =. £ <-l)n-Bk ql>Bk<sk-*n«)A ---" k£o <qb;qb)

if and only if
sn (1— k \ psn bk f k-i 1/2 '-‘■q * fir(4.3.2) Gn = E q 1 J/ ------

'oo
n-sk

k=0 r p+bsn-k, , b b, [q*^ )„ (q ;q )00 sn-k

and
_ p+bk-k.

(4.3.3) £ qbk(k-i)/2-----=-----
k=0 r p+bn-k, , b biq 3^ (q ;q

= 0, n * ms.
n-k

m >■ 1,2,3.....
For s«l, and b i* 0, the following relations hold true.

90



. p+bk-n+1,(4.3.4) f - E QkkOs-an+i)/2 ^ g
k-O <U :<T>n-k

if and only if

,, p+bk-k. *n bk (k-i 1 /2 (1~Q ) fj,(4.3.5) g = £ ----*.
n k=0 , p+bn-k. , b b.[q 3^ (q ;q ) n-k

The proof of theorem-3 as given below. is based on the 

methods due to Gould [4], and Singhal and S.Kumari [4]. The proof 
also makes use of a particular case of the Carlitz's inverse 

relations (1.5.6), viz. the pair

f(sn-sj) «SVJ C~Dk q****-*8"429^/2 [sn;sJ]

(4.3.6) -

k=0 k J b
[qP+bBj-Sn+l*+l^ g(k)

g(sn-ej) =BYJ <-l)k fn-sj ,
k=0 K b

1_qP+bs j _s j +bk+k
jqp+bsn-sj-k^ f (k)

00

which follows readily from (1.5.6) under the substitutions a^*l, 
b..* -qP+bsj SJ i+1, and with X and n replaced by b and sn-sj, 

respectively.
In order to proye the first part, consider the series

__ , - „p+bk-k.| qbk(ki)/* (1~q )

k=0 . p+bsn-k. , b b.[q ]oo (q ; q >sn-k
* CO , (say)

Then on substituting the relation (4.3,1) in this, one gets
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0> = |n [3ES3(-l)k~Sj qbk(k~2Sj"l)/* + bsj(sj+l )/* 
k=0 j=0

(1_qp+-bk-k) [qp+bsj-k+l^ 
. p+bsn-k. . b b,[q (q ;q ) sn

, b b,-k (q ;q k-s j

which in view of an easily establishable relation

sn [k/s] n sn-s j
(4.3.7) E E A(k.j) = E E A(k+sj,j)

k=0 j=0 j=0 k=0

assumes the form :

n-1 G . J(4.3.8) w = G + £ - .n j=0 (qi ;<i3n-j k»0
’"j-’Vl)k qf(k"1A [SVJ3b

1_qp+bk+bs j-k-s j 
|.qp+bsn-k-s j j

j.qp+bs j-k-s j+1 j

wherein = q (bs'O).
Now, in order to show that (4.3.1) implies (4.3.2), it 

suffices to show that the inner series in (4.3.8) is equal to
f 0 .] .

In fact, in (4.3.8), replacing [qP+bs3-k~sj*1by f(k),

and denoting the inner series by g(sn-sj), one gets

sn-si f i P+bk-k+bs j-s j.
(4.3.9) g(sn-sj) = ^ (-l)k t b ~^.bbn-k ei

k=0
f(k);

whose inverse companion follow from (4.3.6) in the form ;
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sn-s i
... _ . .k k(k-2sn+*sj+i)/2 rBn-sj(4.3.10) f(sn-sj) - £ (-1) qk=0 1

fVJik ■

[qp«>k+bsj-sn+l^ gW

In this last (inverse) relation, setting
g(k) = [ ° ] .

one finds

CD
f(k> = (qP+J>bj-k-Bj+l]o

With these f(k) and g(k), (4.3.9) yields the orthogonality 

relation :

., p+bk+bs j-k-s j.(4 3 11) TVuNkfHl/^an-sj U~q >
14-J.xi) E 1 i) qt 1 k Jfe [(^p+bsn-k-sj 3

k=0 CD

. p+bsj-k-sj+1, = f 0 ,'iq Joo 1 sn-sj 1 '

by means of which, the expression in (4.3.8) gets reduced to 

n-1 S_. „
cd = Gn + £

i*a0 (a ;a )
^ sn-sj ^

= G . n
Thus. (4.3.1) implies (4.3.2).

In order to show that (4.3.1) also implies (4.3.3). put

,, p+bk-k
(4.3.12) M(n) * £ qbk(fc-4)/2 ----------------------  pk-0 [(f*bn-k , ------ *k '

^ (qi ;qi }n-k

where, as before, q ■ q .

Then in view of the relation (4.3.1), this can be expressed

as
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[n/s] G. n-s j , ... . .(4.3.13) M(n) = E --- ^---- E (~l)k q^k~‘>/2 [ nvsJ]
j=o (qi.q1)1 k=o k J b 

j- qP+ks j -k-s j+1 j
oor p+bsj-k-sj-bn.

^ ** ^CO

Now, following the method employed in obtaining the 
orthogonality relation (4.3.11), it can be shown that the inner 
series in (4.3.13) equals to

1 n-s j3 '
as a result of which (4.3.13) gets reduced to

tn/s] G.M(n) ® E ---- i t ° -1
*■ n-s jrj-0 <vVj

If n/s is not an integer i.e. rv'ms. m = 1,2.3....  then the
right hand member of the last expression given above vanishes and 

thus, (4.3.1) implies (4.3.3); which completes the proof of the 
first part.

for proving the converse part, assume that the relations 
(4.3.2) and (4.3.3) viz.

or, /1 „p+bk-kfn _bk (k—i ) /z (1 q }________ F
n H . p+bsn-k. . b b ^ 'k=0 [q* 3a> (q ;q }sn-k
and

nE q
k=0

bk(k-*)/z
- p+bk-k 1—q

n.k
= 0, n*ms.

where m ■ 1,2,3,.... hold true.
Now, in view of (4.3.12) and (4.3.3) one readily gets 

(4.3.14) n)«0, rv*sm.
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and also, by comparing (4.3.12) with (4.3.2), one finds a useful

relation .*
(4.3.15) M(sn) ■ Gn.

Since, the inversion pair (4.3.6) with j=0 and s=l, reduces 
to the result (with g(n) = M(n). and f(n) = F ) :

(4.3.16) implies
n

. , " ktk-O/*
tt‘n> ' ^ >„ ‘Wn-k

r p+bk-n+1.F - E (-l)k Mk^n«)/2 J?----------® M(k>.
k*° ‘VVn-k

it follows from (4.3.14) and (4.3.15) that

(4.3.17) - implies

sn k(k-l)/z ^1~<lP+bk k> 
M(sn) - «£(k 1)/2 •~^7b5~ri~-k

k»0

[n/B] n—sk sk (sk-zn-H.)/2
n ~ £ (_1) qi

k“0

3oo (q*;qt}sn-k 

jqp+bsk-n+l^

‘Wn-sk
M(sk),

where n(an) = G,n

Thus, the relation (4.3.2) with Ai(n)=0 (n^ms), implies the 
relation (4.3.1), which proves the converse part, and hence the 
theorem..

The pair of inverse relations (4.3.4) and (4.3.5) are 
contained in the pair (4.3.6) (with j=0 and s*»l), and therefore, 
its proof is omitted here.
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4.4 PARTICULAR CASES : POLYNOMIALS
Amongst the several interesting particular cases of

theorem-3, the basic analogues of the polynomial gn(x,r.s) and
its special case viz. the extended Jacobi polynomial (see(4.1.4))
will be obtained along with their inverse series relations. As
for the other consequences of theorem-3, the basic analogues of
the extended polynomials Q , (x;a,f3,N), R^ - (x(x+y+d+l) ;n , s, n , s

and P . (x2) will be obtained together with the
n,i,s

inverse series representations of each of them. The basic 
analogues of these extended polynomials will be denoted by 

r _(x;oc,f?,N|q). R„ , (x(x+r+«5+l) ;oc,(3 ,y ,61 q), and Pn . _(x2|q)

respectively.
£Now in order to get the basic polynomial gn(x,r,s,-q) defined

Jrby (4.2.7), put bs=s-r, p=-c, and G^^d^x in the relation (4.3.1) 
of theorem-3. In this case, one obtains with the help of the 
formula
(4.4.1) (q 1;q-1)

N
(_1)N q-N(N*)/k [q]

N '

the polynomial g^(x,r,s,-q) as defined in (4.2.7), whose inverse 
series relation as given below follows from (4.3.2) under the 
same substitutions.

(4.4.2) x n
n

__ (r-s)k(k-i )/2s r c , ,, c+Rk .Sn sn-k q Iq 3rn (1“q 5E (-D n K rn
|- g ^JT\ JL —A ^ sn-k

v-n ' r«ci = , R-l R-l.*-° Cq 3rn-sn+k+l (q ;q }

where, as before, R*r/s («*s) (cf.(4.1.3))

. g^Cx.r.sjq).

The alternative forms of g^(x,r.s;q) and its inverse
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relation (4.4.2) may be obtained by transforming the relations 

(4.3.1) and (4.3.2) of theorem-3, appropriately.
In fact, on making use of the formulas (4.4.1),

. - A q, fm1 , , . _ , . ,N N(N-2a+i)/2(4.4.3) Q •

and
r -N. , ism m(m-2N-l )/2(4.4.4) [q ]m [q]N_m = (-1) q Cq]N

in theorem-3 and then using the substitutions bs«s-r, p=-c. and 
★

Joo * n
of (4.3,1) and (4.3.2)

1 tF =[q ] F , one arrives at the following alternative formsn oo n

(4.4.5)-
n

G

[n/s]
E
k=0

q(r-s)k "C'-’Vsk I<J c+n,•*rk-sk

sn (r-s)nk . -sn .(% :% )k (l-qC+Rk)
n k=0 Kj^rn-en+l <Wk lW,

R—1wherein q^ « q , R * r/s.
VIn the pair (4.4.5). putting G^^d^x one gets yet another

alternative versions of gf(x.r.s;q) and its inverse in the forms
n

(4.4.6)-

c. V- «, ^In£Sl„<r-s)k . -n(R-l) R-l. r c+n. , k
gn(x,r.s;q)-Jo q (q ;q )sk(q ]rk_sk <5k x ,

, -sn(R-l) R-l. ,, c+Rk, c. .n Sn fr-*lnk (q ;<* (1_9 } 9vCx.r,S;q)
n “ q fnc+k. : .R-l, R-l. .R-l, R-l.* v IQ ’rn-sn+l ^ *q *9 ).sn

It 1. to be mentioned here that the polynomial g“(x.r.o,q) 
given by (4.2.7) when considered in the form 
(R-l)n g^(x(R-l) 8,r,s;q), readily approches, as q —► 1, to the
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'ordinary' polynomial g^(x,r,s) given in (4.1.2). However, the 

limits of the expressions (4.3.1) and (4.3.2) of theorem-3, when 
q-4- 1, may be examined by converting them into following forms
with the aid of the basic Gamma function : 

t 9 •>
r (x) = —— (l-q) (|q| <1)q [q 3J0D

(quoted in section - 1.4).

(4.4.7)

r . . bsk(sK-2n+i )/2 -p+n-bsk[n/03 n_ak q [q] ^d-q)
F„ - E (-D ----------------- -------------- G,_,n kto r (l+p-n+bsk) tqb;qb)n-sk

F, .
sn qbk(*-l)/2 i-qP+bk"k r (1+p+bsn-k)

G =s r> _________ ___________ _9-----------n v-n 1 _P+hsn-k . , _,~p~bsn+k kk-0 (q ;q )sn_k 1-Q 193^ (l-q)

A more convenient form of this pair may be obtained by 
replacing G^ by

rg(l+p+bsk-sk) Gk
[q]„a-qrp-bSk b8k '

V —Vand, by (l-q) b F^. In this case, the pair (4.4.7) yields 
the corresponding ordinary forms mentioned in (4.1.1), as q-*- 1. 
Similarly, it can be shown that the equation (4.3.3) when q—► 1.
gives the corresponding equation appearing in (4.1.1).

Now in order to illustrate a basic analogue of the extended 
Jacobi polynomial (4.1.4), put

[ai3k laih
c^]k .. lftslk [qlk

in (4.4.6). If r-s(=£) denotes a positive integer, then (4.4.6)
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gives rise to the following inverse pair of a basic extended 
Jacobi polynomial which is denoted here by

,(c)K.i.s 1*1.... <v ....Vxiq3

(4.4.8) •

?(c)
n,l,e [ocl ■ • *ai ;/5l

[n/s]
.ft. :x|q] = E q J k=0

, II .^ \sk

r c+n.[q 1
Cal3k tai3k

[a. ]*• a ti &

Ift.K1 Tl • t/?,]- [qlJ TI 71

snE q
k=0

£k

ink

Wjh td3k

-sn ^ c+Lk+k.(q2 ;<323k *1“q '
_____ . -'0 W 'W*

F^c3 (a*k.*,ol 1. . . ,ai ;ft1.... ft ^ :xj s)

^ /gwherein q^ = q ' , and L * t/s n

It can be seen that the extended polynomials of Hahn, Racah, 
and of Wilson ((4.1.7). (4.1.9), (4.1.11)) in the light of the 
basic pair (4.4.5), admit q-extensions in the forms as deduced 
below.

In the first place put c = *4*9+1, and

G,
r -X-[q h

[«q]k [q N]k [q]k

in (4.4.5). Then with. r-s=£. one finds a basic analogue of the 
polynomial Q . (x,-«./5,N) in the form :

** * 4 0 S

[n/s](4.4.9) Qn s(x;a,f3.N|q) - £ q
' ' k=0

-n n+1.
tk (q, ;q23sk 3/v fq 3/k

[«q]k [q NJk Cq]k
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whose inverse relation may be expressed by

(4.4.10)
[q X], „^nk , -sn „ .sn q (q2 ;q2 )k (l-o/?q )

[q'N]nCa,]ntq]„ *-0 [<W‘+1]intl IvV* <VVsn

where % - qi/s. end L - i/s. 

Also, when c=oc+/?+l, and

•Qk.^.s <x;a.0.N|q)

G,
[q X]k [y«5qX+13k 

[aq]K t/»q]k l>q]k tq3k

the pair (4.4.5) provides a basic analogue of the extended Racah 
polynomial which is representable in the form :

[n/s] q*k «JLn.-q-)Hk to/5qn+13 ..
(4.4.11) R (M(x);a,/3,r,«5|q) - £ ------ ---- =-£*--------- — *

' k=0 [aq3k C/3«5q]k [yq3k £qlk
• £q'X3k 0<5qX+\

along with its inverse series relation:

(4.4.12)
[q~X3n tr«5qX+13n

[aq3n[(?6q3n[yq)nfq3n
sn- E q

k=0
/nk (q;8n = q,)k

[cq9qlt+1]/n+1 (qi;q2)k

Rk t fl(M(x) ;a,/3,r,6|q)
(q_ ; q_ ) __ 

2 2 snin which m(x)= q x4y6qx+1, q^ =q^s, and L*//s. 

Similarly, with *c* * a+b+c+d-1, and 
[aeidlk £ae"i03k

tat»3k £ac3k [ad3k [q3k '

100



the relation in (4.4.5) results in an inverse pair of basic
analogue of P . (x) which may be expressed as

!1 m%e g 6

pn^>s(x;a.b.c,d|q) [n/s] (q2*n ;q2 )gk [abcdq11-1 3^

[ab] [ac] [ad] Jn l Jn L Jn k=0 [ab]k [ac]k [ad]k [q)R
9.

'k Jk
£k r i0. r -i0, q [ae ]v [ae ]v.

(4.4.13) «
, . , i0, , -id.]n[°° ]n
tq]n t.bln [«)„ I»d]n

. -Bn ... , . Lk+k-1,sn (qj[ jq^ )k(l-abcdq )
k=0 [obcdqk_1]/n+1[ab]k[ac])t

A* V<.et*!°-b-c-dl,1) 
(ad]k (q2:q2)k

wherein x * cose, and as usual q = qb ,L = 1/b.

It may be observed that the polynomials deduced above in 
(4.4.9), (4.4.11) and in (4.4.13). besides providing basic 
analogues of the corresponding ordinary polynomials, also provide 
extensions of polynomials of basic Hahn, basic Racah, and of 
Asky-WiIson (cf.(1.5.9),(1.5.10).(1.5.11)).

4.5 q-EXTENSIONS OF. CERTAIN INVERSE RELATIONS
It is interesting to remark here that theorem-3 and a few of 

its alternative forms also lead to the extensions of the inverse 
series relations given in table-20. With a view to obtain these 
extensions, it may be observed that on making use of the formula
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(4.5.1) -1 -1 ,N -N(N-l)/2(q ; q )N = (-i> q CqlN .

and by replacing Gk by [qlp+bsk_skGk /tq^* the relations (4.3.1 
and (4.3.2) (i.e. theorem-3) get transformed to the forms

(4.5.2) -

F = £ ^ q_bsk (sk-i) /z [q3p+bsk-sk
n k=0 [q] -b -b p+bsk-n tq ;q ^n-sk

sn , . sn+k -bk(k-2sn+i )/2 G = £ (-1) q
k=0

a-qp+bX-k)
• r , . -b -b klqJp+bsn-sn lq *q ^sn-k

This pair may also be put in the following alternative forms

(4.5.3) -

n
£n^Sl_-bsk(sk-*)/2 (1{*P Jtq]p+bsk-sk „
E q —--------- --E.~b.:— 6k*
k=0 [qIp+bsk-n+l(q ;q >«-n-sk

sn
n

G * £ (_i)sn+k q~bk(k-«sn+i )/a
k=0

[q] p+bsn-k
tq] p+bsn-sn

, -b -b.(q ;q >Bn_k

(4.5.4) •

n
En/®3 bsk(sk-*)/2 £q3-p+n-bsk-l

L 'i

k=0 ‘ ■Iq3_p_bSk+sk-l (q ;q 3n-sk

snG_n
j, ^ ^jSn+k qbk(k-2sn+t)/2 
k=0

,,_ -p-bk+k. . .q ^ [q3-p-bsn+sn-l „ 
fri, , b b. *k [q3-p-bsn+k (q *q 3sn-k

and
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(4.5.5) -

n

Gn "

tn^s3jbsk(sk-4)/z (1-q P ^ tq3-p+n-bsk-l 
q h ‘k=0

G. ,. , . b b . uktq3-p-bSk+sk {q ;q }n-8k

sn_ , ,.sn+k bk(k-s>sn+* )/2E (“D Qk=0
r q i fiqJ-p~bsn+sn k

“■1-p-b.n+k «>b^b>sn-k

The form £4.5.3) is obtained from (4.5.2) by replacing first 
p by p+1, and then replacing Fr by Fr /l-qp+1>n-n+1, and Gn by 
Gn /l-qp+Psn sn+1. Whereas to obtain (4.5.4), the base q in 

(4.5.2) is inverted first and then, G^ is replaced by 
Gk ^q P bsk+sJc *;q 1)aj. If in (4.5.4) Fn is replaced by 
Fn /1-q P bn+n^ then it gets transformed to (4.5.5).

It is obvious that the inverse pair (4.5.3), (with b=m) 
provides an extension of the basic Gould class (2) :

(4.5.6) h

n (l-o p+mn_n+1)ralF(n) - E ................P^~k.. g(k),
k=0

n

[q] . (q~m ; qm ) ,iqjp+nik-miiq ' H 'n-k

Gtnj _ j, (_1}n+k q-mk(k-2n+i )/2
k=0

^W-k F(kl
r •. , -m -m,^q3p+mn-n *q *q 3n-k

of Table-15 (Ch.3). Also, when b is replaced by c+1, the pair 
(4.5.3) provides extension of the basic Legendre-Chebyshev class
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(7) of Table-19 (Ch.3), i.e.

(4.5.7) ■

Pfnl . " -Cc«,*<*-<>/* ptcn") t«W »<»
{ ’ V n Q r i ,-C-l -C-l v

k“° [qW+k-n+l(q ;q 5

G(n) - E (-Dn+k viC*)k(k~*n*)/2

n-k

k=0
[qi , , F(k>tMJp+cn+n-k

r i , -c-l -c-l.£q3p+cn (q ;q }n-k

Similarly, the extensions of other pairs of Table-20 may be 
obtained. A complete list of these extensions is given in the 
following table.
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