CHAPTER-4

INVERSE SERIES RELATIONS AND EXTENSIONS OF
CERTAIN POLYNOMIALS

4.1 EXTENSIONS OF CERTAIN POLYNOMIALS AND RIORDAN'S INVERSE
RELATIONS
The inversion formula (1.2.35) quoted in chapter-1, namely,
¢ {n/s]
Fn) = § (P8R £
k=0
if, and only if
sn -
(4.1.1) 4 - p+gk-k p+gsn—k
f(n) REO prgsn—k ¢ sn-k ) F(k),
and
prgk-k (P*qn}SF(k)-o n # ms,
ptgn—k
k=0
(m=1,2,3,...) was proved by Singhal and S.Kumari, with the help
of which they obtained the inverse relation of - the
polynomial
[n/s] (c+rk)
c - n-—sk k
(4.1.2) g‘n(x.r.s) = g W Yk X
k=0
in the form
n_ 5" ()8 ¥ihrorkse)). o
(4.1.3) ¥, X =L o) (sn=K) T gy (x.r.s).
) k=0 rn-sn+k+1 ’
Here. a particular case of (4.1.2) viz. the extended Jacoba
polynomial

( H.M.Srivastava [5])
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(c) . . -
{4.1.4) Fn,t.s {«1,...,a ,ﬁl ..... B :x]

) {nés} (~—n)sk (°+“)zk (al)k...(ap)k Q‘
k=0 (ﬁl)k ...(rsq)k k!

is worth mentioning, which occurs when r-s (=f{) is & positive

integer and,

(x,) ...
. (_1+8K 1'k p'k
S S A By B

The inverse series relation of this polynomial is easily

obtainable in the form :

{sn)! (ocl)n ...(ap)n n sn (-sn)k (c+k+{Lk/s))

%X =
nt By - By k=0 (c+k)y g K!

(4.1.5)

F(c)

k.(.s{al' L .v_ap:ﬁln . = .,ﬁq:X],

by making use of the substitutions mentioned above, in the
relation (4.1.3).

This explicit representation of the extended Jacobi
polynomial suggests that an analogous “extension could
also be carried out for the Hahn polynomial Qn(x:a.ﬁ,N), the
Racah polynomial Rn(x(x+7+6+1J; o,f3,,6), and for the Wilson
polynomial Pn(x?) (cited in (1.1.8.9,10)).

In fact, it is quite interesting to see that the pair of

inverse relations (4.1.1) when written in an alternative form :
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; n/s]
F(n) = % (~n)sk (c+n)£k f(k)
k=0

if, and only if
sn (-~sn)k (c+k+(Lk/8))

(4.1.6) 1 f(n) = ¢ F(k)
k=0 (c+k)£n+1 (sn)! k!

and
n (~-n)k (c+k+(Lk/s)) )
r F(k) = 0, n* s,28,3s,...
-~ k=0 (c+k)tn+1 k!
({=r-1)
enables one to carry out the extensions of the above

mentioned polynomials. The proposed extensions as obtained below
by means of the pair (4.1.6), are denoted respectively by

Q

2

n’z's(x:a.B.N). Rn"'s(x(xfy+6+1);u,ﬁ,r,é), and Pn’t's(x ).

In order to obtain an extended fo}m of the Hahn polynomial,

gset ¢ = 1l+x#3, and

(—x)
£(k) = X
(a+1)k (--N)k k!
in (4.1.6). In this case, one gets the following explicit

representation of extended Hahn polynomial:-

(n/s] (--n)Sk (o|:+f3+n+1}£k
(4.1.7) Q , (x;x,3,N) = [ (%)
T k=0 (cx+1)k (—N)k k!

The inverse series relation of this follows from the pair

(4.1.6) in the form :

{(sn)! (-—x)n sn (~-sn)k {a+3+1+k+(Zk/S))

(4.1.8) =3 Qp ¢ g(xic.B.N).
(“+1)R(—N)“ n! k=0 (“+ﬁ+k+1)tn+1 k!
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When ¢ = «+3+1, and

(%), (X+y+S5+1)
£(k) = L X ,
H
(oc+1)k (ﬁ+é+1)k (;v+1)k k!

then the pair (4.1.6) provides an extension of the Racah

polynomial in the form :

(4.1.9) Rn,t,s (X (xX+y+5+1) ;0,37 .6)

[n/s] (-n)_y (etf3+n+l) ,y (=X)y (x4 +6+1)

X
k=0 (o:+1)k ((3+6+1)k (y+1)k ki

along with its inverse relation

(—x)n (x+y+6+1}n {sn)!

(4.1.10)
(oc+1)n ({3+6+1)n (y+1)n n!
sn x43+k+1+(2Zk/8)
= ¥ (-sn) (X (X+yr+6+41) .37 .6).
X=0 X (c4B3+k+1), .. k! %.e.8

Similarly an extended version of the Wilson polynomial
together with its inverse series relation follow from (4.1.6)
with 'c'= a+b+c+d+n-1, and

(a+ix)_ (a-ix)_ (sn)!
£(k) = L n

(a+b)n (a+c)n (a+d)n n!

which are as given Dbelow.
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2

( P (x7) (n/s} (-n) (atbtctd+n-1)

n,t,s 5 sk
(a+b)n(a+c)n(a+d)n k=0 (a+b)k (a+c)k (a+d)k k!

(4.1.11) A .(a+ix)k(a—ix)k,

(a+ix)n(a~ix)n(sn)! sn (~sn)k(a+b+c+d+k~1+{£k/s)).

{ (a+b)n(a+c)n(a+d)n k=0 (a+b+c+d+kf—1)m+1 (afb&

2
pk.i,s(x )

(a+c)k (a+d)k k!

Besides yielding the aforementioned extended polynomials,
the inverse pair (4.1.1) also provides an effective tocl for
carrying out the extensions of certain inverse series relations
belonging to the Riordan's classification. As a matter of fact,
the Gould classes (1) and (2) (Table-2), the simpler Legendre
classes (1) and (2) (Table-5) and, the Legendre-Chebyshev
classes (1), (3), (5), and (7) (Table-6), admit extensions in
the light of the formula (4.1.1) and its several alternative
forms which are deduced below.

First, replacing F(n), £f(n), and p by F(n)/p+an-n+1,

f{n)/p+gsn-sn+l, and p+l respectively., in (4.1.1), one gets

[ F(n) =[n{‘.53 (cqyn-sk PP (Praskosky £,
k=0 p+gsk-n+1 i
(4.1.12)4
sn
£y = £ ¢ PHIERK G pex.
| X=0

Next, with the aid of the formula

(T = (-1 Xl
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On choosing
series relations,
above mentioned

following table.

.and with p replaced by -p-1. the inverse relations in (4.1.1)
assume the forms:
( [n/s] _
F(n) = ¢ ¢ PP79sky (i,
n-sk
k=0
(4.1.13) 4
sn sn—-k p-qgk+k+1 _
f(n) = ¥ (-1) —— (PTIEN Fx) .
L k=0 p—-gsn+k+1
In . this, vreplacing F(n) by F(n)/p-qnin+l, f{n) by
f(n)/p-gsn+sn+l, and p by p-1, one finds the pair:
[n/s1 p-qn+n -
F(n) = % ¢ PTIERy f(x).
k=0 p—-gsk+n
(4.1.14) sn
f(n) = T (-1)5"7k ¢ pmasnrst y Fex).
k=0

the parameter q appropriately in these inverse

one arrives at the extended versions of the

classes in the forms which are given in the
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Extensions of Riordan's inverse relations

Table-20
[n/s8] - 2n sn—-k
F(n) = I A f(k ) ; £f(n) =% (-1) B f(k)
k=0 n.k k=0 n,xk
Citation q A B Extension of
n,k n.k class (No.)as
in Tables-
. 2,5,6
p+gsk—sk p+gk-k p+gsn~k Gould class(1)
(4.1.1) q ( n-sk ) p+gsn-k ¢ sn~k ) Table-2
(4 12) p+gn-n+1l (p+qsk—sk) (p+qsn~k) Gould class(2)
-t a pFgsk-n+1° n-sk sn~k Table-2
_ p+n+sk p+2k+1 p+2sn simpler Legendre
(4.1.13)} -1 Ch-sk ) prantk+1il sn-k’ Class (1)
Table-5
- p+2n p+n+sk p+2sn simpler Legendre
(4.1.14) 1 p+n+sk ( n-sk ) ( sn~k) Class (2)
Table-5
_ p+en pin+sck-sk-1 p+scn Legendre—
(4.1.14)f-c+1 pt+sck ( n-sk ) (sn~k ) Chebyshev
Class (1)
Table-6
p+sck p+ck p+scn+sn-k—-1 Legendre—
(4.1.1) e+l ( n—sk} p+scn ( sn—-k ) Chebyshev
class (3)
Table-6
_ ptn+sck-sk p+ck+1l p+scn Legendre-—
(4.1.13)f-c+l ( n~-sk ) p+scn-sn+k+1 ( sn—k) Chebyshev
class (95)
Table-6
Legendre~
p+en+l p+sck p+scn+sn-k Chebyshev
(4.1.12)) c+l p-n+sck+sk+l n-sk) ( sn—k ) Class (7)
Table-6
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The result appearing above in the Aforms of the
generalizations of various polynomials and the inverse series
relations, can also be viewed as the limiting cases‘ of their
corresponding basic analogues (also called g-extensiions), which
put them intoc further extended forms. In fact, an attempt made
in obtaining the proposed basic analogues ied to certain
interesting and seemingly new results which are incorporated in

the following sections.

4.2 A BASIC INVERSE RELATION
In this section, a basic analogue of the polynomial
gﬁ(x.r.s) will be defined first whose inverse series will be

obtained by proving a more general pair of inverse series

relation.
Let,
sk(sk-z2n+1) /2 -c+sk-rk-n+l
c [n/s] n—-sk [a Im )
(4.2.1) g (x,r.s|q)= ¥ (-1) —
n k=0 [ c rk+1] [q]
- q w0 Un-sx
X
.6k x

which may be considered to define a basic analogue of the
explicit representation (4.1.2) of the pplynomial gg(x,r.s).

Then in the light of the first relation occuring in (4.1.1),
it is not difficult to see that the polynomial defined above is

contained in a more general expression given by

pt+bsk-n+l
—£n/s] n-sk sk(sk-z2n+i1)/2 [q }w G(k)
k=0 [qPTPRETSETY rq)
) n-sk

86



Thus in order to obtain an inverse relation of the
polynomial (4.2.1) it would be worthwhile to prove an inverse
relation corresponding to the above general expression. In fact,
having guided by the related work of Singhal and S.Kumari [2]. a
basic inverse relation is proved here in the form of the

following relations.
ptbsk—n+1l

[n/s] [a ] G(k)
= _41y0—8k sk(sk—zn+1}/z ©
(2.2 )= k}EO b ? o S
) d ol n-sk
implies
ptbsn-sn
o lq "~ 1. F(x)
(4.2.3) G(n) = ¢ K (k+1) /2 ©
k=0 [ p+bsn—k] [q]
d ey q sn-k

where the positive integer bs = s.

The proof, as given below, is based on the technigue used
by Carlitz [3].

lLet,
sn
T qk(k 1)/2 [q ] G(k) _

= $
k=0 Fhsn— :
(aP™ ) tal

p+bsn—-sn

Then on making use of the relation (4.2.2), one gets

ptbsn—-s
BN (k) /2 (q T, [k/s] kg3
$ = k§0 q : &nbsn—k L D
= [ I lalgpy =0
p+bsij-k+1 .
qu(sj—2k+1)/z [q 1» G(3)
. pt+bs j—-s3j+1
[q 1 plal o
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p+bsn-sn . et
_n g Jo G(3) sg ®) 1)k gkik-1)/z [ sn-sj).
=L [(PTPsI 531 d k

J=0
p+bsj~sj~k+1]

{ (a o
{qp+bsn»53~k]

w
If bs is a positive integer then the expression in braces
assumes its equivalent series form
bsn-bs j~-1
-mK
X A g

m=0 m

with which one further gets

n-1 [qP*PeNTEN G(3) bsn-bs j-1
$ =6(n) + % rptp— T A .
- p+bs j-sj+1 - m
Jj=0 (g lo (q3sn~sj m=0
sn-sij —t § -
. T (~1)k qk(k—a)/& [SnkSJ} q mk
k=0
Now on making an appeal to the formula (Carlitz [3])
'n n
k -
E "Ry K =g aexd®h,
k=0 k=1
the above expression gets transformed to
n-1 [qP*PeRTINy G(j)  bsn-bsj-1
¢ =G(n) + ¢ e T A
Ao ptbsj-sj+l - m
j=0 Iq lo [algn s m=0
an-sj k-
n C1-g ™k
me=
- { P if j*n
G6(n}, if j=n ,
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provided bs £ s; thus (4.2.2) implies (4.2.3).

Since the relation (4.2.2), under the substitutions bs=s-r,
p=-c¢, and G(k)= ék xk readily yields the basic polynomial
gg(x.r,slq), one finds by employing the same substitutions in
(4.2.3), its inverse relation in the form:

qk(k~1)/2 ~C-rn

sn {q 1
n o c
(4.2.4) 6 x =k§0 CotenTnk;  To) g, (x,r.slq).
9 o ‘94 gn-x

A worth mentioning particular case of the basic polynomial
(4.2.1) is a basic analogue of the Laguerre polynomial given by

{M.A.XKhan [1]):

+1
- n qk(k—zn /2 [xq] . .
(4.2.5) an (x) = ¢ (-x)
k=0 [xql, [ql _, [ql,
to which it would reduce when c=1+x, r=g=1, and
ék=(-1)k q_k(k.2a+‘)/z{[q}k}-’. An inverse relation of this Dbasic

Laguerre polynomial follows from (4.2.4) under the same

substitutione, which is as given below :

cz6) P n (DX gFF2 L eqp ()
(4.2.6) x = [q] kEO foca] - qtk (x).
k n-k

In view of the inverse series relations proved in the form
of theorem-2 (chapter-3), it is quite natural tc examine whether
the converse of the relations (4.2.2) and (4.2.3) holde true. 1In
fact, an attempt made in this direction led us to consider a

slight variant of the defining relation (4.2.1) in the form :
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. [n/s] B 3 [g 1 . é
(4.2.7) gg(x,r,s;q) = ¥ »q(r s)k(sk-zn+1}/2 n-sk "k xk,
k=0 ‘ R-1_ _R-1
{q 4 7)Y nesk

where R = r/s, r # s.

In order to obtain an inverse series relation of the basic
polynomial (4.2.7), a more general inversion formula will be
proved ; wherein the converse of the series relations would also

hold. This forms the subject matter of section-4.3.

4.3 A GENERAL PAIR OF INVERSE SERIES RELATIONS
The proposed general inverse series relations which will be

proved in this section, is stated below as

THEOREM -3, If b= 0, and 8 = 2’3‘4'..-‘ then
+bgk-n+1
[n/s] _ [qp ]
(4.3.1) F_= ¢ (-1)" sk qbsk(sk-zn+s)/2 © g
n K=o P X
‘ n-gk
if and only if
__p+bk-k
_ 5 pk(k-)2 (1@ ) F,
(4.3.2) G_ =% q
N y=o {qp+bsn~k} (qb-qb)
0 : sn-k
and
) p+bk—k
n (1-q ) F
(4.3.3) P qbk(k‘i)/z p+l;n-k 5 kb - 0. n = ms,
k=0 tq lp (@ )4
m = 102'3'~-.

For s=1, and b # 0, the following relations hold true.
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+bk-n+
[qp bk-n+1

- - ]
(4.3.4) f_= Y (._l)ﬂkqbk(k‘-znﬂ)/z © .
" x=0 P.ab) X
) 99 Jpx
if and only if
_ . ptbk-k
B pk(k-1)ge (279 ) £
(4.3.5) g = L 4q e S
k=0 (a lo (@:@) 4

The proof of theorem-3 as given below, is Dbased on the
methods due to Gould [4], and Singhal and S.Kumari [4]. The proof
also makes use of a particular case of the Carlitz's inverse
relations (1.5.6), viz. the pair
¢ sn—-sj

f(sn-8j) = Y (-1)
k=0

k bk(k-z2sn+2g8jt1)/2 . sn-sj

+bs j-sn+bk+1
I p+be j—-sn+bk ] ().
(4.3.6) ¢

sn—sj
g(sn-s8j) = I

E (-l)k clbk(k—i)/z [an-:J 1,

1_qp+bsj-sj+bk+k
f(Xx)

p+bsn-sj-k
lq lo

which follows readily from (1.5.6) under the substitutions aj=1,

p+bsj-sj-i+l

b.= —-q , and with A and n replaced by b and sn-sj,

i
respectively.

In order to prove the first part, consider the series

p+bk-k
) Fk

8N pk(k-1)sz (174
L aq 5%
]m (g7: g)

k=0 [qp+ban—k

= w , (say).

sn-X

Then on substituting the relation (4.3.1) in this, one gets
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sn [k/s8] ad . . .
w= ¥ P> (_1)k 8j qbk(k~2s;~1)/§ + bej(sj+tl) /2

k=0 j=0
- +bs j~-k+1
(1“qp+bk k) [qp bsj ]m ;
p+bsn-k b b b b ’
(q ]oo (q:q )sn—k (q :q )k~sj
which in view of an easily establishable relation
sn  [k/s] n sn-sj
(4.3.7) ) pX A(k,j) = b b A(k+s3, j).
k=0 j=0 j=0 k=0
assumes the form :
n-1 G. sn-sj e
(4.3.8) @ = G_+ [ J T ¥ qf(k"’/’ it I

j=0 ‘% *9In-j k=0

L PPk +bs j-k-8] :
q [qP*PBI-k-8i+1,

*

p+bsn-k-sj] )
[+ o]

[q

wherein q,= qb (b=Q).

Now, in order to show that (4.3.1) implies (4.3.2), it
suffices to show that the inner series in (4.3.8) is equal to
(% 1.

sn—8j
In fact, in (4.3.8), replacing [qp+b83—k~83+1] by f(k),

w

and denoting the inner series by g(sn-s8j), one gets

; p+bk~k+bsj-8j
sn—gj s (1-q 3y
(4.3.9) g(en-8j) = ¢ (-1¥ qf(k-i)/z [.-:snkﬁa;;;‘b

k=0

{qp+bsn~k~sj]m

f(k);

whose inverse companion follow from (4.3.6) in the form :
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an-gj . .
(4.3.10) f(sn-sj) = £ (-1)¥ qf(k-zsnﬂsjﬂ)/z [snksglb
k=0

{qp+bk+bsj~sn+1]m g(x).

In this last (inverse) relation, setting
_r0

one finds

f(k) = Eqp+bsj’k~83+l}m ]

With these f(k) and g(k), (4.3.9) yields the orthogonality

relation
R p+bk+bsj~k~8j
sn-gj . (1-q )
X k(k-1)/2 . 8n-s8j
(4.3.11) r (-1)" gq [ ] o
k=0 1 k b [qp+bsn k sjjm
pt+bs j~k-sj+l _ 0
-lq ]m B [sn—sj I,

by means of which, the expression in (4.3.8) gets reduced to

n-1 G. 0
w=6+ g —I—0

3=0 (qz;qs)n—-j

)| '

sn-sj
= G _.
n

Thus, (4.3.1) implies (4.3.2).

In order to show that (4.3.1) also implies (4.3.3), put

p+hk-5
n (1-q
(4.3.12) u(n) = ¢ V2 P -
R k=0 Uf ]qj (qtgq’.)n__k
b

where, as before, q = q .

Then in view of the relation (4.3.1), this can be expressed

.as
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. [n/s] G, n-sj s
(4.3.13) p(n) = § —3I— F (-1) S

=0 (q,:q,); k=0

k qf(k~1)/z

+bsj-k-8j+1
[qp bsj 8] ]m
[qp+bsj~k-sj~bn]

o
Now, following the method employed in obtaining the
orthogonality relation (4.3.11), it can be shown that the inner

series in (4.3.13) equals to

0
n—-sj

[
as a result of which (4.3.13) gets reduced to

1.

[n/s] G .
j=0 (qisqi)j
If n/s is not an integer i.e. n*ms, m = 1,2,3,..., then the

right hand member of the last expression given above vanishes and
thus, (4.3.1) implies (4.3.3): which completes the proof of the
first part.

for proving the converse part, assume that the relations

(4.3.2) and (4.3.3) viz.

_.p+bk-k
G = ;P dbk(k—i)/é (1-q ) F
n k=0 [ p+bsn—k] ( b b) k °
q w 99 Jgnx
and
+bk—k
n 1~qp
bk(k—t) /2 -
L aq pbn-K 5 b Fy = 0. n*ms,
k=0 (q T tam:am) oy

where m = 1,2,3,..., hold true.
Now, in view of (4.3.12) and (4.3.3) one readily gets

(4.3.14) #i{n)=0, n~sm, .
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and also, by comparing (4.3.12) with (4.3.2), one finds a useful

relation:
(4.3.15) pisn) = Gn‘
Since, the inversion pair (4.3.6) with j=0 and s=1, reduces

to the result (with g(n) = u(n), and f(n) = Fn)

< _ p+bk"
P k(x-ye 19 g Fy
H(n) L q &H-bn—k
k=0 [ ]m (q1;q1)n_k
(4.3.16) { implies
p+bk-n+l
n [g ]
Fn = ¥ (~1)k q}(k-znﬂ)/z © p(k),
\ k=0 (q.:9.),_x
it follows from (4.3.14) and (4.3.15) that
- an (1~qp+bk k) F
_ k(k-1)/2 k
H(sn) = L 4q, qp+bsn k
k=0 . { 1o (9,:9,) 50
(4.3.17) ¢ implies
+bsk-n+1
[n/s] _ tqf ]
Fn = ¥ (_1)n sk qfk(sk—zn+1)/z ® p(sk),
¥ k=0 {qk:qs)n—sk
where p(sn) = Gn'

Thus, the relation (4.3.2) with a(n)=0 (nms), implies the
relation (4.3.1), which proves the converse part, and hence the

theorem. .
The pair of inverse relations (4.3.4) and (4.3.5) are
contained in the pair (4.3.6) (with j=0 and s=1), and therefore,

its proof is omitted here.
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4.4 PARTICULAR CASES : POLYNOMIALS

Amongst the several intereatiﬁg particular cases of
theorem—3, -the basic analogues of the polynomial gg(x.r.s) and
its special case viz. the extended Jacobi polynomial (see(4.1.4))
will be obtained along with their inverse series relations. As
for the other consequences of theorem-3, the basic analogues of

the extended polynomials Q (%;x,3,.N), R (x(x4+y+6+1) ;

n,f.s, n.t.s

x.,3,7.5), and P (X*) will be obtained together with the

n,i,s
inverse series representations of each of them. The basic

analogues of these extended polynomials will be denocted by

2
Q (x;,B,N]qQ). R, (xX(xtr+6+1):x.B.7.6[{q), and P, (X'|q)

n{,s
respectively.

Now in order to get the basic polynomial gg(x.r,s;q) defined
by (4.2.7), put bs=s-r, p=-c, and Gk=6kxk in the relation (4.3.1)
of theorem-3. In this case, one obtains with the help of the
formula

(4.4.1) (q'l:q"l)N = (- g NN/ [aly.

the polynomial gg(x.r,s:q) as defined in (4.2.7), whose inverse
series relation as given below follows from (4.3.2) under the

same substitutions.

(r-s)k(k-1) /28 _ Rk
(4.4.2) & xn = gn(_l)sn"k q {‘f }rn (1 & )
-2, n k=0 ‘[ C] ( R"’l_ R—l)
9 Jrn-sn+k+1 q iq sn-k
c
. gk(x,r.s;q),

where, as before, R=r/s (r»8) {(cf.(4.1.3)).

The alternative forms of “gﬁ(x,r.s;q) and its inverse
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L

relation (4.4.2) may be obtained by transforming the relations
{(4.3.1) and (4.3.2) of theorem-3, apéropriately.
In fact, on making use of the formulas (4.4.1),

(4.4.3) {a]_N [q/a]N = (__1)N qN(N«zaﬂ)/z

and

(4.4.4) [q 1 [aly = (-1 MPENZ gy

in theorem—-3 and then using the substitutions bs=s-r, p=-c, and

— *
Fn=[q ¢ n+11w Fn ., one arrives at the following alternative forms

of (4.3.1) and (4.3.2).

F; ‘{:é:} a7 () g 1a M, oy 6y
(4.4.5)1
Gn - ;n q(r~s)nk (qii:"qz)k (1_qc+Rk) F}: .
L =0 ta” " Jpn-gn+1 (%i%)x (9% )4,

wherein q, = 1, R =rss.

In the pair (4.4.5), putting Gk=6kxk one gets yet another

. : C - < .
alternative versions of gn(x,r.a;q) and its inverse in the forms

k

c+n
X .

[ (n/8l ,__
gy (x,r,5:9)= L q{¥elk

k=0

-n(R-1 -1
a n{R-1) qR

.
»

( )sk[q ]rk~sk 6k

(4.4.6)4

-sn(R-1) _R-1 c+RK

sn @ )y (1= gr(x.r.s:q)

(q
n_ (r-s)nk
6. x=L 4

: +
~ k=0 (a® k]rn—sm-

R-T, R-1, R-1 R-1

an

It is to be mentioned here that the polynomial gg(x,r,s;q)

given by {(4.2.7) when congidered in the form

-]

(R-1)" g:(x(R~1)i .r.8;q). readily approches, as q— 1, to the
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'ordinary' polynomial gﬁ(x,r,s) givenr in (4.1.2). However. the
limits of the expressions (4.3.1) and (4.3.2) of theorem-3, when
q~+ 1, may be examined by converting them into following forms

with the aid of the basic Gamma function

[q] -

ro(x) = ——529 (1-q)?
(a71,

x (Ja}<1)

{quoted in section - 1.4).

. [n/s] s bsk(Bk—2n+1 ) /2 [ql m(l—q)-p+n—b8k

F. .= L (-1) 56 Gy -

k=0 rq(1+p—n+bsk) (a :q )n—sk
(4.4.7)4
sn qbk(km1 )/z 1—qp+bk—k rq( l1+p+bsn-k)
G = z F .
+bsn~ -p~bsn+tk "k

| " k=0 (qPidP 1T el () TPTRRR

o
A more convenient form of this pair may be obtained by

replacing Gk by

Fq(l+p+bsk—sk) G

X
{q]m(l_q)~p-bsk bsk
and. F, by (1-@)* b™® F_. In this case, the pair (4.4.7) vyields

the corresponding ordinary forms mentioned in (4.1.1), as g— 1.
Similarly, it can be shown that the equation (4.3.3) when g-» 1,
gives the corresponding equation appearing in (4.1.1).

Now in order to illustrate a basic analogue of the. extended

Jacobi polynomial (4.1.4), put

et B
1By - I8y lal

6k‘

in (4.4.6). If r-s(=f) denotes a positive integer, then (4.4.6)
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pair of a basic extended

gives rise to the following inverse

Jacobi polynomial which is denoted here by
Fle) | o ;i B 8. :x|q]
nt,s' i i

{n/s] Lk .t

[ o(c) _ . :
szj[ﬁ,”.ﬂiﬁlu-u%:ﬂq]-kﬁ)q (q, :q, )y
X
c+n [allk e [ai]k x
By --- [ﬁj]k taly
(4.4.8) A
3] c+Lk+k
TS R I I ) gn Sk (q, :q,), (1-g )
- c+k .
B - [ﬁj]h {q],31 k=0 {q Yen+1 (q,:q,)y
{ Fi¢) (a o, B B.:x|8)
Lk, 8,801, T e

( q, ;qa)sn

wherein q, = q‘ls ., and L = ¢/

It can be seen that the extended polynomials of Hahn, Racah,

(4.1.9), (4.1.11)) in the light of the

and of Wilson ((4.1.7).
forms as deduced

basic pair (4.4.5), admit g-extensions in the

below.

In the first place put ¢ = x+3+1, and

a1y
Gy = N
[aq]k [q Jk {q}k

in (4.4.5). Then with r—-s={, one fiﬁds a basic analogue of the

polynomial Qn ez s(x;a.B,N) in the form :

n+1}£k [q--x}k

(n/s] (a;":q,) ., [oBq

(4.4.9) Q (x:;a,3,Njq) = % qlk 2.2 8k -
n.l.8 k=0 [aql, [q NI [q]

- k k k
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whose inverse relation may be expressed by

- . ¥4 - Lk+k+1
{q x]n sn q nk (qzm‘:qz)k (1-of3q )
(4.4.10) =

-N > k+1
[q ]n[aq]n[q]n k=0 [ev3q ]£n+1 {qz:qzlk (qz:qz)sn

.Qk‘[_s(x:a.ﬁ.qu) .

where q = qi/s' and L = ¢/s.
Also, when c=x+3+1, and
-X x+1

[q ]k [¥6q ]k

G, = .
[otq]k tﬁéqlk [‘.vq]k [q]k

the pair (4.4.5) provides a basic analogue of the extended Racah

polynomial which is representable in the form :

{n/s) c;"k (q;n:qz)Bk [dﬁqn+1]£k
(4.4.11) R , _(u(x);a,B.7.,6|q) = L ’

k=0 [aqly [ASql, (rqly laly

-X x+1
{q 71 [¥6q" "1,

along with its inverse series relation:

- x+1 -8n Lk+k+1
[q 1. [»&q ] sn (q ;9. ), (1-op3q )
(4.4.12) n D .y gnk_ 2 27k .

(aal [86q] [rq) [q] k=0 lopq®* 11, . (q:q),

_ Rk.z.s(u(x);a.ﬁ.r.éiQ)
(qz:qz)

8n

in which  m(x)=q “4p6q=*1, qz=q‘/9, and Le=¢/s.

Similarly, with 'c' = a+b+c+d-1, and

-
. - 1k {ae ]k
k [alb]k [aclk tad]l, [ql, °
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the relation in (4.4.5) results in an inverse pair of basic

analogue of Pn ¢ s(x:z) which may be expressed as

LRl 4

4 __z -‘1
Pn.t,s(x:a.b.c.dIQ) =[n£s} (q, n:qz)sk {abcdd" Tox
{ab}n {ac}n [ad}n k=0 {ab}k [ac}k {ad}k {q}k
Ik i@ -ig
-q [ae" " ], [ae 1y
(4.4.13) -
' -1 - Lk+k-1
(qz ;qz)antaele3n[ae Ja}n sn (qzsn:qz )k(l—-abcdq )
- *-1
[q]n [ub]n [ac]n [ad]n k=0 [abcdg ]tn+1[ab]k[°c]k
s Py ¢,g!X:a-b.c.d]q)
[ad]k (qz:qz)k
wherein x = cos8, and as usual q,= qL L = 2/8.

It may be observed that the polynomials deduced above in
(4.4.9), (4.4.11) and in (4.4.13), Dbesides providing basic
analogues of the corresponding ordinary polynomials, also provide
extensions of polynomials of basic Hahn, basic Racah, and of

Asky-Wilson (c¢f.(1.5.9),(1.5.10),(1.5.11)).

4.5 g~-EXTENSIONS OF CERTAIN INVERSE RELATIONS

It is interesting to remark here that theorem-3 and a few of
its alternative forms also lead to the extensions of the inverse
series relations given in table-~20. With a view to obtain these

extensions, it may be observed that on making use of the formula
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1 1 -N(N-1) /2

(4.5.1) (@ qhy = -1V g [aly -
and by replacing Gk by [Q]p+bsk~skek /{q]m, the relations (4.3.1)

and (4.3.2) (i.e. theorem—3) get transformed to the forms

F = [nés] -bsk(sk—1) /2 {q]p+bsk—sk Gk
nT oy [q] (@2 ;q%) '
q p+bsk-n a :4q n-sk
(4.5.2) A sn
6, = E (_1)sn+k q—bk(k—zsn+1)/2
k=0
_.ptbk-k
(1-q ) 14)pipen-k-1
. Ty (@ 2:iq D) X
ptbsn-sn g ‘sn—-k

This pair may also be put in the following alternative forms.

r _. ptbn-n+l
p oo M8 pek(sx-)se (179 el ipek-sk
n = k§0 q 5 b k-
= () pipek-n+1(9 537 Jp_gx
(4.5.3) A sn .
6. = I (“1)sn+k q—bk(k~zsn+=)/2
k=0
IQJp+bsn—k Fk
: -b -b '
L .
IQ]p+b8n~sn (@ ":q )sn—k
. .
r oo "8 pek(ek-1)/2  [9)-pen-pex-1 Gy
n Tk ¢ la] &8y
a -p~-bsk+sk~-1 q :4q n-sk
(4.5.4) A an i
Gn = ¥ (”1)8n+k qbk(k—esn+1)/2
=0
_,.~p=~bk+k
(1-q ) [qj-p—bsn+sn—1 F
~ TY (q®:q®) ko
-p~ban+k : sn-Xk
and
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¢ . ~Pp~bn+
F - [n/sl ka(Sk""ﬂ)/ﬂ (1 q n’ [q]"p"'n"bSk“i G
n kEO ? [ql @) kK’
a -p~bsk+sk 9 :9 I gx
(4.5.5) ¢ sn
Gn = 1 (_1)sn+k qbk(k—zsnﬂ)/z
k=0
[q}ép-bsn+sn Fk
b b
) [QJ~p~bsn+k (a7:q )sn-k

The form (4.5.3) is obtained from (4.5.2) by replacing first

p by p+l, and then replacing F_ by F_ /1_qp+bn—n+1’ and G by

p+bsn-sn+l

Gn /1-q . Whereas to obtain (4.5.4), the base g in

(4.5.2) 1is inverted first and then, Gk is replaced by
Gk /(q—p—bsk+sk—1:q—l

F. /1-g"P7PP*N ren it gets transformed to (4.5.5).

)m. It in (4.5.4) Fn is replaced by

It is obvious that the inverse pair (4.5.3), (with b=m)

provides an extension of the basic Gould class (2)

p+mn—n+
no (1-q Nal_, .
Fin) = [ gq mk(k-1) /2 — p+rfr); k a(k),
k=0 (9] imk-n(? ¢ 9 g
(4.5.6) A n
G(n) = T (~1)n+k q—mk(k~2n+1)/z
k=0
) IQ3p+mn—k F(k)
- . -m__-m
) EQJp+mm-n (q ":q )n—k

of Table-15 (Ch.3). Also, when b is replaced by c+l, the pair

(4.5.3) provides extension of the basic Legendre-Chebyshev class
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(7) of Table-19 (Ch.3), i.e.

3

_~ Ptcn

( F(n) = E q~(c+1)k(k-4)/2 (1-q b [QJp+ck G(k)

k=0 [q] (aC"l _&c—l ) g

x ptck+k-n+1 ’ n-k
{(4.5.7) A n
G(n) = ¢ (_1)n+k a(cﬂ)k(k-—znﬂ)/z
k=0
: () psensn-x  FX)
-¢c-1 -c-1

. {q}p_',cn (g ;q }n"'k

Similarly., the extensions of other pairs of Table~20 may be
obtained. A complete list of these extensions is given in the

following table.
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