
CHAPTER-5
FURTHER EXTENSIONS OF CERTAIN GENERAL INVERSE PAIRS

5.1 INTRODUCTION
Amongst the known inverse series relations that are 

referred to in the previous chapters, the most elegant and 
possessing the potential for further useful generalizations is 
the pair

f (n)
(5.1.1) ■

g(n)

n v nE (-D < J >k=0 K
{ ini(ai+^bi)} g(k).

n v nE (-D C £ )k=0 K V? *k V f(k)
ri (a .+nb.)v=i 1 1

due to Gould and Hsu [1].
A basic analogue of this inversion pair was given by Carlitz 

[3] in the form :

(5.1.2) <

nf(n) = £ (-l)k qk(k~4)/2 «• "Ij 3 { iS,<ai+<I * V> s'**-
k=0 
nBtn) = E (-l)k [" ] *±i

k=0 * t*‘
a,.., +q b k+1 f (k).

:nA(ai+tJ bi}

These two pairs which encompass quite a good number of 
inversion formulas (quoted in sections- 1.2 and 1.5) , were 
encountered during the process of providing extensions of 
various known inverse series relatios. While making an attempt 
of extending the aforementioned pairs, it was observed that the

106



forms in which they admit extensions are analogous to the forms 
of the following pair of relations due to Singhal and S.Kumari[4].

(5.1.3) <

F(n)
[n/s]

* E ( _l,n-sk
k=0

if and only if

f (n) sn * E p+qk-k
k=0 p+qsn-k

and
nr p+qk-k , p+qn-:

sn-

k=0 p+qn-k v n-k

The proposed extensions of the pairs (5.1.1) and (5.1.2) 
which will be proved in the sections 5.2 and 5.3 respectively, 
may be stated in the forms of following theorems.

THEOREM - 4. For s = 2.3.4.....and for m=1.2,3....

[n/s] n-sk r n » Vkwn-k50 '-1' { i5.‘v*v} Tdbr.(5.1. 

if and only if
sn k+i(5.1.5) V„ - kEQ { ^U^snbj)}- w,

(sn-k)!

and
n k+4 W.<5*1*6)Jo U*+l+kbk+l) { t0*(ai+nba>}~ (n-k)! " °' when n*ms-
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THEOREM - 5. For s = 2,3,4,...,and for m=l,2,3,...,

(5.1.7) U - tnESl(-Dn'Sk qsk(sk-‘>^ / . n (a .+5sk b.)>
" l V=i 1 1 Jn k=0 [q]n-sk

if and only if

U,(5.1.8) T - e" qk(k-2»"*‘>^ V.» —---HSii- ---
k*° .n (o +q~sn b.) 1,11

t=i 1 1
and

sn-k

(5 1 9) £ qk(k-*n-n)/* ak+l+q bk+l
k=0 k + * _un Ui+q n ht)

U,
= 0. when n^ms.

[q]n-k

It may be pointed out here that the pairs (5.1.1) and 
(5.1.2) also admit alternative extensions which are stated in the 
forms of theorems 6 and 7.

THEOREM - 6. For s - 2.3,4,.___ and for m»0,1.2....

[n/s]
(5.1.10) A « E (-1) n

n-sk aak+l+ek bsk+l Bk
k=0 sk + i

iSi (ai+nV (n-sk)

if and only if
sn on A.(5.1.11) B = E { n (a.+kb,)} ------

- n k*0 1 1-1 - 1 1 * (sn-k)!

and
n , " i Ak(5.1.12) E { .n (a +kb.)} —5 
k«0 v 1-1 1 1 J (n-k)J 0 , n >ms.

108



THEOREM - 7. For s - 2.3,4..... and for m*=0,1.2. . . . ,

-sk
(5.1.13) Cn

[n^sl. ,.n-sX qsk(s)l'In+‘)/2 (aSk+l+q bsk+l>
t_1) ak+i

t^n-sk (»^q"nb,)
D.

If and only if

(5.1.14) Dn = q*<k~*>/2 { .r^ta.+q-* bi}) K
k=0 Eq] an-k

and

(5.1.15) £ qk(ki)/2 r n (a-+q-k b )\ ---*— = o, n>ms.
k=0 t=1 1 ^n-k

The proofs of these theorems are given in sections 5.4, and 
5.5 respectively.

The object of studying the extensions stated above as 
theorems 4 to 7 is that by appropriately choosing the parameters 
a^ and b.., it becomes possible to carry out extensions of certain 
polynomials as well as certain classes of inverse series 
relations belonging to the Gould classes, simpler Legendre 
classes, and the Legendre - Chebyshev classes, as is discussed in 
sections 5.6 and 5.7.

5.2 PROOF OF THEOREM-4
While proving theorem-4, the following orthogonality relation 

will be used; which is supplied by the pair (5.1.1) under the
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replacement of j, n, and n-j by sj, sn and sn-sj(=N) respectively.

(5.2.1) E (-1)" C
k=0

N „ *ak+sj+l+<k+8^)bk+sj+P
k > ~.kTaj;i-------------—

.nt (a^N+BjJb..)

k+oj 0 i0i (a^sj^xj)

(Gould and Hsu [1.p.887]).
Now, in order to prove the 'only if* part, it will 

shown that (5.1.4) implies (5.1.5).
*If the right hand side of (5.1.5) be denoted by V 

view of the relation (5.1.4) it can be seen that

be first

then in

*V
sn Fk/s] , (a, „ +k b, - )° £(-l)k+sJ k+1 k+l'

k=0 j=0 (sn-k)! (k-sj)!

k
.n (a.+sj b.) i=l l J 1
k + i
,n (a.+sn b.)
i-i l i

V . 
3

k+aj
n-l , sn-sj - ^ . .n (a.+sjb.)= + E 7g»Lfji Vj E <-i>kCsn~8>

n jto (sn-sj)'- J k=0 k-t-a j + i
(aj+snbj)

(<,ktSj+l+(k+Bj,bk+Bj+l)

Here, on comparing the inner series with the orthogonality 
relation (5.2.1), one readily gets

* n-* 1 0v = V + T* --- —    — ( u ~s vn (sn-sj)! vsn-sj' j '
j —i.

whence it follows that 
*V ■ Vn

and thus, (5.1.4) implies (5.1.5).
For completing the proof of ’only if*- part, it remains to 

show that the relation (5.1.4) also implies (5.1.6) when n/s is 
not an integer. For this, put
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n fc+i(5.2.2) E <.X+1+X Vl> { J2,<Vn
k=0

then on making use of the relation 
above, one arrives at

(5.1.4)
(n-k)! 
and

= Vn '

proceeding as

_ [n/s]
(5.2.3) V = £n . _ 1=0 (n-sj)! C 0 ■ ) V . n-sj y j

Here, if n/s is not an integer that is, ni*ms (m=l,2,3...) 
then in (5.2.3) vanishes, which completes the proof of 'only 
if' part.

The proof of'if' part runs as follows.
First, it is to be noted that the inverse series relation of 

(5.2.2) is given by (Gould and Hsu [1]);
n _ , . V,(5.2.4) W = £ (-l)n k{ .ft (a.+kb. )\n k=0 * 1 5 (n-k )l

Since the relation (5.1.6) holds, therefore V =*0 when rv*ms.n
If n=ms, then it follows from (5.1.5) that V (=V )=V . Thus,ms sm m
the inverse relations given in (5.2.2) and (5.2.4) will assume 
the forms

(sn-k)!

n k“Q ' \ i=iv“i(n-sk)i '

sn k+iVn - “WkVl> ( J, (Oj+snbj)}"*

implies
tn/s]

W -.n-sk / fl / m Xml# Vv \

with this the proof of the ‘if’ part is completed, and hence the 
theorem.
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5.3 PROOF OF THEOREM - 5

The proof of theorem-5 runs parallel to that of previous 

theorem in which the following orthogonality relation will be 

used.

(5.3.1) t <-l>* qk<l!-N+‘>/* t l 1 C»kt8j+1^“k'S;i » 
lc ■*“ 0

k+sj+P

i r 0/ knSjf , -sjK -N-sj . .\-i r 0 ,.{ (a.+q Jb.)} { .nt (a +q. b. )} - tN 1 •

In order to prove the first part. i.e. (5.1.7) implies both 

(5.1.8) and (5.1.9). consider the left hand side of (5.1.8) and
■kdenote it by T , i.e..

-* _ k(k-2sn+i)/2T = £ q
k=0

, k+l U.cak+i+<i bk+p {s\>r —[qln-k
In this, if the relation (5.1.7) is substituted for . then

one obtains

T* „8£ tJE8(-l)k”8J qC^(k-2sn-H)+sj(sj-4 )>/a ak+l+q bk+l

k=0 k=0 ^q^sn-k ^q^k-sj
kfi' { i2i(ai+q”SJ V> { b.)}"1 Tj

n-l q
2.2 2 . 

* j -* rg
= Tn + E

jTj sn sj^^^ ^(jt-asn-Hssj+i )/2 ^ sn-s jj 
j=0 fq]fln_ . k=0 k

sn-sj
k-t-oj

-k-sj J, {Vq sj V^ak+sj+l+q bk+sj+P k+aj«
J* (ai+q '9n V

In this last expression, on making use of the relation

112



(5.3.1), one finds

* n~l z .2 2T « Tn 4. E qS j -a nj T . J
j=0 [q] sn-s j

[ .] .sn-sj

which ultimately simplifies to

n
and thus. (5.1.7) implies (5.1.8).

Now to show that the relation (5.1.7) also implies (5.1.9),

put
Tn - £ c»ktl«fk bk+1) { ^(Oj+q_n bj)}-* ---- ,

k=0 [q]n-k
wherein the use of the relation (5.1.7) gives

_ n [k/s]
T = £ E (-D n k=0 j=0

k-sj
(k(k-zn+i )+sj(sj-i) )/2

k + 1

(5.3.2)
[n/s] q

■ E
j=0

2.2 2 . a j —a nj

{ ,5 «4+<rn )} [q^k

V) Tj

yt-2n+«s j+i ttt/aT. n-si .-------- — £ (-1)^
[q]n_sj + 1k=0

• [nkJ 3 Cak+sj+l+q * SJ Vsj+l5 {ili#{ai+q"SJ V)

,n (a.+q_nb.) 
1 1

k+aj

Here, the orthogonality relation (5.3.1) with N =n-sj 

transforms (5.3.2) in the form

[n/B] 2 z 2
(5.3.3) T * E q83"8^ t

n j=0 n-sjJ [q]n-s j

from which it follows that if n * ms (m = 1,2,3.... ), then
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0
which completes the proof of the first part.

It is to be noted that when n = ms, (5.3.3) gives

t - ? s*j“-samj r o i Tj
“ * j=o S”-SJ t’W.J

m-1 2 .2 2 _ T.= T + £ s j -s mj 0 j ..
m j-0 sm-sj t<5lsm-aj

(5.3.4) = T .m
Now, in order to prove the converse part i.e.. the relations 

(5.1.8) and (5.1.9) imply (5.1.7), we make an appeal to the pair 
(5.1.2) to get the inverse companion of

(5.3.5) T = E q n k=0
(k-2n-K )/2 r n k*i

in the form

(5.3.6) Un = £ (-l)n k qk<k-*>/* [£ J {.^(aj+q k b.)} Tk .
k-G

Since the relation (5.1.9) holds, it follows that
(5.3.7) T =0 if n * ms.n

Also from (5.3.4),
(5.3.8) T « T if n - ms.ms m

Thus, in view of (5.3.7) and (5.3.8) , the inverse relations 
(5.3.5) and (5.3.6) assume the forms :

_ snTns " E 
k=0

k(k-2sn+i)/2 rsn.fk"j {ip1<“1+?n »i>rk+1
U,

implies
[n/s]un - E (-i)n-ak ["kj {tUifai+q'ak v) Tks

114 .



which readily leads to

sn
t - E qk(k-*sn+i )/2 kfl
n k=0 

implies
U « lnESl(-l)n'Bk qk(k^l/:! 

k=0

[q] sn-k

{ .n (a +q Sk b )} -p—1--—l v=i i i / [qlsn_k

if Tn=0. Thus. (5.1.8) and (5.1.9) imply (5.1.7) which completes 
the proof of the theorem.

5.4 PROOF OF THEOREM-6
It iB well known that if Pn<>:) is a polynomial of degree n<N,

then
N k n(5.4.1) £ (-1)K( ") P (B+bk) * 0, N> 1.
k=0 K n

This preliminary result provides a useful tool in proving 
the 'only if* part of theorem-6.

In fact, if the left hand side of (5.1.11) is denoted by B. 
then in view of the relation (5.1.10), one gets

B = sj+1 sj-H ,n (a.+kb.)t=i i i'sn Ek/s]E E (-1) J
k»0 j«0 (k—sj)! (sn-k)! ^ (-+kb.

B . J
t=i

n sn-sj ,- E E (-1)1 
j=0 k=0

Qsj4-l^8jbsj-H 
k! (sn-sj-k)!

an
J^a.^k+sjlb.) ^

Jd iaj + i J
.n (a, +(k+sj)b.)* *
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= Bn
n-1 sn-sj

+ E Ej=0 k=0
(asj+l+3jbsj-H 

(sn-sj)!
) B . J

n sj * *E (-Dk C k J )'
k=0 K

sn. { n (a. +(k+s j )b.)} , 
li=sj+2 1 1 J

Since, the product terms in this last expression represents 
the polynomial of degree sn-sj-1 in k, it follows from (5.4.1) 
that the inner series vanishes for all j = 0,1,2,...,n-l, and 

thus,
B = Bn ;

which proves that (5.1.10) implies (5.1.11).
In order to prove that (5.1.10) also implies (5.1.12), put 

n n A.
an E { n (a +kb )} ——

k=0 i=l (n-k)!
Then with the aid of the relation (5.1.10), and proceeding as 
above, one finds

an
[n/s] (a
E
j=0

b, Wn* cT-
(n-sj)! J k=0

.n (a,+(k+sj)b.)i=i a J i
“n (<*. +(k+sj)h )

It is not difficult to see that when n-sj£l» that is n >sj.
j ** 0,1,2....  then the inner series in the above expression
vanishes in view of the result (5.4.1). Thus, (5.1.10) implies 
(5.1.12).

Assume now that both the relations (5.1.11) and (5.1.12) 
hold true; and start with the relation

n n(5.4.2) a ■ £ {n (a.+kb.)} n k^O Vl 1 1 '
Ak

(n-k)!
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The inverse series of this is readily obtainable from the

(5.4.3) An - Z l-l> (VAl1 {Aloi+nbd>}" —

pair (5.1.1), in the form : 
n , , Xn-K , f „ , _ xi~i _____ _
k=0 '*’* -- ” ' ‘ “ ' (n-k)!

Since, (5.1.12) holds, hence
(5.4.4) a. =0 for n >sm, m = 0,1,2.....n

When n =sm, then the relation corresponding to (5.4.2) will 
be non-zero; in fact, in this case, one finds

sm am A.
(5.4.5) a = B = r ill (a. +kb. ) V --- --- .sm m k=0 'v=1 1 1 * (sai-k) *

Thus, the inverse series relations (5.4.2) and (5.4.3), in 
view of (5.4.4) and (5.4.5) will become

sm sm A,
\

k=
implies

Bm
sm sm a.E { n (a +kb )} ---5---
<=0 4=1 J (sm-k)!

[m/s 3 A = E (-Dm
m-sk , , ,. , ^ »v* “k^sk+l^sk-H3

ek+1 a,
;ai+mbik=0 ~ * -- " * (m-sk)!

which completes the 'if‘-part and hence, the proof of the theorm.

5.5 PROOF OF THEOREM-7
In order to prove the first part, i.e. (5.1.13) implies 

(5.1.14) and (5.1.15), it may be seen that with an appeal to the 
relation (5.1.13), the left hand member of (5.1.14.) which is 
denoted for brevity by D, can be expressed as

D = e” lkES3(-l)k+sj q<k<k~1>+s.Hs.S-zJt'K>>/2 agJ+i*q bsj+i .E Ek=0 j=0 [<i3sn-k [q3k-sj
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ssn . &}+i .•■tB.'V’ V) / FI (a. +q b. ) V D.1 t=i i M a 1 j

^ . n~1 _ -s j ^ Dj
n + jio CasJ+1+q SJ+1 ^Jgn-sj

S1£Sj(-l) k q k(k_l)/2 

k=0

n .f sn^s l i f m / ~*"x si % %i•* k Mi0i<ai+£3 bi>>(W"1 vr.
Here, the ratio of the product terms represents a polynomial

_vof degree Csn-sj-1) in q , and therefore on making use of the 
known formula (Carlitz [3]) :
(5.5.1) £ qk(k-i)/a £ N ] xk = n (l+xqk_1)

k=0 K k=l

the inner series in the above expression becomes representable 
in the form:
sn"sj k k(k-*)/2 sn-si n-sj-1 -cv £ (-1)K [sn SJ] £ c. q £K ,
k=0 K /=0

and hence one gets

n-1 D. n-sj-1 n-sj
£ c- n (1-q -£+k-3^ * ^n + ^asi+l+q •kgi+p fal *"j*0 '•<“sn-sj £=0 k=l

Dn '
which shows that (5.1.13) implies (5.1.14).

The relation (5.1.13) also implies (5.1.15), which can be 
proved as follows.

If

♦n - J. v) mk=0 n-k

then on substituting the relation (5.1.13) for C^, and proceeding
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as above, one obtains

[n/s]
*n - (asj+l^ Tql

D n-sj
j=0 ~J'* n-sj k=0

BJ+l

£ (-D q

k-sj

k k(k-l)/2

|-1• 'nkSj) {iB,(.i+<I-k-sV»}{;nl<.i+<I-SJbi,}- 

In this, the ratio of the product terms when replaceaby its 

equivalent polynomial form :

n-sj-1 -rk£ C qr=0
leads to the following expression.

, [n^]: -Bi. % Di n"®j_1 n'Sj k{k i)/2
*n = Casj+l+q bsj+l> [q]r.. JL cr ^ Q

j=0 n-sj r=0 k=0

■FT 1 «-<rrk)

wherein the inner-most sum with the help of 
assumes the form:

nr»S^/i -r+k-1 . ,, -r. ,, -r+1 .n (1-q ) = (1-q ) (1-q ) .. .
k=l

the formula (5.5.

(1 -r+n-sj-1. -q J )

1)

which ultimately gives 

0n = 0 when n>sj, j = 0,1,2.....

Hence, (5.1.13) implies (5.1.15). and with this the proof of 
the first part is completed.

Conversely, if the relations (5.1.14) and (5.1.15) hold 
true, then in order to show that these relations imply (5.1.13), 
consider the relation
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(5.5.2) - E {BW* V> •
k=0 n-k

But this implies that (cf.(5.1.2)> 
(5.5.3) C = E q’"*-™*1’'2 ‘Vl"1. bk+l)

n k=0 k -t i
n (a.+nb,.)isl * 1

<pl

[q] n-k

Since (5.1.15) holds, therefore
(5.5.4) 0n = 0 if n>sm, m - 0.1.2....
and when n = sm, then on comparing the expression corresponding
to 0 with (5.1.14), one finds sm
(5.5.5) 0 * D .

Thus, the inverse relations (5.5.2) and (5.5.3), in view of 
(5.5.4) and (5.5.5), get changed to

Dm k=0r-n 1M1sm-k

impl ies

[m/s] m-sk sk(sk-«m+i)/z 
cm = E C-l) q k=0

sk+1
^ -SK . +q bsk+1

k+ 1 -m.n (a.+q b.) [q] .i=i i M i lMJm-sk
which completes the proof of the converse part and hence the 
proof of theorem-7.

5.6 SOME MORE EXTENSIONS
The inverse series relations proved in the forms of theorems 

4 to 7 suggest some more inverse relations including their 
alternative versions which are given below as theorems 4A, 5A, 6A 
and 7A.
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In the first place, replacing &?n by Wn /(a ^ +n bn+J) in 
theorem-4, one obtains 
THEOREM - 4ft.

[n/s]
W = £ (-1)n k=0

n-sk ^an+l+n*n+l> {lS,l‘Vskbi)} V,
(n-sk)•

if and only if 
sn kti W,V = E { n (a . +snb. ) V 7 -r-rn k~Q l t=i i if (sn-k>!

and 
n k+i W,E { n (a.+nb. )V4 7. * , ,

k“0 \ V=iv a i'J (n-k)i = 0, when rv'ms, m=1,2,3.....

Next, replacing B by B /(a ,, + snb in theorem-6,n n sn+1 sn+1
one easily gets

THEORAM - 6A.

En/S] n-sk r °k+1A- = I <-»> {
A~ U

B,
n (n-sk)1

if and only if

snB - E “Ws"*w> {iD, <VkV}k=0
and
n r.

(sn-k)!

= 0, n>ms, m=0,l,2,...k=0........... (n-k)!
Likewise the alternative forms of the theorems 5 and 7 may 

also be obtained-; however the following inverse relations are
worth mentioning which follow from these theorems with q replaced
, -X by q .
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In fact, theorem - 5 with q replaced by q X» assumes the

form

[n/s]
Un E (-Dn~sk q-^sMsk-i)/2 {nti^e\)}

k=0 . -X -X,(q ;q ) n-sk
if and only if 

sn XX
n

and
nE q

k=0

E q
k=0

Xk(k-2sn+i )/2 ak+l+q bk+l U,
k+ 4 Xsn -X -Xn (0i+q bj) (q ;q ^n_k

-Xk(k-2sn-K) /2
A Xk ,ak+l*q bk+l 

J2 (ai+qXn b.)
U,

, -X -X,"I ^ A-k

when re*ms, m=l,2,3,.

In this, on making use of the formula

, -1 -1, _ , - , N-m -N {N+i) /2 -m(m-2N-i )/2(q ;q }N-m ~ (”1} q q q N-m'

and then replacing Un by q 
one arrives at

,Xn(n+t )/2 V and Tn by qXsn(sn+i )/z
n

THEOREM - 5A. 
I n/s]

Un = E qXsk(sk-«n+i )/2 { S1(ai+qX8kbi)}
k=0 , X X,(q ;q ) n-sk

if and only if
SflT = E (~l)sn~k gkk(k-4 )/z

n k=0
U,A Xk .ak+l+q bk+l „

k + i N .n , A, sn . . , a a .1=3 V “I ;<I in-k

and
nE
k=0

_ , _XK .E (“l)n~"k q*-***-*)/2 ak+l+q Dk+1
k + i _Xn

U,
X XiS,(ai+q V «i ■<! >„-k
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when n * ms, m = 1,2,3,,,...

In a similar manner, it can be shown that theorem-7 with q —Xreplaced by q , gets transformed to
THEOREM - 7A 

[n/s]
C = E <3k=0

Xsk(sk-i )/2
Xskask+l qsk+1

sk +1 .i=i <°i+q n V
D,

.X X,(q ;q )n-sk
if and only if

Xk(k-2sn+i )/2sn sn-k q *nD = £ (-1)®" K ---r—r—n k=0 (qX;qX), vF c>sn-k
and

„ Xk(k-2n+i )/2n n-k qE (-1)k=0
fn (a.+qXX b.)^ C, = 0. when n>ms,
U=i i M i J k, X X,(q ;q ) n-k

m = 0,1,2,... .

5.7 PARTICULAR CASES OF THEOREMS 4 TO 7A
Since the inverse relations in (5.1.1) include as special 

cases the inverse pairs (1.2.13) and (1.2.17), and also the 
inverse series of various polynomials like Jacobi, Hahn, Racah 
and that of Wilson (quoted in section-1.2 as (1.2.3) to (1.2.8), 
(1.2.32), (1.2.33)), it becomes straightforward to provide

extensions of all these particular cases by means of theorem-4. 
For example, the inverse pair (1.2.13) may be extended to the 
form :
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(5.7.1) ■
ln, = c*r>

sng(n) = r (a+l3Sn)"1 a ,(a+bk-k ,b) f(k).
3 ** ^ can x or»~lrk=0

Similarly, the pair (1.2.17) assumes the extension in the 
form :

(5.7.2) •

t-w * ,n-sk , a+n+bsK G(k)" k?0 C n ° {n-sk)!

sn«<»> ■ s <a+T+1v‘ SS38k=0
F(k)

a+bsn+k+1 (sn-k)!

It is to be noted that the extensions of the aforementioned 
polynomials provided by theorem-4 are of the same forms as those 
considered in chapter-4 ((4.1.7) to (4.1.11)), and therefore, 
they are omitted here for brevity. However, it is worth 
mentioning here that the relations in (5.1.1) can also be 
particularized to obtain certain inversion pairs that appear in 
the classification due to John Riordan. They are Gould class (1), 
simpler Legendre class (1), and the Legendre - Chebyshev classes 
(3), and (5). In fact, their extended versions which are deduced 
in chapter-4 (Table-20), can also be obtained from theorem-4.

Theorem-4A on the other hand, provides the extensions of 
some other pairs belonging to the above mentioned classes; that 
is, the Gould class(2), simpler Legendre class(2), and the 
Legendre-Chebyshev classes (1) and (7). These extended forms are 
also embodied in Table-20.
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The specializations of theorems 6 and 6A are in fact, more
interesting because the forms in which the inverse pairs 
(1.2.13), (1.2.17) and those of Gould classes, simpler Legendre 
classes etc. (mentioned above) admit extensions by means of these 
theorems, are different from those of Table-20.

For example, by setting ap-i+1 and, b.. = q for all i. in 
theorem-6, one finds after a little simplification, the following 
pair :

[n/sj . p+qsk-sk , .r f-nn"sk /•P+gn-sk.
v n , . ' n-sk ' kk=0 p+qn-sk

It may be seen that this pair provides an extension of Gould 
class (1) of Table-2. Likewise, with a.*p-i+2, and b-= q,l l
theorem-6A yields the relations :

snEk=0
p+qsn-sn+1 
p+qk-sn+l sn~k n

[n/s]
E (-D n-skk=0

,p+qn-skx C n-sk 3 ak'

which evidently extends the Gould class (2) of Table-2.

In a similar manner, the other inverse pairs may be put in
the extended forms by choosing a^ and b,. appropriately. The
following table embodies all these extensions along with the
particular choice of a. and b.ia.
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Table-22 ; Extensions of Siorden's inverse relations

sn
6(n) = £ 

1*0
g(kl ; 8(B) s

(n/sl
Xk=0

H)n~si %.k «*»>

Theore«-So, ai * %.k dn.k Extension of 
class (No.) in 
Table-go.

, P+qk-k X ptqBk-sk ,ptqn-sK 6ould class (1).
Tbeorea-6 p-itl 0 ( ) 

sn-k ptqn-sk '* n-sk *' Table-2

ptqBn-sntl ,p+qk-k. ptqn-sk Gould class (21,
Theorei-6i p-i*2 ; 6 ptqk-sntl 'k 88-k ^ B-sk

Table-2

, ptBBtk x pt2skti . p+2n Biapler Legendre
Theorea-6 pti 1 c) ptntsktl ^ n-sk ^ Class (1),

Table-5
pt2sn . ptsntk. f p+2n \ siipler Legendre

Theore*-6h pti-l 1 ,( J
ptsntk BB-k

( >)
B-8k

Class (2).
Table-5

ptscn ptck-ktsn-1 pten Legendre-Chebyshev
Tb«orei-6J p+i-1 c-i ptck ^ sa-k ^ LJ Class (1),

Table-6
/P4tk ptsck .ptcntn-sk-L Legendre-Chebyshev

Theorei-6 p-i+i ctl — ( , )
ptcn n-sk

Class (3),
Table-6

.ptck-ktsn Legendre-Chebyshev
Theorei-6 p+i c-1 ( ) ptscktl ^ ptcn ^ 

ptcn-Btsktl ' B-sk J Class (5),
Table-6

ptBCBtl ,p+ck - /P+cb+b-bL Legendre-ChebyshevTbeorea-61! p-B2 ctl ptcktk-sntl ^ BB-k ^ j Class (7).
Table-6
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ICoining to the specializations of theorems 5, 5A, 7 and 7A, 
it may be observed that the basic pairs cited in (1.5.4) and 
(1.5.5) and also the basic polynomials of Laguerre, Jacobi, Hahn 
etc. are contained in the pair (5.1.2) and therefore, their 
extensions may be carried out in the forms as given below.

If aj=l and b^= , then theorem-5A yields an extension
of (1.5.4) in the following pair.

(5.7.3) -

[n/s] 
F(n) « £

k=0
Xsk(sk-2n+* )/2 - a+n+Xsk, " *■ n J , X X,(q ;q )

G(k)

sn , ....... , a+Xk+k+1_ „ , , , sn-k _Xk(k-i)/2 1-qs<n> - 1

n-sk
[q],

lqh;q%)
sn-k

, a+Xsn+k, -* 1 ^L k 3 F(k) .

An extended version of (1.5.5) may be obtained similarly. 
Further, in order to carry out extension of the basic Laguerre 
polynomial cited in (1.5.13), set a^«l, and bi=0 in theorem-5A. 
Then on replacing Tk by

bV VXsk(sk+zex+i) (l-q)s* x
[q]sk t«q]8k '

and denoting the polynomial thus obtained, by . (xlq). onen,s,x 1
finds

(oc 
h ,s ,X Cxjq)

^nqXsk(Bk-fei) 
k»0

(1-q) sk k

[«q] sk
. X X,(q ;q ) n-sk [q] sk

(cf. (1.5.13) with X=l, s—1), 
whose inverse relation may be expressed as
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,, , sn(1-q) x
[aq]1 MJsn

n sn= E (-Dk=0
sn -k ^(\sn(sn+i )+Xk(k-i ))/z ^^sn

r i , X X .taq)k (q :<t >sn.k

The polynomials of Wall and of stieltjes-Wigert may be
extended in a like manner. Also, the extensions of basic
polynomials of Jacobi, Hahn etc. which are obtainable from
theorem~5A, are of the same forms as those of chapter-4
(4.4.8) to ((4.4.13)), and therefore, they are omitted here. It

cmay be seen that the polynomial gn(x,r,s;q), when r-s is a 
positive integer, is also contained in theorem-5A.

As noted in section-3.4, the pair (5.1.2) yields the basic 
analogues of certain classes of inverse relations viz. Gould 
classes (1),(2); simpler Legendre classes (1).(2); etc., thus by 
means of theorem~5A, it becomes straightforward to provide 
extensions of these classes of inverse series relations. In fact, 
these extended versions coincide with those recorded in Table-21 
(section-4.5) and therefore, they are not repeated here for the 
sake of brevity.

However. the special instances of theorems 7 and 7A 
corresponding to the basic Gould classes (1),(2); basic simpler 
Legendre classes! 1),(2) ,-and the basic Legendre-Chebyshev classes 
(1),(3),(5),(7) are more interesting because they provide the 
extensions of all these inverse relations in the forms which are 
different from those listed in Table-21. This is illustrated here 
by means of the choices a^*l, b^= -q*5 and. by writing m for X 
in theorem-7A.
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Since in this case.
ok-f-An /„ , nrn , . , D+mn-sk ,J?i (aj+tJ b.) = [cf ]

fq]
sk+1

p+mn
[q]

and

. mk , . , p+mk-sn+1,Jj4 (sj+(J bi) = [qF ]

p+mn-sk-1 

^•^p+mk
sk tq] p+mk-sn

therefore theorem-7A gets reduced to the form :

(5.7.4)'

n
'"'SJ msk(sk-l)/2

Li qk=0

p+msk-sk t^Ln-sk
p+mn-sk1-q , m m.(q ;q ) n-sk

, p+mn-sk, n '*■ n-sk J k

_ / , ,0n-k mk(k-2sn+i )/z jp+mk-k , ^^sn-k „
Dn = k50 (_1) q r sn-k 1 --- C>(q :q >Bn-k

which provides an extension of the basic Gould class (1) of 
Table-15 (Ch.3). This pair also provides a basic analogue of the 
first pair of Table-22.

In a similar manner, by specializing a^ and b^ 
appropriately, one obtains the extensions of the other basic, 
classes from theorem 7 or 7A. The following table encompasses all 
the extended basic classes.
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Table-23 Extensions of basic analogues of Ernies'a inverse pairs

8D

£
k=0

\k(k-2sn+l)/2 *n,k <*
(n/s]

* 2
k=0

(-1)
n-Bk Xsk{sk-l}/2

*n.k h

Theoruv-ho. 
with Oj=l

h *n,k Vk Extension of 
class (Mo.) in 
Table-llo.

Theoren-7* 
with X = tn

-qp-H1 Nlp+ik-k Gould class (1) 
Table-2

Wp+ik-sn ^ 'sn-k Mp+jnn-n ^ ;9 )n-sk

tTheore«-7k 
with >. = m

-qp*it2 . , p+Usn-sn+l,illp+mk-k » falptnn-sk Gould class (2) 
Table-2

lQ]p+Bik-sn+l )sn-k Ulp+ftn-B f9 -'^a-sk

Theorei-71 
with 1

Ifllp+sn+k 1^2. siipler Legendre 
Class (1).
Table-5l?]p+2k Msn-k Mp+n+sk+l NJn-sk

tTheore«-7A 
with ^ = 1

-qPtH IDp+sn+k-l (l-qP+2Bn> l9lpt2B siapler Legendre 
Class (2).
Table-5lfl)pt2k NJsn-k faJpfB+Sk t^lfi-Sk

*TheoreB-7A 
with A =c-i

-qPtH ffl}ptck-k+sn-l 1 (9lptcn legendre-Chebyshev 
Class (1),
Table-5l?Jp+ck ^ ;9 Jsn-k , , ,c-3 c-1.

l9JpfcB-D+sk '8 :9 »B-sk

Theore»-7A 
with X=c+1

-qP-m t^lp+ck (i-q^ ) [qlp+cn+n-sk-l Legendre-Chebyshev 
Class (3),
Table-6i » , c+1 c+1.l9Jp+ck+k-8n ‘9 ;9 ^sn-k f i , c+1 e+1.

[q]p+cn »8 ;9 'n-sk

Theoreis-7A 
with ^ =c-l

Mp+ck-k+ss u-reM> wptt„ Legendre-Chebyshev 
Class (5),
Table-6. , , c-1 c-1,(9lp+ck ;9 Wk r l , C"! C-1,

i9Jp+cn-n+sk+l >9 ;8 'n-Bk

»Theoren-7A 
with A =c+i

-qP'i+2 IOho (q}ptca+n-sk Legendre-Chebyshev 
Class (7),
Table-6Mp+ek+k-sn+l ^8 ;8 lsn-k lfllp+CB MC+1:8CfI»B-sk j

\»V
(‘ indicates that in theore*-7A, D), should he replaced by %/(igk+l f 4 hg^j} first, and then aj and b^ should

be specialized).
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