CHAPTER-5

FURTHER EXTENSIONS OF CERTAIN GENERAL INVERSE PAIRS

5.1 INTRODUCTION
Amongst the known inverse series relations that are
referred to in the previous chapters, the most elegant and

possessing the potential for further useful generalizations is

the pair
n k n n
fm) = E (DT { .0, ca +xb )} gtx).
(5.1.1)
n a + kb
gn) = £ (-0 ¢ 7y EH Kt £ x)
x=0 ;

igx(°i+nbi)

)

due to Gould and Hsu [1].
A basic analogue of this inversion pair was given by Carlitz

[3] in the form :

n n
£(n) = kzo(~-1)k gHFI/2 0y Lo+ b} g,
(5.1.2)

x4+ ta
k+2

n (a.+g" b.)
iwd x b

b
k qk(k~zn+s)/z k+1 £(X).

n n
g(n) = L (-1) [y
=0

These two pairs which encompass quite a good number of °
inversion formulas (quoted in sections- 1.2 and 1.5) , were
encountered during the process of providing extensions of
various known inverse series relatios. While making an attempt

of extending the aforementioned pairs, it was observed that the
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forms in which they admit extensions are analogous to the forms

of the following pair of relations due to Singhal and S.Kumari{41}l.

r [n/s]

F(n) = § (-1)" 5K (p+gf’s‘;’5k) £(X)
x=0

if and only if

sn
f(n) = ¥ prgk-k (p+qsn k) F(Xx)
. k=

{5.1.3) « p+gsn-k sn-k

and

n
r p+gk—-k P"‘qn ]5 P(kx)=0, n*ms, m=1,2.3,.
[ x=0 p+qn-k

The proposed extensions of the pairs (5.1.1) and (5.1.2)
which will be proved in the sections 5.2 and 5.3 respectively,

may be stated in the forms of following theorems.

THEOREM - 4. For s = 2,3,4,...,and for m=1,2.3,..

(n/s] v
_ n-sk k
(5.1.4) W, = E° (1) {.n, (a;+8kbi)}  gxyy

if and only if

sn k+s - W,
(5.1.5) V= E (2, +kby,,) { .0 (agremd 0} i
and
n ke - Wk
(5.1.6) £ (ay,,+kb, o) { 0 (a;4nb )} -———sr = 0, when nems.

k=0
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THEOREM - 5. For s = 2,3.4,....,and for m=1,2.3....,

n/s] _ n _ T

(5.1.7) Un = T (-13" sk qsk(sk—i)/z { 1Q1‘°1+q5k bi)} Tk
k=0 - [q]

n-sk

if and only if

80 (k-zsn+1)/z  2k+1 " bri1 Uy
(5.1.8) T, =L gq 8 =
k=0 ~8n [ql_  _
i_{_‘I‘(aii-q bi) sn-k
and
Ny (k-—zn+)/2 "‘:kn"q_k byrs1 Uy
(5.1.9Y ¢ g e = 0. when n#ms.
k=0 -n [ql__
i,:-.lz (ai+q bi) n-k

It may be pointed out here that the pairs (5.1.1) and
(5.1.2) also admit alternative extensions which are stated in the

forms of theorems 6 and 7.

THEOREM - 6. For s = 2,3,4,.....,and for m=0,1.2,...,
(5.1.10) A = {n£8](~1)n—ak 3pk+1*5% Poxyy By
o n k=0 “r;“’ nb (n-sk)!
izt (ai n i)
if and only if
sn an Ak
(5.1.11) B_ = ¢ 1 (a,+kb,)
on k=0 { izg ' 1 i } (sn-k) !
and
n n A
(5.1.12) £ { B, (a;+kb)} X -0, noms.
: k=0 - (n-k)!
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THEOREM - 7. For s = 2,3,4,.....and for m=0,1,2,...,

-gk

[n/s] _ sk(sk-2n+1)/2 (a +1Hd b +1)
(5.1.13) ¢_ = E (-n"K 4 skl skt1” p .
=0 -n
[Q]n-—sk t§1 (ai+q bi)
if and only if
sn X(k—1)/2 an -k Ck
(5.1.14) D_ = L gq { [0, (a,+q bi)} - .,
k=0 falg, x
and
2 k(k-1)/z 4 1 -k Cx
(5.1.15) T gq {il_-}‘(ai+q bj)} —2X =0, ndms.
k=0 EQJH“R

The proofs of these theorems are given in sections 5.4, and
5.5 respectively.

The object of studying the extensions stated above as
theorems 4 to 7 is that by appropriately choosing the parameters
ay and bi' it becomes possible to carry out extensions of certain
polynomiais as well as certain classes of inverse series
relations belonging to the Gould classes, simpler Legendre

classes, and the Legendre - Chebyshev classes, as is discussed in

sections 5.6 and 5.7.

5.2 PROOF OF THEOREM-4
While proving theorem-4, the following orthogonality relation

will be used; which is supplied by the pair (5.1.1) under the
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replacement of j, n, and n-j by 8j. sn and sn-sj(=N) respectively.

N {sa . .+{k+83)b L .Y ktsj
(5.2.1) E (-D¥ ¢}y 2B koIt 0, (agteib =] )
k=0 D (a +(N+sj)by)

~(Gould and Hsu [1,p.887]).
Now, in order to prove the 'only if' part, it will be first
ghown that (5.1.4) implies (5.1.5}.
If the right hand side of (5.1.5) be denoted by V*. then in

view of the relation (5.1.4) it can be seen that

k
v - g’“ {kés3(_1)k+sj (417K Dyyq) 15, (25783 by
x=0 j=0 (sn-k)! (k-8j)! kr;i(a tsn b.) J
i=g i i
k+sj
Sy . nil 1 v Bn£SJ(”1)k csn~aj) O, (8 +83b;)
n §=0 (sn-s83j)! ' j k=0 k kes jrd
igi (ai+snbi)
'(ak+sj+l+(k+sj)bk+sj+1)'

Here, on comparing the inner series with the orthogonality
relation (5.2.1), one readily gets

1

1 0 YV, .

n-—»
*
v = vn * jE (sn-s8j)! (sn—sj j

1
whence it follows that
*
V =V
n

and thus, (5.1.4) implies (5.1.5).

For completing the proof of 'only if'~ part, it remains to
show that the relation (5.1.4) also implies (5.1.6) when n/s is

not an integer. For this, put
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n k+1 Wk -
(5.2.2) E  (a,,+k b ) { [0, (a;+n b, )} —E = T

k=0 (n-k)!
then on making use of the relation (5.1.4} and proceeding as

above, one arrives at

- [n/s] 1

(5.2.3) V.= ¥
n .

j=0

0
597 Cn-sj? V-

Here, if n/s is not an integer that is, npms (m=1,2,3...)
then Vn in (5.2.3) vanishes, which completes the proof of ‘only
if' part.

The proof of'if' part runs as follows.

First, it is to be noted that the inverse series relation of

(5.2.2) is given by (Gould and Hsu [11]):

n V
- n k
(5.2.4) W = E ( {. i) (8;4kb, )} =5y N
k=0
Since the relation (5.1.6) holds, therefore Vn=0 when n*=ms.
If n=ms, then it follows from (5.1.5) that vms(=vsm)=vm. Thus,

the inverse relations given in (5.2.2) and (5.2.4) will assume

the forms
sn ket -4 wk
Yn = B, (Cxea iy { 1‘31,“’.«1*8“”1’} (8n-k) !
implies
[n/s] v
_ n-sk _k
wh kEo ( 1‘ { rl(a +8kb . )} eI

with this the proof of the 'if' part is completed, and hence the

theorem.
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5.3 PROOF OF THEOREM -~ 5
The proof of theorem-5 runs parallel to that of previous
theorem in which the following orthogonality relation will be

used.

k k(k—2N+x)/z N —“k-8j
(5.3.1) z (-1) { k ] (ak+sj+1+q bk+sj+1)
k+8j k+syrd N S .
£ ) (B @ @ sy 10

In order to prove the first part, i.e. (5.1.7) implies both
(5.1.8) and (5.1.9), consider the left hand side of (5.1.8) and

*
denote it by T , i.e.,

* sn k(k-28n +1) /2 -k k1 —sn - Uk
T =71 gq Cap,ta by ) {0 (a+a b} ——
K=o tal, _x
In this, if the relation (5.1.7) is substituted for U, . then
one obtaing
sn [k/s] . a. . +q kg
T* =T T (-1) k-8j q(k(k—zsnﬂ)+sj(sj-1 ) /2 k+1 k+1
k=0 k=0 {q}an—k {q]k*sj

R " (a;+a7% b} {15:1‘°i+q~8n b}

n-1 g T. sn-8j . .
T + T ] T (‘1)k qk(k—zsn+zsyﬂ)/h [SnkBJ]
i=0 [qlsn_sj k=0 ]
k+sj -8j
Car . sq ¥ STy 0, ag+a%) by
S TP PR k+sj+? Teejui

~-~3N
N (a;+q bi)

i=g

In this last expression, on making use of the relation
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(5.3.1), one finds

> n-l 2.2 2 . T. 0
T = Tn + L g ! " T.._.]_.._J...,._.... [ sn-g L
j=0 a 508 j J

.

which ultimately simplifies to
w
T = Tn‘
and thus, (5.1.7) implies (5.1.8).

Now to show that the relation (5.1.7) also implies (5.1.9),

put
n k+41 U
= k{k-2n+1) /2 -k - -1 X
T =L 4 Cayyata " By, { (L (ag+a™ b} ’
k=0 (9l

wherein the use of the relation (5.1.7) gives

_ n [k/s] . q{k(k—znﬂ)+sj(9“j—1))/2
- ~8]
T, = L (-1 k+4
k=0 j=0 { M (as+ -n b )} [ [q
=4 ‘2474 i al_y B-sj
-k x -8j
Ayt by {Iaa ™ b} T
[n/s] qﬁzjz"ﬂznj T n-s3j (é(—zn-nsjﬂ Yk/a
i k
(5.3.2) = T i £ -1 .
K fql . k+m j+1
j=0 n-sj k=0 -n
g, (agta by)
. . k+aj .
n-sj ~k-83 ~8]
S SRV IS AL Bt je1? {tgi (a;+q hi)}.

Here, the orthogonality relation (5.3.1) with N =n-sj

transforms (5.3.2) in the form

i {n/s} 2.2 2 T.
5.3.9)T = f ¢ JFM O, Fa ,
§=0 J YVn-8j

from which it followg that if n*# m8 (m = 1,2.3,....). then
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which completes the proof of the first part.

It is to be noted that when n = ms, (5.3.3) gives

IR S LI . I
ms j=0 sm—8s j [q]sm~sj
m-1 szjz—szmj 0 Tj
=T + . P I
m jEO d [sm~SJ] [QJsmmsj
{5.3.4) = Th.

Now, in order to prove the converse part i.e., the relations
(5.1.8) and (5.1.9) imply (5.1.7), we make an appeal to the pair

(5.1.2) to get the inverse companion of

n | 321
pees {k—=2n+1) /2 n -k - 1
(5.3.5) T, = L 4 [y T Capptad " Byyp) {0, (a5+a o} Uy
in the form
- n-k k(k-1)/z . n " -k =
(5.3.6) U_ = k=0(~1) q [,1 {.0;+a b} T,

Since the relation (5.1.9) holds. it follows that
(5.3.7) Tn = 0 if n # ms.
Also from (5.3.4),
(5.3.8) 'I‘mB = Tm if n = ms.
Thus, in view of (5.3.7) and (5.3.8) , the inverse relations

(5.3.5) and (5.3.6) assume the forms

8n k+s

=t = k(k-z2sn+1) /2 . 8Bn -k ~8n -1
Tns k§o 4 [l Caypqta Byd {0 a;+3% b0} Uy
implies
{n/s]} ‘n
= _ay0—-8k k(k-1)/2 n -8k =
Un L -1 q [sk] {tg“{ai+q bi)} Tys .o
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which readily leads to

gn ks u

k{k-z8n+1) /2 -k ~8n ~1
Tha =L 4 CHIPES B SRR ALY I 8} T
k=0 q sn-k
implies
{n/s] n T
n-sk k(k-2}/2 -8k X
= —— n .+ b_ —————————————————— ”
Un kEO (-1) 9 { i:i(al a b} )} [q}sn"k

if ?nmo. Thus, (5.1.8) and (5.1.9) imply (5.1.7) whach completes

the proof of the theorem.

5.4 PROOF OF THEOREM-6

It is well known that if Pn(x) is a poelynomial of degree n<N,

then
N k n

(5.4.1) F (-1} ( k ) Pn(a+bk) = 0, Nz 1.
k=0

This preliminary result provides a useful tool in proving
the ‘only if' part of theorem—6.
In fact, if the left hand side of (5.1.11) is denoted by B,

then in view of the relation (5.1.10)., one gets

SN

Ba p {késl(_i)k—sj ®s3+1"5 g1 Dy (25tKDy)
k=0 j=0 (k-8j)! (sn-k)! =% J
SN
n sn-g8j a .. .+s8ib_ . N (a.+{k+sj)}b.)
= ¥ T (_1)k sj+l si+l ‘:;1 i i Bj
j=0 k=0 k! (sn-sj-k)!: °

i?x (a;+(k+8j)b;)
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n-1 sn-sj (a_. ,+sib_. .) n-sj e
= Bn + E 83+1 BJ+1 BJ E ( l)k (snkSJ )'
j=0 k=0 (sn-gj)! k=0
2N
{tgnﬁz(ai*‘(k*’sj)bi)} ’

Since, the product terms in this last expression represents

the polynomial of degree sn-sj-1 in k, it follows from (5.4.1)
that the inner series vanishes for all j = 0,1,2.....n-1, and
thus,

B = Bn

which proves that (5.1.10) implies (5.1.11).

In order to prove that (5.1.10) also implies (5.1.12), put

n { n } Ak
a_ = T M (a,+kb,)
" x=0 ‘i=1 * (n-k)!

Then with the aid of the relation (5.1.10), and proceeding as

above, one finds
N

o = {nésl (2554178305 441! B “553(,1)k (e i3, (a +(k+83)b,)
D20 (n-sj) ! J =0 k si+1 .
12‘ (°i +(k+83)bi )
It is not difficult to see that when n-sj=1, that is n >s8j.
j=0,1,2,..., then the inner series in the above expression

vanishes in view of the result (5.4.1). Thus, (5.1.10) implies
(5.1.12).

Assume now that both the relations (5.1.11) and (5.1.12)
hold true; and start with the relation

n Ak

(5.4.2) a_ = (ai+kbi)}

{.

0 i

S E

1 {n-k)!
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The inverse series of this is readily obtainable from the

pair (5.1.1). in the form :

k+s ol

n
n-k -4 k

{(5.4.3) A_ = ¢ (-1) {a +kb } f1 (a.+nb.) e

n k=0 k+1 k+1 {p4 i i } (n-k) !

Since, (5.1.12) holds, hence
(5.4.4) a, = 0 for n >sm, m = 0,1,2,...
When n =sm, then the relation corresponding to (5.4.2) will
be non-zero:; in fact, in this case, one finds
ém sm Ak
(5.4.5) a_ = Bmzkgo {0, (a;+xp0} —

Thus, the inverse series relations (5.4.2) and (5.4.3)., in

view of (5.4.4) and (5.4.5) will become

sm Sm Ak
Bm = ¥ I {ai+kbi)}
k=0 j=1 {sm-k)!
implies /
[(m/s] sk+t a
_ 48k = -t
A= £ (-1 (8gy,1*8kbgy 1) {0, (ay+mb)} (m-sk) !

k=0

which completes the 'if'-part and hence., the proof of the theorm.

5.5 PROOF OF THEOREM-7

In order to prove the first part, i.e. (5.1.13) implies
(5.1.14) and (5.1.15), it may be seen that with an appeal to the
relation (5.1.13), the left hand member of (5.1.14) which is

denoted for brevity by D, can be expressed as

sn [k/s] . L a_. +q-sj b .
D= ¥ > (_1)k+BJ q(k(k-‘!)*s_}(sj—zkﬂ))/z 8j+1 Bj+l |
k=0 3=0 [Qlgnx [ady g5
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Byt

BN _ _
Ad e Ko} { B (agea bOYY D

n-1 . D. sn—-sj
-8)] J k  ki(k-1)/2
=D + ¥ (a_. .+q b ...) r (-1) g .
n j=0 si+l sij+l {q)sn_sj k=0

an—-s8j n ~-k-87 il -k-8j -1
L7707 1{ 0 Ca 4a b} { OCasta b3}

Here, the ratio of the product terms represents a polynomial
of degree (sn—-sj-1) in q“k, and therefore on making use of the
known formula (Carlitz [3])

(1+qu—1)

1

N
(5.5.1) [ qFk)/2 (h1 X* =

k=0 k

[ -4

the inner series in the above expression becomes representable

in the form:

sn-—-sj . n-sij-1
k - ~-&k
(-Df gtz pEnedy TpT e, g7

k=0 {=0

and hence one gets
n-1 . D, n-sj-1 n-8j
-8 —+k-
D=0D + [C(a_..+g ) £ ¢, N (i1-q 3
n j=0 sij+l sj+1 CQ]3n~sj =0 4 k=1
s Dn ,

which shows that (5.1.13) implies (5.1.14).
The relation (5.1.13) also implies (5.1.15), which can be

proved as follows.

If
n n C
k(k—)/2 -k k
= n . . P R
n 7 5 ¢ {Dagra ™ p0} 1 n—k

then on substituting the relation (5.1.13) for C,, and proceeding

k:
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as above, one obtains

. D, -5]
P = {nés}(a +q Sy Ly n 53(~1)k /2
n =0 sj+1 sij+l IQ]n~sj Xeo
. n X B)+1 )
n-53 ~-k-8j ~k-sj -1
[ {8, (ay%a b))} {0, (a;%a L)

In this, the ratio of the product terms when replaceiby its
equivalent polynomial form :

n-sj-1
~-rk
L ¢ 4
r=0

leads to the following expression.

n §=0 aj+l sj+ {q}n_sj —0 r k=0
-] _-r
.P X ] (-qg 13

wherein the inner-most sum with the help of the formula (5.5.1)

assumes the form:

n—-sj _ _ _ _ - — e
n  (1-q r+k: 1) = (1-q r) (1-q r+1) ... (1-q r+n-g8j 1)’

k=1
which ultimately gives

ﬁ% = 0 when n’>sj, ij=0,1,2,...

Hence, (5.1.13) implies (5.1.15), and with this the proof of

the first part is completed.
Conversely, if the relations (5.1.14) and (5.1.15) hold

true, then in order to show that these relations imply (5.1.13),

consider the relation
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C
_ k(k-1)/z ¢ -k _k
(5.5.2) ¢, = L d {D, e 20} g ok

But this implies that (cf.(5.1.2))

-k
ak+1+q b

k+1
A (8gtnby)

(

n
(5.5.3) C = L (-1 7k qk(k—zn+¢h&

k=0

Since (5.1.15) holds, therefore
(5.5.4) ¢n = 0 if n>sm, m = 0,1.2,...,
and when n = sm, then on comparing the expression corresponding
to ¢sm with (5.1.14), one finds
(5.5.5) ‘ﬁsm = Dm.

Thus, the inverse relations (5.5.2) and (5.5.3), in view of

{5.5.4) and (5.5.5). get changed to

sm [ ]
Dm - qk(k«i)/'z {Lga(ai+q kbi)} _[_zﬁ___k___

k=0 sm~k
implies

~-SK

(m/8] m-8k sk(sk-zmts) /2 a3k+1+q bsk+1 Dk
Cp= I (D" g :

k=0

~m
igz(ai+q bi) [q]m~sk

which completes the proof of the converse part and hence the

proof of theorem~7.

5.6 SOME MORE EXTENSIONS

The inverse series relations proved in the forme of theorems
4 to 7 suggest some more inverse relations including their
alternative versions which are given below as theorems 4A, 5A, 6A

and 7A.
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In the first place, replacing Wn by Wn /(an+1 +n bn+1) in

theorem—-4, one obtains

THEOREM -~ 4A.

[n/s] n-sk { n } V}r
W = Y§ (-1) (a_, ,+nb ) {11 (a,+skb.) -
n k=0 n+l1 n+l =g 1 i (n-sk) !
if and only if
sn k+1 - Wk
vn = L {\gt (aj+snbi)} {Bn-k)!
k=0
and
n k+d - Wk
REO { ‘Qi(ﬂii’nbi)} m = 0, when n*ms, m=1,2.3,...
Next, replacing Bn by Bn /(a3n+1 + snb5n+1), in theorem-6,
one easily gets
THEORAM - 6A.
{n/s} _ sk+i N B
A = E DL na n )t —E
k=0 - (n-sk)!
if and only if
sn s A
By = L (85441%80bgn44) {iga (ai+kbi)} —F
k=0 - {sn—-k)!
and
n {n } Ak
r J1 (a.+kb.) —— = 0, n>ms, m=0,1,2,...
x=0 -t 1 (n—k)!

Likewise the alternative forms of the theorems 5 and 7 may
also be obtained -; however the following inverse relations are
worth mentioning which follow from these theorems with g replaced

-A
by q .
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In fact, theorem - 5 with g replaced by q_x, assumes the

form :
(n/s] _ _ n T
U = T (-1)" s}s q Ask{sk-1)/2 {r} (a +q>‘3kb.)} - l_{
n 1=4 1 i A A
k=0 (@ :g )n~sk

if and only if
Ak

T - g“ Ak(k-zsn+1) 2 Ox+1t9 Pry Uy
n a k+4
k=0 (a.+ ASsn b.) ( A A
o (agtg i LIRS B SN
and
Ak
g g MkGezentnyze Ckertd Pres Yk .
k+4 g
k=0 An R
g (a;+q7 7 by) (@ :q ) 4

when nms, m=1,2,3,...

In this, on making use of the formula

-1, -1 .. _1 N-m -N(N+)/2 -m(m—2N-1)/2
(q ;q )N""m - ( 1) q q (q}N__m.
and then replacing Un by q’m("ﬂ)/2 Un‘ and Tn by 1:;[7\‘3"“?”“1)/z Tn’

one arrives at

THEOREM - 5A.

[n/s] n T
Un - T qksk(sk—-znﬂ)/z {gi(ai+q>\skbj )} . 7}:
k=0 (q :q )n sk
if and only if
Ak
T = p(enySnk ke Pkt e Yk
n k=0 k;; + AsSn b A A
- 41 (9544 AL L JP PN
and
AR
n n-k Ak(k-1)/z °k+179  DPyyy Uy
kzo (~1) q Yea =0
= AN A A
o (agra ™ by) (@a),
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when n# ms, m = 1,2,3......

In a similar manner, it can be shown that theorem—7 with g

-

replaced by q ', gets transformed to

THEOREM -~ 7A.
A sk

c = (n/s] Ask{sk-v)/2 ask+1+q bsk+1 Dk
n kEO 4 skes An X A
i::rs] (ai+q bi) (q :d )'l'i'—sk

if and only if

Ak(k-zan+1) /2

3N an
_ sn—-k Ak 1
Pp = E (1) XX Jtag+a” pOF
k=0 (@59 ) g,
and
n Ak(k-2n+1) /2
n-k n Ak
r (-1 {Il(a.+q b.)} C, = 0, when n>ms,
BN i=1 1 i k
k=0 (@:q9 ), 4
m= 0,1,2,

5.7 PARTICULAR CASES OF THEOREMS 4 TO 7A
Since the inverse relations in (5.1.1) 1include as special
cases the inverse pairs (1.2.13) and (1.2.17), and also the
inverse series of various polynomials like Jacobi, Hahn, Racah
and that of Wilson (quoted in section-1.2 as (1.2.3) to (1.2.8),
(1.2.32), (1.2.33)), it becomes straightforward to provide
extensions of all these particular cases by means of theorem-4.
For example, the inverse pair (1.2.13) may be extended to the

i

form :
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[n/s]

— + 3
f£n) = E (-DTSK carhely gl
X=0 '
(5.7.1)
8n
a(n) = zo (aggsnj* A,y (a+bk-k,b) (k).
k=

Similarly, the pair (1.2.17) assumes the extension in the

form :
{n/s]
_4yn-8k ,a+n+bs G(k)
F(n) = § (-1) ¢ h ]3 (n-8k) !
k=0
(5.7.2)
sn
_ a+bsn+k,-1 a+bk+k+1 F(k)
G6(n) = kEO ( X kb a+bsn+k+1 {(sn-k)!

It is to be noted that the extensions of the aforementioned
poclynomials provided by theorem—4 are of the same forms as those
considered in chapter—-4 ((4.1.7) to (4.1.11)), and therefore,
they are omitted here for brevity. However, it is worth
mentioning here that the relations in (5.1.1) can also be
particularized to obtain certain inversion pairs that appear in
the classification due to John Riordan. They are Gould class (1),
simpler Legendre class (1). and the Legendre - Chebyshev classes
{3), and (5). In fact, their extended versions which are deduced
in chapter-4 (Table-20), can also be obtained from theocrem—4.

Theorem-4A on the other hand. provides the extensions of
some other pairs belonging to the above mentioned classes:; that
is, the Gould class(2), simpler Legendre class(2), and the
Legendre—~Chebyshev classes (1) and (7). These extended forms are

also embodied in Table-20.
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The specializations of theorems 6 and 6A are in fact, more
interesting because the forms in which the inverse pairs
(1.2.13), (1.2.17) and those of Gould classes, simpler Legendre
classes etc. (mentioned above) admit extensions by means of these
theorems, are different from those of Table-~20.

For example, by setting ay= p—-i+l and, bj = q for all 1, in
theorem—-6, one finds after a little simplification, the following

pair

8n [n/s] ptgek-sk
= p+qk-k) n-sk p+gn-s
a =% ( " b, ;b = r (-1) ———eee - a ..
n oo 8n-k k n k=0 p+qn-sk n-gk k

It may be seen that this pair provides an extension of Gould
class (1) of Table-2. Likewise, with aiap*i+2, and bi= q.

theorem—6A yields the relations

sn p+gsn-sn+l {n/s] :
T .ptqgk- . _ _. n-8k _p+gn-sk
¢ b, b T (-1) ¢

a = = ) a .
sn k=0 n—-sk k

n n

k=0 p+gk-sn+l
which evidently extends the Gould class (2) of Table-2.

In a similar manner, the other inverse pairs may be put in
the extended forme by choosing a; and bi appropriately. The

following table embodies all these extensions along with the

particular choice of ay and bi
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Table-22 : Bxtensions of Riordan's inverse relations

3] [n/s] o-sk
6(n}= X o Skl glal= % {-1) 4y 6(X)
k=0 k=0
Theoren-Ko. [N b, .k dy & Extension of
class (No.) 1
Table-¥o.
prak-} ptgsk-sk  ,ptgn-gk Gould class {1),
Theorem-6 p-itl q ( ) e ) Table-2
sn-k pign-sk n-sk
ptgsn-sntl piqk-k pign-sk Gould class {2},
Theoren-6A p-it2 q —e ( ) Table-2
ptgk-satl sa-k o-sk
pisntk pt2sktl ptin simpler legendre
Theorem-6 pHi H ( ) ————— ( ) Class {1],
sn-k pintskil N n-sk Table-5
ptisn ptentl ptin sinpler Legendre
Theoren-63 pti-1 1 e ) ( Class (2),
piantk sn-k n-8k Table-5
ptsen ptck-késn-1 pfcn Legendre-Chebyshev
Theoren-6A pti-1 | ¢-1 —— ) Class (1],
ptck sn-X n-sk Table-6
pick ptsck ptondn-sk-1 Legendre~Chebyshey
[Theoren-6 p-14l | ol ) — ) Class (3},
sn-k pten n-8k Table-6
pick-kesn ptack+l pten Legsndre-Chebyshev
Theoren-6 pti c-1 ( ) ( ) Class (5},
sn-k pten-nisk+] Table-6
ptecntl prek pﬂ:nﬂl-sk Legendre-Chebyshev
Theorem-62 p-it2 | ctl e ( ) Class (7).
ptckik-gntl  sn-k n-gk Table-6
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Coming to the specializationsgof theorems 5, S5A, 7 and 7A,
it may be observed that the basic pairs cited in (1.5.4) and
(1.5.5) and also the basic polynomials of lLaguerre, Jacobi, Hahn
etc. are contained in the pair (5.1.2) and therefore, their
extensions may be carried ocut in the forms as given below.

a+r i

If ai=1 and bi= -q , then theorem-5A yields an extension

of (1.5.4) in the following pair.

( (n/s] [q
F(n) = ¥ q?\sk(skﬂnﬁ)/z [di‘ﬁﬂxsk] . l]n .
k=0 (q:q )n—sk
(5.7.3) A
G(n) = gn(_l)sn_k qu(k-t)/z 1_qa+kk+k+1 {q]k
= _atAsntk+l AA
k=0 1-¢ (a®a™
) . [a+kin+k}—: FX)

An extended version of (1.5.5) may be obtained similarly.
Further, in order to carry out extension of the basic Laguerre
polynomial cited in (1.5.13)., set ai=1, and bi=0 in theorem—SA.

Then on replacing Tk by

q)\Bk(skﬂa-n ) (1-—q)8k xk
falgy [aal,,

’

(a}

and denoting the polynomial thus obtained, by L (xjq). one

n.s,\
finds
sk _k
L)l = (n/8]  ; sk(sk+a) (1-q)7" x
i'l.'S.K IQ) - 2— q A A
k=0 {aqlsk (q :q )n_sk {q]Bk

(cf. (1.5.13) with A=1, s=1),

whose inverse relation may be expressed as
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(at)

(1-9)5" x" ;“( 1)5nk Ohsn(sn+t) mk (k1)) /2 [alg, Lk ga(xl@)
T feql_. - X A
kxq}sn k=0 {aq}k {9 :q )sn“-k

The polynomials of Wall and of stieltjes—Wigert may be
extended in a 1like manner. Also, the extensions of basic
polynomialg of Jacobi, Hahn etc. which are obtainable from
theorem~5A, are of the same forms as those of chapter-4
{4.4.8) to ((4.4.13)), and therefore, they are omitted here. It
may be seen that the polynomial gﬁ(x,r,s;q), when r-s is a
positive integer, is also contained in theorem-5A.

As noted in section-3.4, the pair (5.1.2) yields the basic
analogues of certain classes of inverse relations viz. Gould
classes (1),(2); simpler lLegendre classes (1).,(2); etc., thus by
means of theorem~-5A, it becomes straightforward to provide
extensions of these classes of inverse series relations. In fact,
these extended versions coincide with those recorded in Table-21
(section—-4.5) and therefore, they are not repeated here for the
gake of brevity.

However, the special instances of tﬁeorems 7 and 7A
corresponding to the basic Gould classes (1),(2): basic simpler
Legendre classes(l),(2):and the basic Legendre-Chebyshev classes
(1).(3).(5).(7) are more interesting because they provide the
extensions of all these inverse relations in the forms which are
different from those listed in Table-21. This is illustrated here
_qp~i+1

by means of the choices ai=1, b.=

i and, by writing m for A

in theorem-7A.
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8ince in this case,

[q]

sk+d

mn _ +mn-sk - p+mn
g, (ay+d by) = (& Tox+1 (ql
q ptmn-sk-1
and
sn {q]
mk _ p+tmk-sn+l _ p+mk
J, tagra by = lq lgx =

[Q]p+mk—sn

therefore theorem-7A gets reduced to the form :

-

+msk~sk
(. . (nd=d gmek(sk-1)/2 1-q taly_gk
n = _.p+tmn-sk m__m
k=0 1-q (@:a) o
p+mn—sk
(5.7.4) A5 sk ] D,
sn _ - [al___
D = T (180 k qu(k-—*zsnﬂ)/z Pﬂnk_k 1 sn-k C.;
n sn-k m__m k
L k=0 (q :q )sn~k

which provides an extension of the basic Gould class (1) of
Table~15 (Ch.3). This pair also provides a basic analogue of the

first pair of Table-22.

In a similar manner, by specializing a, and bi
appropriately, one obtains the extensions of the other basic.
classes from theorem 7 or 7A. The following table encompasses all

the extended basic classes.
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Table-23 Extensions of basic anslogues of Riordan’s inverse pairs

80 {n/s]
Ak(k-28041)/2 n-8X  Ask{sk-1)/2
h=2% d i G: G= = (177 g Bx b
k=0 k=0
Theoren-Fo. b; LY Bx Extension of
with a;=1 class (No.} in
Table-No.
Theoren-7d | -¢ i (q)pemk-X a-¢ ﬁusi-sk) (4dpegn-sk-1 6ould class (1)
with A=m o Table-2
(9)ptuk-sn (f":f'lonx {t)pipn-n (f:h-sk
Theore-7A' ‘qp-m (9] pank-k u,qpﬂmn-snﬂ) (9} ptmn-sk Gould class (2)
with A=m 3 = Table-2
(ol prnk-snst (€0 )0k IFTLT N
Theoren-7A —qp H {q}pfsmk (l-qp mxu) (alpe2n simpler Legsndre
with A=1 Class (1),
[‘ﬂpﬂk (9)gn-k [ﬂp{nfskﬂ i9) -8k Table-5
1w
Theoren-7A -qp H-l (‘ﬂpfsn*k-—l (l-qp +2sn) [q]p,zn simpler Legendre
vith A= 1 Class (2},
{Alpsx  (Q)gn-k {9 penssk [9)p-s2 Table-5
) * j=
Theoren-7A -qp H-l [4)pect-een-1 (!-qp fsca) {a)peen Legendre-Chebyshev
vith A =c-1 P par Class {1},
{gdpeck (0 50 lgp-k {a)psca-nesk (4 :0 Jp-px ) Table-6
Theoren-7A -qp-”1 (9] peck (l*qpuﬂ) [9)ptcnsa-sx-1 Legendre-Chebyshev
with ) =ctl Class (3)
+ ol 41 ctl !
(9] ptckek-gn U hT iy PN (9] ptcn (070" gk Table-6
Theoree-TA | - [9)psck-kesn (1-¢ tocksl (a)pscn Legendre-Chebyshev
with A =¢c-1 P peTa Class (5),
(Qhpeck (9 750 Dgp-x {alptcn-nesket (4 G gk | Table-§
. »
Theoren-70 | - i#2 {Q)psck u~qp+scnﬂ) () prcatn-sk | Legendre-Chebyshev
nith A =cél ol ol PR i Class (7],
[a)pecksk-sntt €0 +0 Jgn-k | {alpscn (07 50 Dpegk | Table-6

(* indicates that in theorem-7A, Dy should be replaced by Dy/(agyyy + quk bgys1) first, and then a; and b; should
be specialized).
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