Chapter 4

Genotypic Characterization of Quinolone Resistant Isolates of Vibrio and Shigella Species and Correlation with their Phenotypes

4 Genotypic characterization of quinolone resistant isolates of *Vibrio* and *Shigella* isolates and correlation with their phenotypes

4.1. Introduction

The quinolone resistance in bacteria is mediated by the mechanisms such as mutations in the genes for drug targets, i.e. genes of DNA gyrase (*gyrA* and *gyrB*) and topoisomerase IV (*parC* and *parE*), efflux activity, inactivation of the drug by quinolone-modifying enzyme (AAC (6²) Ib-Cr) and the target protecting Qnr protein [Kim and Hooper, 2014].

Spontaneous mutations at the quinolone-resistance-determining-regions (QRDRs) of topoisomerase genes serve as the main mechanism of resistance to quinolones as they confer moderate to high-level resistance [Jacoby, 2005]. In E. coli, the regions encompassing amino acids 51 to 106 in GyrA and amino acids 23 to 176 in ParC are referred as ORDR regions [Kim and Hooper, 2014]. Mutations at 83rd and 87th amino acid positions of GyrA and amino acid positions 80th and 84th of ParC are more prevalent in quinolone resistant bacteria. Mutations in GyrB and ParE occur with lesser frequency [Kim and Hooper, 2014]. Accumulation of multiple mutations in the topoisomerase genes leads to clinical failure of quinolones [Drlica and Zhao, 1997; Drilica et al., 2009; Kim and Hooper, 2014]. Efflux activity is another mechanism of resistance to quinolones which is intrinsic and non-specific. Efflux pumps throw the antibiotics out of the cell and provide the cell a surviving ability at suboptimal concentrations of antibiotics [Van Bambeke, 2005]. The genes for efflux pumps may either be chromosome-borne (such as NorA, NorM, AcrB, VcrM, VCH, VFH) [Morita, 2000; Van Bambeke, 2005; Piddock, 2006; Mohanty et al. 2012] or plasmid-borne (such as QepA and OqxAB) [Hansen et al. 2004; Yamane et al. 2007]. Onr proteins belong to pentapeptide repeat family and protect DNA gyrase from quinolone action. Various allelic forms of *qnr* genes have been reported till date such as *qnrA*, *qnrB*, gnrC, gnrD, gnrS and gnrVC [Strahilevitz et al. 2009; Rodriguez-Martinez, 2011]. The other mechanism of quinolone resistance by a variant of

aminoglycoside acetyltransferase, AAC (6')-Ib-cr is an interesting example of promiscuous drug resistance evolved in bacteria. Aminoglycoside acetyltransferase having two amino acid changes (Trp102Arg and Asp179Tyr) confers an advantage to additionally inactivate quinolones apart from aminoglycosides [Robicsek et al. 2006].

As the factors such as Qnr, AAC (6') Ib-cr and efflux pump genes are mainly plasmid-mediated, they are referred to as plasmid-mediated quinolone resistance (PMQR) factors (Table 4.1).

Gene	Description
qnrA, qnrB, qnrC, qnrD, qnrS and qnrVC	The plasmid-borne genes encoding the pentapeptide repeat proteins which render resistance against quinolones
aac(6')Ib-cr	The plasmid-borne gene encoding a variant of aminoglycoside acetyl transferase which gives cross-resistance to fluroquinolones
qepA	The plasmid-borne gene encoding an MFS transporter that effluxes out quinolones such as norfloxacin and ciprofloxacin
oqxA	The plasmid-borne gene encoding the A subunit of OqxAB, an RND transporter, that confers resistance to oloquindox, nalidixic acid and ciprofloxacin
oqxB	The plasmid-borne gene encoding the B subunit of OqxAB, an RND transporter, that confers resistance to oloquindox, nalidixic acid and ciprofloxacin

Table 4.1. Description of PMQR genes screened in this study

Efflux pumps and PMQR factors generally confer low to moderate level of resistance to quinolones but in combination with mutations in the topoisomerases, they help the bacteria to achieve the clinical breakpoints of quinolone resistance

[Strahilevitz et al. 2009; Rodriguez-Martinez, 2011]. Though these factors have been well studied, there is only limited information on the role they play in *Vibrio* and *Shigella* species. The present study aimed at a thorough genotypic characterization of quinolone resistant *Vibrio* and *Shigella* isolates and the correlation of their genotypes with respect to quinolone resistance phenotypes in these major diarrhea-causing pathogens.

4.2. Results

Following phenotypic characterization of quinolone resistant clinical isolates of *Vibrio* and *Shigella* spp., they were subjected to a detailed genotypic characterization which involved deciphering of various genetic factors responsible for that quinolone resistance phenotype. All the selected quinolone resistant isolates were subjected to PCR screening of PMQR determinants and few representative quinolone resistant isolates were subjected to mutation analysis of QRDR regions of DNA gyrase and topoisomerase IV.

4.2.1. PMQR determinants found in the quinolone resistant isolates and their expression in the native isolates

All the quinolone resistant *Vibrio* and *Shigella* isolates were screened for the presence of PMQR determinants such as *qnr* genes (*qnrA*, *qnrB*, *qnrC*, *qnrD*, *qnrS* and *qnrVC*), *aac* (6') *Ib-cr* gene and efflux genes (*oqxAB* and *qepA*) through PCR as described in section 2.6.1. *V. fluvialis* BD146 was found to have two PMQR determinants, *qnrVC5* and *aac* (6') *Ib-cr* genes whereas *V. fluvialis* L10734 and L9978 possessed *qnrVC5* gene alone. The *qnrVC5* allele from the clinical isolates of *V. fluvialis* was reported for the first time from this laboratory during this study [Rajpara et al. 2009; Singh et al. 2012; Vinothkumar et al. 2016]. In the case of *V. cholerae* and *V. parahaemolyticus* isolates, none of the screened PMQR determinants were present. *S. flexneri* M11560 was found to harbor *qnrS1* gene in its plasmid preparations.

The expression of the above mentioned genes in the parent isolates was confirmed using reverse-transcription PCR, as the bands of the expected sizes i.e. 657 bp for qnrVC5, 608 bp for aac(6') *Ib-cr* and 657 bp for qnrS were observed in the corresponding isolates after reverse transcription (Fig. 4.1).

Figure 4.1. Expression of *qnrVC5, aac(6') Ib-cr* and *qnrS1* genes in the native hosts. A) Expression of *qnrVC5* and *aac (6') Ib-cr* genes in *V. fluvialis* host. Lane 1, 3, 5: RT-PCR products of *qnrVC5* transcript (657 bp) from the *V. fluvialis* hosts BD146, L10734 and L9978 respectively; Lanes 2,4, 6: Negative controls (without reverse transcription step) for RT-PCR products of *qnrVC5* transcript from the *V. fluvialis* hosts BD146, L10734 and L9978 respectively; Lane 7: RT-PCR products of *aac(6') Ib-cr* transcript from the *V. fluvialis* hosts BD146, L10734 and L9978 respectively; Lane 7: RT-PCR products of *aac(6') Ib-cr* transcript (608 bp) from *V. fluvialis* BD146; Lane 8: Negative control (without reverse transcription step) for RT-PCR product of *aac(6') Ib-cr* transcript from *V. fluvialis* hosts BD146; 100 bp Gene ruler (Fermentas) was used as the marker (M). B) Expression of *qnrS1* gene in *S. flexneri* host. Lane 1: RT-PCR products of *qnrS1* transcript (657 bp) from *S. flexneri* M11560; Lane 2: Negative control (without reverse transcription step) for RT-PCR product of *anc(6') Ib-cr* transcript (657 bp) from *S. flexneri* M11560; Lane 2: Negative control (without reverse transcription step) for RT-PCR product of *qnrS1* transcript from *S. flexneri* M11560. 100 bp Gene ruler (Fermentas) was used as the marker (M).

4.2.2. Mutations in the QRDR regions of topoisomerase genes and their role in quinolone resistance

Out of nine quinolone resistant *V. cholerae* isolates (Table 4.2), four representative isolates (IDH02118, IDH02101, IDH01681 and BD81) were analyzed for the presence of mutations in the QRDR regions of topoisomerase genes as described in section 2.6.2. *V. cholerae* O1 El Tor N16961 was used as a negative control in this study (Table 4.2).

Table 4.2. Phenotype-genotype correlation in quinolone resistant isolates of

 Vibrio cholerae

S.	<i>V</i> .	Antibiogram profile	MIC (µg/mL)	Mutationa	
No.	cholerae		NAL	NOR	CIP	withations
1.	IDH02365	R-NAL, I- CIP	≥256	1.5	3-4	ND
2.	IDH02233	R-NAL	≥256	-	-	ND
3.	IDH02118	R-NAL , I-NOR	≥256	0.75	-	GyrA (S83I), ParC (S85L)
4.	IDH02101	R-NAL, I- CIP	>256	-	3-4	GyrA (S83I), ParC (S85L)
5.	IDH02087	R-NAL, I-NOR	>256	2	-	ND
6.	IDH01957	R-NAL	≥256	-	-	ND
7.	IDH01738	R-NAL, I- CIP	>256	-	3-4	ND
8.	IDH01681	R-NAL	>256	0.75- 1.5	3	GyrA (S83I), ParC (S85L)
9.	BD81	R-NAL	>256	-	-	GyrA (S83I), ParC (S85L)
10.	N16961*	S-NAL, NOR, CIP	0.75	0.094	0.032	None

NAL-Nalidixic acid; NOR-Norfloxacin; CIP-Ciprofloxacin; ND-Not done; * Quinolone sensitive isolate

All the four *V. cholerae* isolates were found to have two amino acid mutations; one in GyrA (S83I) and another one in ParC (S85L). From their phenotypes, it was apparent that these mutations in *V. cholerae* isolates chiefly conferred reistance to nalidixic acid whereas contribution towards resistance to ciprofloxacin and norfloxacin was not very significant.

S No	V	Antibiogra	MIC (µg/mL)			DMOD	
	v. fluvialis	m profile	NAL	NO R	CIP	OF X	Mutations	factors
1.	L13828*	S- NAL, NOR, CIP, OFX	1.5	0.25- 0.38	0.125	0.75	None	-
2.	L13230	I-CIP	-	-	0.125	-	ND	-
3.	L98411	I-CIP	-	-	0.19	-	ND	-
4.	L10734	R-NAL I-CIP, OFX	>256	-	16	24	GyrA (S83I), ParC (S85L)	qnrVC5
5.	L9077	I-NAL	1.5	-	-	-	None	-
6.	L12387	R-NAL I-NOR, CIP	>256	8	8-12	-	ND	-
7.	L9978	I-CIP	-	-	0.25	-	None	qnrVC5
8.	L15318	R- NAL I-NOR, CIP, OFX	>256	16	16-24	16	GyrA (S83I), ParC (S85L)	-
9.	BD146	R-NAL, NOR, CIP I-OFX	>256	32	48	32	GyrA (S83I), ParC (S85L)	qnrVC5, aac (6') Ib-cr
10.	BD123	R- NAL I-NOR, CIP	>256	8-12	12	-	GyrA (S83I), ParC (S85L)	-
11.	PL78/6	R-NAL, CIP I-NOR, OFX	>256	12	24	32	GyrA (S83I), ParC (S85L)	-
12.	PL171b	R-NAL, NOR I-CIP, OFX	>256	12	16-24	32	GyrA (S83I), ParC (S85L)	-

Table 4.3. Phenotype-genotype correlation in quinolone resistant isolates of Vibrio fluvialis

NAL-Nalidixic acid; NOR-Norfloxacin; CIP-Ciprofloxacin; OFX-Ofloxacin; ND-Not done; * Quinolone sensitive isolate

Out of eleven selected *V. fluvialis* isolates, eight isolates (L10734, L9077, L9978, L15318, BD146, BD123, PL78/6 and PL171b) were tested for the involvement of mutations in topoisomerase genes (Table 4.3). When compared to the sensitive strain L13828, the isolates L10734, L15318, BD146, BD123, PL78/6 and PL171b possessed mutations in GyrA (S83I) and ParC (S85L) as also observed in *V. cholerae* isolates. No mutations were observed in the isolate L9978 which possessed *qnrVC5* gene and showed slightly elevated MIC of ciprofloxacin than the sensitive isolate L13828 (Table 4.3).

S.	<i>V</i> .	Antibiogram	MIC (µg/mL)			
No.	parahaemolyticus	profile	NAL	NOR	CIP	Mutations
1.	IDH01415*	S-NAL, NOR, CIP	1	0.19	0.19	None
2.	IDH01402	I-NAL, NOR, CIP	1-1.5	0.125	0.125	ND
3.	IDH01473	I-CIP	-	-	0.25	ND
4.	IDH01998	I-CIP	-	-	0.19- 0.25	ND
5.	IDH02068	I-CIP	-	-	0.19- 0.25	ND
6.	IDH02189	I-NOR, CIP	-	0.125	0.25	None
7.	IDH02191	I-NAL, CIP	1.5	-	0.19	None
8.	IDH02208	I-CIP	-	-	0.19	ND

Table 4.4. Phenotype-genotype correlation in quinolone resistant isolates of Vibrio parahaemolyticus

NAL-Nalidixic acid; NOR-Norfloxacin; CIP-Ciprofloxacin; ND-Not done; * Quinolone sensitive isolate

As mentioned in chapter 3, all the seven selected *V. parahaemolyticus* isolates (IDH01402, IDH01473, IDH01998, IDH02068, IDH02189, IDH02191 and IDH02208) included in the study showed MIC similar to that of sensitive isolate IDH01415. Hence two representative test isolates, IDH02189 and IDH02191,

were checked for the presence of mutations in the topoisomerase genes along with sensitive isolate IDH01415 and none of the above tested isolates were found to have mutations in the QRDR regions of *gyrA*, *gyrB*, *parC* and *parE* genes (Table 4.4). Hence, intermediate resistance shown by these *V. parahaemolyticus* isolates in antibiogram assays and slight elevation in MIC of quinolones were presumably due to some non-specific factors such as efflux pumps.

Seven representative quinolone resistant *Shigella* isolates (four *S. flexneri*, two *S. dysenteriae* and one *S. sonnei*) and the sensitive *S. flexneri* NK 4/08, were subjected to topoisomerase mutation analysis. Among *S. flexneri* isolates, NT4966, M11560, B36, NK4/08 and NK05/08 were analysed for mutations in the QRDR regions of their topoisomerase genes. The isolate *S. flexneri* 6 (B36), which showed the highest level of resistance to all the four tested quinolones possessed three mutations, two in GyrA (S83L and D87Y) and one in ParC (E84K). The *S. flexneri* 2a isolates NT4966 and NK05/08, which showed slightly lower resistance to quinolones than the isolate B36, possessed a different combination of mutations in GyrA (S83L and D87N) and ParC (S80I). A novel mutation outside the QRDR of GyrA (H211Y) earlier reported from Bangladesh strains [Azmi et al. 2014], was also detected in *S. flexneri* 2a isolates NT4966 and NK05/08.

As both the *S. dysenteriae* isolates NK4771 and NK3898 showed different quinolone resistance phenotypes, they were subjected to topoisomerase mutation analysis. The *S. dysentaeriae* NK4771 isolate which showed high nalidixic acid resistance and intermediate level of ciprofloxacin resistance was found to possess one mutation in QRDR of GyrA (S83L). A single mutation in the 87th amino acid of QRDR of GyrA (D87Y) was found in *S. dysenteriae* NK3898 that explained the varying level of resistance to nalidixic acid exhibited by this isolate when compared to NK4771. In an earlier study, a novel mutation outside the QRDR of GyrA (V196A) was reported from the clinical isolates of *S. flexneri* and *S. dysenteriae* [Taneja et al. 2015]. Same mutation was also observed in both the *S. dysenteriae* isolates NK4771 and NK3898 tested in this study.

The *S. sonnei* isolate NK2070 which was resistant to nalidixic acid possessed a single mutation in QRDR of GyrA (D87Y).

 Table 4.5. Phenotype-genotype correlation in quinolone resistant isolates of Shigella species

C N-	Studin name	Antibiogram	MIC (µg/mL)				Mutations/
5. NO.	Strain name	profile	NAL	NOR	CIP	OFX	PMQR
1.	<i>S. flexneri</i> 1a NK 4/08*	S-NAL,NOR, CIP, OFX	1.5	0.064	0.06 4	0.19	None
2.	<i>S. flexneri</i> 2a NT 4966	R-NAL, NOR, CIP I-OFX	>256	16-24	24	24	GyrA (S83L, D87N, H211Y [#]), ParC (S80I)
3.	<i>S. flexneri</i> 1b M 11560	I-NAL, CIP	6	-	0.50	-	QnrS
4.	<i>S. flexneri</i> 1a NT 5120	I-NAL	1.5	-	-	-	ND
5.	<i>S. flexneri</i> 6 B 36	R- NAL, NOR, CIP, OFX	>256	32	48	≥32	GyrA (S83L, D87Y), ParC (E84K)
6.	<i>S. flexneri</i> 2a NK 05/08	R-NAL, NOR, CIP I-OFX	>256	24-32	32	32	GyrA (S83L, D87N, H211Y [#]), ParC (S80I)
7.	<i>S. flexneri</i> 3a IDH 00177	R-NAL, NOR, CIP I-OFX	>256	24	24- 32	24	ND
8.	<i>S. flexneri</i> 4a NK 23/08	I-NAL	1.5	-	-	-	ND
9.	<i>S. dysenteriae</i> 12 NK 3898	R-NAL	48	-	-	-	GyrA (D87Y, V196A [#])
10.	S. dysenteriae 3 NK 4771	R-NAL I-CIP	>256	-	0.38	-	GyrA (S83L, V196A [#])
11.	S. sonnei NK 2070	R-NAL	≥256	-	-	-	GyrA (D87Y)

NAL-Nalidixic acid; NOR-Norfloxacin; CIP-Ciprofloxacin; OFX-Ofloxacin; ND-Not done; * Quinolone sensitive isolate; [#] Mutations outside the QRDR region

4.2.3. GenBank submissions

The assembled sequences of *qnrVC5*, *aac(6') Ib-cr*, *qnrS* genes and QRDR regions of *gyrA*, *gyrB*, *parC* and *parE* genes from different *Vibrio* and *Shigella* isolates were analyzed and submitted to GenBank database. These nucleotide sequences submitted to GenBank and their accession numbers are listed below (Table 4.6).

S. No.	Organism/ strain	Gene	Accession No.
1	V. cholerae IDH02118	gyrA	KU586854
2	V. cholerae IDH02118	gyrB	KU586870
3	V. cholerae IDH02118	parC	KU586886
4	V. cholerae IDH02118	parE	KU586902
5	V. cholerae IDH02101	gyrA	KU586853
6	V. cholerae IDH02101	gyrB	KU586869
7	V. cholerae IDH02101	parC	KU586885
8	V. cholerae IDH02101	parE	KU586901
9	V. cholerae IDH01681	gyrA	KU586852
10	V. cholerae IDH01681	gyrB	KU586868
11	V. cholerae IDH01681	parC	KU586884
12	V. cholerae IDH01681	parE	KU586900
13	V. cholerae BD81	gyrA	KU586855
14	V. cholerae BD81	gyrB	KU586871
15	V. cholerae BD81	parC	KU586887
16	V. cholerae BD81	parE	KU586903

Table 4.6. GenBank submissions and their accession numbers

S. No.	Organism/ strain	Gene	Accession No.
17	V. cholerae N16961	gyrA	GQ466187
18	V. cholerae N16961	gyrB	GQ466190
19	V. cholerae N16961	parC	GU326332
20	V. cholerae N16961	parE	GQ466193
21	V. fluvialis L13828	gyrA	GQ466188
22	V. fluvialis L13828	gyrB	GQ466191
23	V. fluvialis L13828	parC	GU32633
24	V. fluvialis L13828	parE	GQ466194
25	V. fluvialis L10734	gyrA	KU586904
26	V. fluvialis L10734	gyrB	KU586910
27	V. fluvialis L10734	parC	KU586916
28	V. fluvialis L10734	parE	KU586922
29	V. fluvialis L9077	gyrA	KU586905
30	V. fluvialis L9077	gyrB	KU586911
31	V. fluvialis L9077	parC	KU586917
32	V. fluvialis L9077	parE	KU586923
33	V. fluvialis L9978	gyrA	KU586906
34	V. fluvialis L9978	gyrB	KU586912
35	V. fluvialis L9978	parC	KU586918
36	V. fluvialis L9978	parE	KU586924
37	V. fluvialis L15318	gyrA	GQ466189
38	V. fluvialis L15318	gyrB	GQ466192
39	V. fluvialis L15318	parC	GU326334

S. No.	Organism/ strain	Gene	Accession No.
40	V. fluvialis L15318	parE	GQ466195
41	V. fluvialis BD146	gyrA	KU848191
42	V. fluvialis BD146	gyrB	JQ013420
43	V. fluvialis BD146	parC	JQ013421
44	V. fluvialis BD146	parE	JQ013422
45	V. fluvialis BD123	gyrA	KU586907
46	V. fluvialis BD123	gyrB	KU586913
47	V. fluvialis BD123	parC	KU586919
48	V. fluvialis BD123	parE	KU586925
49	V. fluvialis PL78/6	gyrA	KU586908
50	V. fluvialis PL78/6	gyrB	KU586914
51	V. fluvialis PL78/6	parC	KU586920
52	V. fluvialis PL78/6	parE	KU586926
53	V. fluvialis PL171b	gyrA	KU586909
54	V. fluvialis PL171b	gyrB	KU586915
55	V. fluvialis PL171b	parC	KU586921
56	V. fluvialis PL171b	parE	KU586927
57	V. parahaemolyticus IDH01473	gyrA	KU586849
58	V. parahaemolyticus IDH01473	gyrB	KU586865
59	V. parahaemolyticus IDH01473	parC	KU586881
60	V. parahaemolyticus IDH01473	parE	KU586897
61	V. parahaemolyticus IDH02189	gyrA	KU586850
62	V. parahaemolyticus IDH02189	gyrB	KU586866

S. No.	Organism/ strain	Gene	Accession No.
63	V. parahaemolyticus IDH02189	parC	KU586882
64	V. parahaemolyticus IDH02189	parE	KU586898
65	V. parahaemolyticus IDH02191	gyrA	KU586851
66	V. parahaemolyticus IDH02191	gyrB	KU586867
67	V. parahaemolyticus IDH02191	parC	KU586883
68	V. parahaemolyticus IDH02191	parE	KU586899
69	S. flexneri 2a NT 4966	gyrA	KU586840
70	S. flexneri 2a NT 4966	gyrB	KU586856
71	S. flexneri 2a NT 4966	parC	KU586872
72	S. flexneri 2a NT 4966	parE	KU586888
73	S. flexneri 1b M 11560	gyrA	KU586841
74	S. flexneri 1b M 11560	gyrB	KU586857
75	S. flexneri 1b M 11560	parC	KU586873
76	S. flexneri 1b M 11560	parE	KU586889
77	S. flexneri 6 B 36	gyrA	KU586842
78	S. flexneri 6 B 36	gyrB	KU586858
79	S. flexneri 6 B 36	parC	KU586874
80	S. flexneri 6 B 36	parE	KU586890
81	S. flexneri 1a NK 4/08	gyrA	KU586843
82	S. flexneri 1a NK 4/08	gyrB	KU586859
83	S. flexneri 1a NK 4/08	parC	KU586875
84	S. flexneri 1a NK 4/08	parE	KU586891
85	S. flexneri 2a NK 05/08	gyrA	KU586844

S. No.	Organism/ strain	Gene	Accession No.
86	S. flexneri 2a NK 05/08	gyrB	KU586860
87	S. flexneri 2a NK 05/08	parC	KU586876
88	S. flexneri 2a NK 05/08	parE	KU586892
89	S. dysenteriae 12 NK3898	gyrA	KU586846
90	S. dysenteriae 12 NK3898	gyrB	KU586862
91	S. dysenteriae 12 NK3898	parC	KU586878
92	S. dysenteriae 12 NK3898	parE	KU586894
93	S. dysenteriae 3 NK 4771	gyrA	KU586847
94	S. dysenteriae 3 NK 4771	gyrB	KU586863
95	S. dysenteriae 3 NK 4771	parC	KU586879
96	S. dysenteriae 3 NK 4771	parE	KU586895
97	S. sonnei NK 2070	gyrA	KU586848
98	S. sonnei NK 2070	gyrB	KU586864
99	S. sonnei NK 2070	parC	KU586880
100	S. sonnei NK 2070	parE	KU586896
101	S. flexneri 1b M 11560	qnrS1	KU848190
102	V. fluvialis L10734	qnrVC5	JN571550
103	V. fluvialis L9978	qnrVC5	JN571549
104	V. fluvialis BD146	qnrVC5	JN408080
105	V. fluvialis pBD146	Plasmid	EU574928
106	V. fluvialis BD146	aac(6')-Ib-cr	JQ013425

4.3. Discussion

The study described in this chapter involved screening of quinolone resistance determining genes in all the selected quinolone resistant isolates and detection of mutations in the QRDR regions of topoisomerase genes in few representative phenotypes. The results revealed that mutations S83I in GyrA and S85L in ParC were predominantly responsible for nalidixic acid resistance in the clinical isolates of *V. cholerae*. This finding was also supported by previous studies where the same two mutations were shown to contribute chiefly to nalidixic acid resistance [Ismail et al. 2011 and Ismail et al. 2013]. In another study, it was demonstrated that though GyrA (S83I) and ParC (S85L) mutations in *V. cholerae* isolates showed resistance to nalidixic acid, the introduction of additional mutations such as D87N in GyrA and D420N or P439S in ParE increased the spectrum of resistance to fluoroquinolones also [Zhou et al. 2013].

However, the similar mutations, GyrA (S83I) and ParC (S85L), rendered resistance to wide range of quinolones in *V. fluvialis* isolates. This observation was corroborated by a previous study on this species where the same mutations conferred reduced susceptibility to nalidizic acid, norfloxacin, ciprofloxacin and ofloxacin [Chowdhury et al. 2011].

Shigella spp. showed very interesting and varying mutation genotypes as also evidenced by their corresponding quinolone resistance phenotypes. The occurence of first mutation in GyrA which is a primary target of quinolones in Gramnegative bacteria renders cheifly nalidixic acid resistance to the organism as observed in *S. dysenteriae* NK3898 and NK4771 isolates and *S. sonnei* NK2070 isolate. This observation was in accordance with previous study on other *Shigella* spp. (*S. flexneri* and *S. boydii*) [Dutta et al. 2014]. The occurrence or accumulation of successive mutations in GyrA or ParC extended the spectrum of resistance to fluroquinolones as seen in *S. flexneri* NT4966, B36 and NK05/08 isolates. Two novel mutations were found outside the QRDR region of GyrA (H211Y and V196A) in *S. flexneri* isolates and *S. dysenteriae* isolates respectively and their role in conferring quinolone resistance needs to be established though

these mutations have also been observed by other groups [Azmi et al. 2014; Taneja et al. 2015].

PMQR genes were found either as the sole determinants for quinolone resistance as in *V. fluvialis* L9978 and *S. flexneri* M11560 or were found to act in combination with topoisomerase mutations as in *V. fluvialis* BD146 and L10734. A minimal degree of resistance to ciprofloxacin was observed in *V. fluvialis* L9978 and *S. flexneri* M11560 harbouring *qnrVC5* and *qnrS1* genes respectively. *V. fluvialis* BD146, having four quinolone resistance determinants viz. mutations S83I in GyrA and S85L in ParC, *qnrVC5* gene and *aac (6') Ib-cr* gene, was found to have an elevated MIC of quinolones when compared to *V. fluvialis* L15318 which had mutation S83I in GyrA as the only quinolone resistance determinant.

To conclude, the studies described here have clearly and vividly demonstrated that mutations in topoisomerase genes are the main players in the scenario of quinolone resistance especially nalidixic acid resistance. When assisted with other genetic factors, the resistance levels for quinolones keep getting upgraded. Similarly, PMQR determinants appeared to play a minor but additive role in deciding the fluroquinolone resistance phenotype. Additionally, the study also revealed that though PMQR genes conferred low-level resistance when present alone, they helped in the elevation of MIC of quinolones in conjunction with other genetic factors.

Among different PMQR factors described in this study, *qnrVC5* allele was first reported from this laboratory and hence it was of prime interest to decipher its role in conferring resistance to quinolones. In the next chapter, this new allele *qnrVC5* was characterized in detail for its sequence, genetic context and propensity to decrease the susceptibility for quinolones.