
Chapter 2

The Standard Model: Some Issues 
Revisited

In this chapter we first present a short discussion of the standard model — rather its 

electroweak part only — and some of its prime features. We discuss at some length the 

problem of the fermion masses in general and subsequently the quark masses in particular. 

A general account of quark mixing is given and is followed by the specific form for the case 

of three fermion generations. The experimental limits on these mixings are also presented.

Since color confinement makes it Impossible to observe free quarks, a direct measurement 

of their masses is not possible. However estimates can be made using different and rather 

involved techniques and the result of such computations are presented without attempting 

any kind of discussion of the methods.

Finally we move on to a discussion of the neutral meson mixings and CP violation. The 

general form of the two independent parameters (viz. ck and c#) giving a measure of CP 

violation in the K°-K° system are derived and the expression for these in the standard 

model calculated. A similar exercise is performed for the extent of mixing in the 

system.

2.1 The Standard Model

As has been pointed out in the last section, the electroweak gauge group to be considered 

is SU(2)t, ® U(l)y, such that the left handed fermions transform as doublets of the SU(2)l
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and that the generator for j7(l)em be given as a combination of the two diagonal generators. 

Hence we have for the charge operator,

Q^aTu + Y. (2.1.1)

Considering either the lepton doublet or the quark doublet Q)L, one immediately has 

a = 1. Keeping in mind the fact that the right handed fermions do not participate in the 

weak interactions and hence should be singlets under SU(2)l, one gets for the fermions’ 

transformation under the full symmetry group SU(3)C ® SU{2)i ® U(l)y to be

Ik (1>2, —1/2)

(i.i.-i)
E (3'2'1/6)

<r (3,1,2/3)

d!iIt (3,1,-1/3)

(2.1.2)

where i denotes the fermion generation.

As the low energy symmetry evinced in nature is only SU(3)C ® U(l)em, we must break 

SU(2)i, ® £/(l)y down to U(l)dm. The simplest way to do this is to take recourse to 

spontaneous symmetry breaking involving a complex scalar field <fi which transforms as 

(1,2,1/2). Then the Lagrangian piece involving <j> is

^ = (2.1.3)

where
V,4 = (dp - igWp - ig'Btl)<p,

= n2</>U + \(^<P)2, (2.1.4)
and W;i = W*ra

W“ and Bp. being the gauge fields corresponding to SU(2)L and U(l)y and g and g' the 

respective couplings. The only restrictions imposed on V((/>) are the requirements of renor- 

malizability and gauge invariance.

For fi2 < 0, V{(/>) is minimized at \(p^<p\ = = v7. Such a non-zero vacuum expec

tation value (v.c.v. ) {(f>) = leads to a spontaneous breaking of both the SU{2)i
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and the U(1)y symmetry. However a different 17(1) symmetry — which we shall identify 

as electromagnetism — generated by the combination of the diagonal generators

Q = T3L + Y (2.1.5)

is still preserved. The three Goldstone bosons due to symmetry breaking [6] are absorbed by 

three of the massless gauge bosons to appear as their longitudinal component thus rendering 

the latter massive. The essence of this Higgs [7] mechanism is encapsulated in the following 

brief discussion.

We reparametrize the scalar field 0, writing its four real components in terms of four 

new ones & and tj by

where U(£) = e~l^Tl2v with T; being any three independent generators of the gauge group 

that do not annihilate the vacuum.

Now taking advantage of the local gauge invariance of the theory one might as well work 

with the gauge transformed field

-> Wl = U^W^U + -u~%uf
B't = + -U^d^U,

and similarly transformed fermion fields.

Then (dropping the primes on the fields),

£+ -» ^Tjd^Tj + + gWp)2# - V j ,

and the gauge boson mass term reads

[(-<?% + gwlf + g2{{Wlf + (W2)2}] .

Defining

K* =

Zfl — Wjl cosOw ~ BtlmnOw, (2.L.6)

An = Wft sin Ow + Bn cos Ow,
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where

Bw = tan 1(g>/g) (2.1.7)

we get

mw = \9vs

mz = ~gv sec Bw and (2.1.8)

ttia = 0.

Thus with this special gauge choice (known as the unitary gauge), the bosonic spectrum 

of the theory consists of a massless and three massive gauge bosons and the single neutral 

scalar tj. The other three degrees of freedom of the field have been absorbed by the vector 

bosons only to appear as the corresponding longitudinal polarizations.

Writing the quark (and similarly for the other fermions) gauge boson coupling term in 

the new fields, we have

9q'Lr(V2W+T- + V2W~r+ + Wy)q'L + g'{q'L^Yq'L + q'^Yq'^B^

= + ~dZ'itiu'LW~) + g cos BwZrfh^itan2 6WY - ra)q'L (2-1.9)

+gsinBwAl^^Q^Ii.

We then see that the massless vector field A couples vectorially with the fermion current 

and hence can be identified with the photon leading to the identification gsmBw = e- The 

massive gauge bosons, on the other hand, couple only to the chiral currents leading to the 

left handed weak interactions.

Looking now at the fermion masses, it is immediately apparent that we cannot write 

bare terms as

is not SU(2)i ® U(l)y invariant on account of ipL being a SU(2) doublet and rpR a singlet. 

This is not a problem though as we can use the same mechanism to generate fermion masses 

as for the gauge bosons i.e. spontaneous symmetry breaking. Recognising that the Yukawa 

term q'Ld!R<i> is gauge invariant and of dimension (mass)4, we have

W> = i’Llf’R + IpRlpL

Crnk = fJqiidRit + fijq'LAj + fX^R& (2.1.10)
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where 0 = Tz<j)w and i,j run over the fermion generations i.e. d\ = d, d% = a, ds = b etc. In 

the unitary gauge we then have

£Yuk = + ff.c.) + (u' -* d!) + (t/ -» e'), (2.1.11)

where = vffi is the mass matrix for the up-quarks and similarly for the others.

The theory does not specify and hence the mass matrices in any way. All structures 
for /’/ satisfy the symmetry requirements and these have to be determined only from 

experiments. In fact, the matrices do not even need to be hermitian and hence cannot 

be diagonalized by a unitary transformation. All is not lost though. As the left- and 

right-handed fermions have different SU(2)l and U(l)y quantum numbers, one can define 

distinct unitary transformation for each. This is equivalent to treating the mass term as 

an hermitian operator in a 2n dimensional space (for n fermion generations) with a block 

off-diagonal representation and defining a unitary transformation in U(2n) that is block 

diagonal in the left- and right-handed subspaces.

Now using a result in elementary linear algebra that any nonsingular matrix can be 

polar decomposed into a product of a positive definite Hermitian matrix and an isometric 

matrix, we can define

ur = Utf.4 and ur = Uru’r, (2.1.12)

such that
U^MJJr — Mu = diagonal and positive definite. (2.1.13)

Thus Ui and Ur diagonalize the hermitian matrices and M,1 Mu respectively. Defin

ing similar transformations DLir for the d-type quarks, we get

Amu = W,Muur + ITiMfidR +’SZMceR + H.c., (2.1.14)

and

J(f = uEhtKdc, + (2.1.15)

where
K = uIdl (2.1.16)

is the Cabibbo-Kobayashi-Maskawa (CKM) matrix [8].
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At this stage an interpretation of the results is called for. The original primed fields 

were the eigenstates of the weak hamiltonian {Hwk) hut not of the full hamiltonian as 

Hwk does not commute with H, + Hcm. The unprimed states are the eigenstates of the 

total hamiltonian and hence have well-defined masses. The CKM matrix then represents 

the modification of the charged current vertices for the physical quarks induced by quark 

mixing. It should be noted that the corresponding matrix for the leptonic sector is but 

unity. This is due to the absence of the vr and hence a mass term for the neutrinos, as a 

consequence of which the diagonalization matrix for Mc can be absorbed into the definition 

of the vi.

The mixing matrix K lies in U(n) and hence is described by n2 real parameters. Rec

ognizing that nCi of these are nothing but the Euler angles for a real rotation, we find 

that the complexity is due to the rest of the n+1C2 parameters. But of these, (2n -1) are 

of no physical significance as they can be absorbed by redefining the relative phases of the 

quark wavefunctions. So at the end of the day we are left with 2n quark masses, nCi real 

rotations and n-1C2 phases in the mixing matrix.

Henceforth we shall specialize to three generations (unless otherwise stated) as most 

current experimental results favour such a scenario. Then the CKM matrix is 3 x 3 and 

parametrized by three angles 9ij and a phase 6 which, in this model, is responsible for CP 

violation. For explicit calculations involving the CKM matrix, we choose the parametriza- 
tion due to Maiani [9]:

K
ciacta *l2Ct3 *13

-*12c23 ~ Ci2*23*13<^ C12C23 - *12*23**13fi'*
•‘WiseiS

*12^236 ,S ~ C12C23S13 -012*236 ,S ~ *12023^13 C23C13

(2.1.17)

where c,y = cos 9if, *,y = sin dij.

While Bn is very accurately determined from Ke3 and hyperon decays [10]

S12 = 0.221 ±0.002, (2.1.18)

023 and 0i3 are rather poorly determined. The value of *23 may he extracted from a 

determination of Vcb (since *23 « jVcfc| to a very good approximation) from the semileptonic 

B-mcson partial width, under the assumption that it is given by the W-mediated process
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to be

T(b - ctPi) =
GpTTll 

192tt3 :
Fiml/mDlVd,]* 2, (2.1.19)

where F(x) = 1 - 8® -f 8«3 - x4 - 12a:2 ln(a;) is a phase space factor. Thus

2 192tt3 Br(6 dufi
s23 _ G%

Using the experimental results for the branching ratio and the 5-meson lifetime [11 

Br(6 -» ctU{) = 0.121 ± 0.008 rB = (1-16 ± 0.16) x 1(T12 sec, 

and the estimates for the quark masses (see section 2.2):

m„ = (1.35 ± 0.05) GeV mb = (5.3 ± 0.1) GeV,

we get [12]1

(2.1.20)

(2.1.21)

0.035 < s23 < 0.07 (2.1.22)

The charmless 5-meson decay width puts a limit [14]2

0.07 < s13/523 < 0.22. (2.1.23)

The C5-violating phase 6 is allowed to adopt any value in the range [0,tt] by the current 

experimental results.

2.2 Quark Masses

In a renormalizable field theoretic treatment, the coupling constant and masses lose their 

absolute meaning and become dependent on the momentum scale one is addressing the 

problem at. This dependence arises from two sources, though the two cannot be demarcated 

easily.

In quantum field theoretical calculations infinities creep up quite often and are taken 

care of by what is called a ‘regularization’ prescription. Though there is nothing ad hoc 

about this program, there do exist different inequivalent schema for this procedure, the
'The experimental numbers quoted in this chapter are those used in [35,38]. Since then many of these 

have been revised. For example, now one has «23 = 0.0431® HI [13].
2Current limits [13] are 0.05 < sij/sjj < 0.13.
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difference lying in the amount of the finite part to be subtracted alongwith the divergent 

piece. Thus it creates a dependence on the momentum scale introduced, that is different in 

different schemes.

However this implies that the physical quantities would depend on the renormalization

scheme adopted and the scale at which it is being performed, a situation clearly unacceptable 

as starting from a unique Lagrangian, all measurables ought to have a unique value. This 

then leads to the requirement that under a finite renormalization transformation, physical 

predictions be invariant. Expressed in a different language, this implies that all renormalized 

quantities should change with a change of the scale (equivalent to a finite renormalization 

transformation) in a well-defined fashion and that the functional dependence of measurables 

on these should change such that their (measurables’) value remains the same. These finite 

renormalizations form a transformation group and the functional relations determining the 

changes can be expressed as differential equations of evolution known as the Renormalization 

Group (RG) equations.

When talking of quarks, the relevant theory of course is QCD and the RG equations 

important in our study are those governing the evolution of the quark masses and the strong 

coupling constant with the renormalization scale fi:

In the modified minimal subtraction (MS) scheme, the beta function and the anomalous 

dimension are respectively given by [15]

(2.2.1)

(2.2.2)

and

(2.2.3)

with
00 = (UCG-4TRNf)/Z,
01 = [UCl - 45Cg + 3CF)TRNf)} /3,
70 = 6 Cp,
71 = Cf[9Cf + 97Cg - 2QTRNf]/3,

(2.2.4)

12



where Nf = number of quark flavours, Tr is given by the normalization of the generators 
\Tr{TaTb) = iV/T/jj and Cq and Cp are the values of the quadratic Casimir operator 

on the gluons and the quarks respectively. For 57/(3), by convention, Tr = 1/2, and 

Cq = 3, Cp = 4/3 and hence

A) = n-| Nf,
01 = 102-f Nf,
70 = 8,
71 = |(l01-fl7/).

The solutions to the differential equations are

a. (A*) =
$!M

4t
4x fainL

0o L + 0 (2.2.5)

and

mi(fi) = m,-
-7o/2A) 1_^l+lnX+ 7. +0

2^o
lni\2

L ) (2.2.6)
'0 ^

where L = ln(/i2/A2). Here A and m; are the RG.invariant scale parameter and masses,

respectively defined through

(hijrjA2N/3i//3|A2
TP
= A2 N l'o/2A)

e~A)fl!(0)

and m,(0) = m,- (in

X being the momentum cutoff. This then takes care of the perturbation theory induced 

cutoff-dependence of the bare couplings. The arbitrary coupling constant <?(0) is thus 

replaced through ‘dimensional transmutation’ by a dimensionful parameter A, which along 

with the quark masses are the only arbitrary parameters in QCD and would be fixed by 

experimental data.

In all the above formulae the value of Nf to be used is determined by the energy scale of 

the problem at hand, with the assumption that all heavier degrees of freedom can be taken 

to be frozen. The physical mass of a quark is then its value calculated at the same scale. 

Thus to one loop order, the physical mass of the i'th quark is given by

mfnya = miirm) 1 + 3xa'^ (2.2.7)

While non-observation of the top-quark puts a lower limit [16] to its mass 3

mfys>45 GeV, (2.2.8)

3Current bound [17] is mfh)'’^89 GeV.
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experimental consistency with the radiative corrections in the standard model requires [18]

mfhyii<180 GeV. (2.2.9)

Substituting Nf = 6 and Aqcd = lOOMeF, we have for the above range of interest

mfys « 0.6mt(l GeV),

which gives
75 GeV<mt( 1 GeF)<300 GeV. (2.2.10)

The physical masses of the charm and bottom quarks can be calculated to a great degree 

of accuracy from e+e“ data by using QCD sum rules for the vacuum polarization amplitude.

We have then
mc{lGeV) = (1.35 ± 0.05) GeV 
mb(lGeV) = (5.3 ± 0.1) GeV.

(2.2.11)

The determination of the lighter quark masses involves larger errors. These are best 

evaluated using chiral perturbation theory and meson and baryon spectroscopy. Though the 

individual errors are large, restrictions on the ratio of the masses reduce the indeterminacy

somewhat:
mu = (5.1 ± 1.5 )MeV
md = (8.9 ± 2.6)MeV
ms = (175 ± 55)MeV

mB/md = (19.6 ±1.6)
Ttldf Wlu (1.76 ±0.13)
mjTTlu = (34.5 ± 5.1)

mu - md
mu + md

(-0.28 ±0.03).

(2.2.12)

2.3 CP Violation and Neutral Meson Systems

Apart from the usual continuous (gauge) symmetries that lead to conserved Nother’s cur

rents, physical theories most often respect certain discrete symmetries as well. The most 

common of these are:-

Parity (P): this implies an equivalence of‘left’ and ‘right’ i.e. a mirror image 

of an experiment would yield the same result in the reflected frame of reference 

as the original would in the initial frame.
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Charge conjugation (C): implies invariance under replacing each particle by 

its antiparticle (i.e. reversing all additive quantum numbers).

Time reversal(T): referring to a formal reversal of time flow, this implies 

invariance under reversal of all momenta, angular momenta etc.

Though a theorem due to Liiders and Pauli [19] guarantees that any Lorentz-invariant 

unitary local field theory is invariant under the combined action CPT (in any order), the 

individual symmetries are not assured by any deep principle. In fact though gravitational, 

electromagnetic and the strong interaction seem to respect each of these to a very great 

degree (for a discussion of possible discrete symmetry violations in gravity, see section 

5.2), it was established quite early on that the weak interactions violated both C and P 

conservation almost maximally. However even they seemed to respect CP and consequently 

T symmetry. In fact till date the only evidence of CP violation has been seen in the neutral 

kaon system and there too to a very small extent only. Thus any study of CP violation 

would demand as a prerequisite a thorough understanding of the K°-K° system. Also the 

heavier meson systems are exactly similar and most of the results obtained for the kaon 

system can easily be extended in a straightforward manner. As for the leptonic sector, CP 

violation is identically zero in the minimal standard model, but could arise if one were to 

include massive neutrinos (Chapter 4). Though the issues involved are somewhat different, 

most of the analysis here trivially follows through.

2.3.1 The K°-W system:

The neutral if-mesons K° and K° are characterised by definite strangeness values 5 = 1 

and -1 respectively and hence are good basis states when one is talking about either the 

strong or the electromagnetic interactions. This is so because both these interactions do 

respect strangeness conservation and hence

(K0\H' + Hsm\Kt) = Q. (2.3.1)

However weak interactions do not preserve strangeness and thus can mix KQ and K°. This 

results in these particles not having well defined masses or weak decay rates. Rather there 

exist two independent linear combinations of these states namely K& and Ks that do have 

precise masses and decay rates. These new states are characterized by the difference in
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their decay modes and hence their lifetimes. While Ks decays primarily through the 2t 

mode (a state with CP eigenvalue +1), Ki, has many decay channels mostly going to final 

states with CP = -1 e.g. 3t or x±F V. Obviously the two new states do not have well 
defined strangeness.

Working with a choice of basis such that

CP\K°) = -| P°> and CP|P°) = -\K°), 

if we define two new states as

|jrf,2>si[|/r°)±P)],
then obviously

CP\Ki) = -\Ki) and CP|JTj> =

So if CP were an exact symmetry, this would imply that

\KL) = \K<1) and \KS) = \K%).

(2.3.2)

(2.3.3)

(2.3.4)

(2.3.5)

However in 1964, Cronin et al. [20] observed that K& does decay into the t+t- channel 

(i.e. a CP = +1 state) with a branching ratio of 2 x 10~3. Hence the identification in 

eqn.(2.3.5) is wrong and we should rather have

I Km) = Nl,s [|JST°> ± e^liro)] , (2.3.6)

where ^5 are complex numbers and N^s the wavefunction normalizations. Since K° 

and both mix and decay, their time evolution is governed by an effective hamiltonian 

H - H, + jffem + H,ok such that
(2.3.7)

where

1>)

\K«j
l^°>. (2.3.8)

and H = M - |r,

with M and T being 2x2 hermitian matrices called the mass and decay matrices respec

tively. Now CPT invariance demands that

Hn ~(K°\Jf\K°) = (Kn\{CPT)-llI{CPT)\Kn) 

= (K®\H\W) s Hn (2.3.9)
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or Mn = M22 and Tn = r22. On the other hand CP conservation would require

ffi2 = {if°|#|iro} ={K°\{CP)-1H{CP)\K°) 

= (K$\B\Kg) =#21

and hence Mi2 = M21 and Fi2 = r2i. Now, the eigenvalues of # are 

El,s = fnLis - |-7l,s = | 

and the difference is given by

#11 + #22 ± - #22)2 + 4#i2#21

— #5 = A Hi — -A7 = — #22)2 + 4#12#21-

(2.3.10)

(2.3.11)

(2.3.12)

If #l,s are to be the eigenvectors then we must have

e*'^ - E!tZJE,ll. and e*«s _ —Ell—.
#12 #s — #22

Invariance under CPT then demands that

£L = fsM=-|ta(f^),

and CP invariance would guarantee that

(2.3.13)

However the last relation is phase convention dependent as can be seen by redefining the 

meson wavefunctions by
I El) ,2«u*
|#°) -4 |#0)' = e~ia\K°). 1 '

Under this change of basis the diagonal matrix elements of any operator O remain invariant 

whereas the off-diagonal elements pick up phases

O12 - O'n = e-2in012 and On - 0'n = e2iaOn

and hence
£-*£' = £ + 2 ct. (2.3.15)

Thus the basis invariant condition for CP conservation is that £ be real [21]. An often used 

measure of CP violation is given by

l-eif
1 + e* (2.3.16)

17



but this clearly is a phase convention dependent quantity.

We turn next to a discussion of the two pion decays of the neutral if-mesons. Bose 

statistics demands that the 2x state be in either total isospin I = 0 or J = 2 state. Hence 

defining the amplitudes

(n\Hwk\ V) Ja'n , n = 0,2 (2.3.17)

where jn) = |2x; I = n) and 6n is the 2v s-wave phase shift for the I — n state, we have

CPT invariance => Tin = -a* 
and CP invariance =s> 02/00 is real.

Under the phase rotation as described by equation (2.3.14),

(2.3.18)

and hence the following combinations are phase choice independent

(0\Hwk\KL)
eo

GO
(0\Hwk\Ks)

1 (2\Hwk\KiJ}
V2(0\Hwk\Ks} 

(2\Hwk\Ks) 
(0\Hv,k\Ks)

The experimentally measurable quantities are

a0 + oSe*^

€2

w =

1 m - ci(s,_6n)
V2oq + age**

it02 —- Oje 

Oo + oge^ ■

.+_ _ <7r+5r“ \Hwk\KL) Co + C2 *
(7r+7r- \Hwk\Ks) " l+w/y/2 ~~e°+l+u,/V2

_00 \Hwk\KL) eo — 2e2 2(?
1 - \B„k\Ks) "1 -sf2u> ~€° I-Vto.

where

£2
Wo
V5'

In terms of the matrix elements of M and F then

_______ Im{Mx20§) - i/m(ri2Q§)
eo =

e =

Pe(a§Mi2) - |Pc(agri2) + ^^Am - 2A7) 

i /m(o2flo)(Am - |A7)e*^a-J°5
V2 RefagMu) - |Pe(a§ri2) + ^(Am - 5A7)

(2.3.19)

(2.3.20)

(2.3.21)

(2.3.22)

(2.3.23)

(2.3.24)
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AE analysis till now has been the most general possible. No particular reference to the 

kaons have been made and aE the results would hold equally weE for any other neutral 
meson system. At this stage we would Eke to speciahse to the K°-7(® system and use some 

experimental results to obtain some approximate but easy to handle relations.

Now experimentEy we have [13]

mK = 0.498 GeV, AmK = 3.5 x 10“15 GeV, . ,
£*1k » -1KS = -7.3 x 10-15 GeV. \.

The AI = 1/2 rule for if-decays manifests itself in the form of a smaE suppression factor

[22]

w » 0.045. (2.3.26)

The dominant contribution to I?i2 comes from the 2ir intermediate states and more specifi- 

caEy the I = 0 state. Thus

r12 ~ (2.3.27)

and hence
IrnTn ~ Jm(ag)2 
ReTu ~ Re(aj))2 '

Using the experimental values of Tf+~ and rf30, alongwith (2.3.26) we then get [13]

(2.3.28)

e0| = 2.3 x 10"3, (2.3.29)

and the phase of co is nearly ir/4. Such a small value of the CP violating effect can be best 
understood as resulting from

ImTi2 < ReTu and JmMn < ReMu- 

Under this approximation eqn.(2.3.12) reduces to

Amg- « 2ReM\% and A7 » 2ReTw (2.3.30)

In the SM, K° -» 2tt decays proceed through the “box diagram” (see section 2.3.2) and 

with a certain phase choice known as the ‘quark phase convention’, one can rotate away the 

phase of a2 to have
a® = |ao|e,9° and a2 = ±[a2|. (2.3.31)
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Then using (2.3.25 - 2.3.31) in (2.3.23, 2.3.24) we get

(2.3.32)

(2.3.33)

To determine the parameter t?K one needs to measure tj+~ and tf° to a great degree of

accuracy, a task of considerable difficulty. However recently such measurements have been 
made to yield [23]4

2.3.2 Sources of CP Violation '

The main thrust of the current chapter and the next is to establish a link between the CP 

violation in the K°-K° system and the quark mass matrices. But before jumping onto any 

conclusion, we would rather like to have a quick look at the various possible sources and 

only then point out the essential simplicity of the CKM picture.

CP violation in a theory satisfying the Liiders-Pauli criteria [19] can be categorised as

a) violating each of C, P and T;

b) violating P and T but conserving C\

c) violating C and T but conserving P.

As parity violating effects In strong ami electromagnetic interactions have been experimen
tally constrained to less than (?(10~5) [25,26], such theories obviously cannot explain eg-- 

Thus if CP violation were to come from these sectors, then they must be of category (c). On 

the other hand, CP violating effects in the weak interactions are most likely to be of type 

(a), though Hwk might as well have small admixtures of categories (b) and (c). Keeping 

such considerations in mind, the candidate theories can be classified into four types. Of 

these, the xnillistrong and the electromagnetic models require an adequately small part of 

the corresponding hadronic interaction to be of type (c). The CP violation in K -* 2v
4It muBt be remembered though that a later experiment [24] gives a value (—0.5 ± 1.4) x 10-3 i.e.

consistent with zero.

4/oc| = (3.3±i.i)xio-3. (2.3.34)

those
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Figure 2.1: “Box”-diagram generating if°-if° mixing and €k in the SM

(which is supposed to occur through an intermediate state with one of the decays being 

driven by the CP conserving Hwk) then arises as a result of an interference of amplitudes. 

However, experimentally such models are not favoured [26],

Milliweak models require a part (~ O(10“3)) of Hwk be CP violating, resulting in 

single-shot Kl -> 2tt, and hence similar effects should be observable elsewhere, say in the 

B-decays. On the other hand superweak models predict a CP violating AS = 2 piece 

in Hwk with Kl —» 2tt occuring through an intermediate if5 state. In such a case CP 
violation occurs only in the if°-if° system. Consistency with the observed value of Am/f, 

which arises now as a first order effect requires gcw ~ 10”8 and hence the name. The 

distinguishing feature of this model is that e'K is identically zero.

In the 3-generation SM, which, for a complex CKM matrix, is a milliweak theory, K°- 

K° mixing and Kl —► 2zr come about because of the 1-loop Feynman diagrams in Figures 

(2.1) and (2.2) respectively, giving rise to

Q2 1ImMx2 = -~ifK™>K'mwBK + AlmS{yt) + ACAtmS(VcVt)\ , (2.3.35)

and

where

tan Oq
513*23 . t
------- smd

512

■ 150AfeF l2 
m,( 1 GeV). H,

A i = K‘rIKiM yi = m}/mw
fK = 0.16 GeV mw = 81.8 GeV.

(2.3.36)

(2.3.37)
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Figure 2.2: “Penguin”-diagram responsible for e'K in the SM

Whereas /«■ is the pion decay constant, the bag parameter Bk reflects our ignorance of the 

hadronic matrix elements. If vacuum saturation approximation were correct then one would 

have Bk = 1, but theoretical estimates only put the rather loose bound of 1/3 < Bk < 1. 

The functions S(z) and S(x,y) arise from the loop integral and are given by

5(*) = 1 [l + 4{ifey ~ 2/dbrp] +1 [srr]3*11*
S{x,y) = + + (*"»)

The quantities rji represent QCD corrections [27]. While rji does not depend on mt and is
evaluated to be 0.85, % is essentially independent of'mt for 40 GeV';<m[>hy8;$130 GeV and

r}2 = 0.61. r}3 and H are slowly varying functions of mt and are approximately 0.25 and

0.37 respectively [28]. However we shall allow for their full variation in our calculations.

2.3.3 The Bj—B% system

The analysis for the B%-B% system proceeds exactly as for the K°-K° system. But unlike 

the latter, no trace of CP violation has yet been found here. Instead, we shall concentrate 

solely on the issue of particle-antiparticle mixing. Defining the time-integrated mixing 

parameters

Td

f\(B%\B°d)\Ht
0
/ !<i*K)l2d<
o
,*£b 2 (AmB)2 + (APB)2/4 

2 r2 + (AmB)2 + (ArB)2/4

(2.3.38)
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(where in the second line we have dropped the subscript d ) and similarly for fd, we see 

that CP conservation demands that fd = rd. Experimentally however one cannot directly 

measure either rd or fd as generally the mesons are created as pairs. Rather one looks at 

the dilepton decay modes and defines parameters Rd and Ad which measure mixing and 

decay asymmetry (and thus CP violation) respectively:

Rd
iV ' 1 -f iV

N+~ + JV~+ Ad N++ + N+. + jy_+ + N- (2.3.39)

where JV’s denote the number of dilepton pairs with the associated charges. For the e+e~ 

T(4S) process these relations reduce to

Rd = 7^.Td + I'd), Ad = Td - fd 
2 + f d + fd

For the 3-generation SM with a relatively heavy top, the dominant contribution to rd 

comes from the corresponding box-diagram with the top flowing in it. With this simplifying 

assumption we have

xd = ^~ = ^-TBVBBflmBm2v/S(yi)\K;dKtb\2 (2.3.40)

where tb is the Bd lifetime, fs the decay constant, Bb the bag parameter and rj a QCD 

correction factor. Experimentally we have [11]

rd = 0.21 ± 0.08 =» xd = 0.73 ± 0.18 (2.3.41)

and

mB = 5.28 GeV rB - (1.16 ± 0.16) x 10"12s , .
V = 0.85 0.1 GeV < fB\f&B < 0.2 GeV. 1 '

Armed with the resources of this chapter, we can now attack the problem of quark masu 

matrices and the various ansatze for them. The three experimental inputs discussed here 

viz. €k, and xd shall be used in the next chapter to check for the phenomenological 

validity of various models for quark masses.
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