
Chapter 5

On Some Exotic Neutrino 
Phenomenology

In the previous chapter we have contemplated the changes that need to be made in the 

minimal standard model so as to incorporate a non-zero neutrino mass. We have also looked 

at one of the consequences of a possible breakdown of a global lepton number symmetry that 

a Majorana mass for the neutrino might induce. At this stage one question begs to be asked. 

Why need we consider a mass for the neutrino at all? Apart from the rhetorical answer 

“Well, why not? Nothing prevents it anyway.”, there is the deeper and more practical reason 

of its potential to answer many ill-understood problems. Neutrinos being very light (?) 

and weakly interacting particles, do not manifest themselves too dramatically at ordinary 

interaction energies, but at the astrophysical scales, they are expected to play a very crucial 

role. Moreover, in view of the recent spate of results, both experimental and theoretical, 

in neutrino physics, it is quite conceivable that this field might afford the most accessible 

testing ground for new physics beyond the standard model.

In this chapter we look at different aspects of “non-standard” neutrino physics. To begin 

with, we examine the question of a sizable magnetic moment for a very light neutrino. We 

propose a new mechanism that decouples the question of neutrino masses and magnetic 

moments and based on this, develop a model which generates a large transition magnetic 

moment for an ultralight vc in a natural way. Next we take a look at the consequences of a 

non-zero neutrino mass in the context of gravitational interactions. We find that contrary 

to expectations, for a low-energy neutrino at the vicinity of a supernova the gravitational
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interaction could be the dominant one. We use this result to put very strong bounds 

on parity-violating effects in gravity. Finally we move on to present a phenomenologically 

consistent model for Simpson’s 17JfeeV neutrino that naturally accomodates a large magnetic 

moment for the ve. We also look at the grtavitat tonal interaction of this neutrino as well 

as its effect on (i30)ov rates. It is here that the results of the previous exercises are used as 

inputs to achieve a coherent picture of the problem in its entirety.

5.1 Large Magnetic Moment for Nearly Massless Neutri­
nos

The question of the compatibility of a large magnetic moment and a very small mass for 

the neutrinos, apart" from being very interesting in itself, is of much importance as a way 

out of the solar neutrino puzzle [67]. For, the neutrino spin rotation (flavour-changing 

or otherwise) in conjunction with the matter oscillation effects could lead to a substantial 

reduction in the i/e-flux — irrespective of the validity of the adiabatic approximation — thus 

explaining the discrepancy between the standard solar model prediction [44] and the Davis 

and Kamiokande results [43]. Moreover a substantial neutrino magnetic moment could play 

a crucial role in supernova dynamics [68].

That the problem is a non-trivial one is not difficult to appreciate. The magnetic 

moment term being a non-renormaiizable one, cannot occur in the bare Lagrangian and 

may appear only at the one-loop level or higher. But the very same diagram that gives 

rise to a non-zero /*„ also, when the photon line is removed, gives a mass correction. This 

leads to a proportionality between fiv and m„ with the result that normally one cannot be 

enhanced while the other is being suppressed. For example, in a minimal extension of the 

standard model, one gets

and hence it is impossible to generate (needed for this mechanism to play any
meaningful role in the solar context) without being saddled with an unaccepatably large 

mass for the ve.

It was first noticed by Voloshin [69] that if ve and v% transform as a doublet under 

some SU{2)„ symmetry, then while the magnetic moment term is invariant, the mass term
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behaves as a triplet. This was incorporated m SU(Z)l®U(1)y electroweak models [TO]. A 

variant in which SU{2)V was some kind of a horizontal symmetry with (ve v^) as a doublet 

was also considered [71]. In the limit of exact SU(2)V symmetry then, there exists no mass 

term but only a nonzero magnetic (transition) moment. The breaking of this symmetry 

however genarates masses, the proportionality of which to the magnetic moments can be 

kept down only by imposing certain naturalness conditions.

In this section 1 we aim to generalize Voloshin’s argument and see if. we can have sce­

narios wherein the neutrino magnetic moment can exist independent of its mass even after 

the symmetry breaking, thus rendering the naturalness conditions redundant. We extend 

the standard model to include a horizontal symmetry that treats all fermions on an equal 

footing. The lepton number violating higgs (a) is also responsible for breaking the hori­

zontal symmetry. Thus in the exact symmetry limit, both the Majorana masses and the 

transition moments vanish. This is so because v^iVj and ivsi<rfa/VjFlu' both violate lepton 

number. Since we do not have tree level Majorana or Dirac mass terms for the neutrinos, 

the origin of both the transition moments and the i/e-mass lie in the radiative corrections. 

To one loop order they can be parametrized in terms of dimension five operators with the 

mass suppression scale being decided by the internal higgs particles in the relevant dia­

grams. Thus if the couplings and the v.e.v.s in the theory could be so chosen that only 

the antisymmetric terms get any contribution from the diagrams containing (<r), then the 

vs would acquire a transition moment while keeping the mass correction zero. In the case 

where one of the internal higgs flowing in the diagram happens to be a horizontal group 

singlet, this can be ensured simply by seeing to it that the effective v.e.v. structure couples 

only to antisymmetric combination of the fermions.

The gauge group we consider is SU(3)e 0 SU(2)L 0 Z7(l)y 0 0(3)h with the particle 

representations as under (for the scalars the super and subscripts denote the electric charge 

and the T^h quantum numbers respectively):
’Based on the work in ref. [66]
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(5.1.1)

(5.1.2)

On imposition of a further discrete symmetry

n - -n> vi - -u%
$ -* e -* -S

the most general Yukawa term in the Lagraagian would look like

CY = fWLQht\ + f Difox + + 9l&)

+ UtQL(9%$ + g%H) + DlQL(9$<{>* + giB)

(5.1.3)

(5.1.4)
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The global lepton number symmetry will also ensure baryon number conservation, so 

that even after a acquires a v.e.v. , although lepton number is violated there is no proton 

decay. Since there is no direct coupling of the fermions with <r, the coupling of the Goldstone 

boson (Majoron) corresponding to the global lepton number symmetry breaking with the 

fermions is suppressed by the horizontal scale and thus remains invisible. The strictest 

bounds [72] on ij and x come from rare JT-decay rates leading to

*2 f/2
(5.1.5)

m* m*

The 0(3)# symmetry can be used to assure that of the three components of a only 

£T_i acquires a non-zero v.e.v. The assumption that of the five neutral h®, only the T%h = 

-2 component acquires a v.e.v. is consistent with this. To break the remaining 0(2)# 

symmetry we choose (So) ^ 0. The scale for the horizontal symmetry breaking we choose 

to be of the order of 10sGeV. The v.e.v.s are then

<<r) = (0 0 (A))

<£) = (0 (Eg) 0)

<*.) =

(H) =

0 /
0 0 0 0 (h°_2) 

0 0 0 0 0

(5.1.6)

We have refrained from specifying ($) and (H) as these give masses only to the up- 

quark and the charged lepton sectors. Assuming the Yukawa couplings to be unity the 

most general form of mass matrices is then
f ■ \

(M) (h°x)-m ^(h°o) + (fo)

) + ($) ^(^o) ‘ (5-1-7)

^ ~^(hii) + (#_i) (h%) J

Thus there is a wide freedom to choose the Higgs couplings so as to obtain a v.e.v. structure 

amenable to giving phenomenologically consistent mass matrices in these sectors. We shall 
not discuss this sector any further.
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Figure 5.1: One-loop diagrams leading to possible neutrino mass corrections and transition 

magnetic moment nv,Vfl.

The down-quark mass matrix reads
/ 0 0

Md=\ 0 -gM)
\ 0i<€> 0

For the eigenvalues one then gets the interesting hierarchy

ml = mdmt, (5.1.9)

a relation consistent with experimental data.

Of the multitude of terms in the Higgs potential, the one that interests us the most is 

mpeT/xtr, where k. is a dimensionless constant. (Such a coupling for S is ruled out by lepton

m) \
0 (5.1.8)

9i{h°-2) )
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number conservation.) This gives rise to one loop diagrams as in Figure 5.1 that result in 

a non-zero transition moment of the form

fad'll 2elLmC IS*-’ TO«J_ imxl/3
(5.1.10)

while the mass correction vanishes since the contribution from the two diagrams cancel 

exactly.

Assuming k « 1, (0°) ~ lOOGeF, mx ~ 50GeF and ~ 107GeF and taking /2/m^, 

fnfm\ to be at the top of the allowed range one obtains a transition magnetic moment

fan,, = lO^W (5.1.11)

It should be noted that in the limit of exact 0(3)# symmetry, nVeV, vanishes. But while 

it appears as a consequence of spontaneous breaking of 0(3)#, the mass term still remains 

zero on account of the absence of either a singlet or a 5-plet term in the effective v.e.v. 
structure. The naturalness condition required in refs.[70,71] to suppress the contribution 

of the Higgs mass splitting to the v-masses, is redundant as because of x being a 0(3)# 

singlet only one set of scalars appear in the relevant diagrams.

It is easy to see that there are no diagrams giving rise to a mass to vr or transition 

moments involving it. We have thus obtained a model in which the spontaneous breaking of 

the horizontal symmetry gives rise to a sole transition moment v, ~ 10i2ns while keeping 

all the neutrinos massless to 1-loop order without invoking any naturalness condition. In 

fact, the lepton number violating part of the relevant effective v.e.v. structure being a 

0(3)# triplet, there would be no radiative corrections to the neutrino mass. Thus the only 

source of a mass is the introduction of a tree level term as for example through a see-saw like 

mechanism induced by introduction of singlets. This analysis can easily be extended to the 

case of more than three genarations or higher symmetry groups. Care need only be taken 

that the effective lepton number violating higgs v.e.v. couples only to the antisymmetric 

combination(s) of the neutrinos.

Though such a small while consistent with the bounds from supernova neutrino 

data might seem to be too uninteresting in the solar context, actually it is not so. For, cou­

pled with a very small neutrino mass difference (10~8eF3 < Am2 < 10~5eF3) as is natural 

here, this could play a significant role in a moderately nonadiabatic evolution scenario [73].
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Also one does not need to introduce extra higgs to suppress the influence of Hveu^ during a 

supernova explosion.

5.2 Gravitational Helicity Flip of Neutrinos

If neutrinos did possess a small mass, they could, in principle, make a transition from a 

helicity state in which they would be dominantly participating in the electroweak process 
to one where they would have practically no interaction with matter. Such helicity flip 

mechanisms could drastically affect the evolution of astrophysical systems like neutron stars 

bom in supernova explosions. Features most vulnerable to such helicity mechanisms are the 

cooling rate and the deleptonisation of the neutron star core. Normally one would expect 

the electromagnetic interactions of the neutrino (through fiv generated at the one-loop 

level) to give the dominant contribution to such effects. Gaemers et al [75] have however 

argued that the ^-mediated process could be, the more important one.

In this section 2 we wish to concentrate on a different mechanism for flipping the helicity 

of massive neutrinos that can be potentially important, namely that due to gravitational 

interactions. Neutron stars appear to be the most favourable candidates to look for such 

effects. The value of GM/Rc2 for a typical neutron star of mass M and radius R, is around 

0.1 and this is an important quantity which will lead to a sizeable helicity flip due to gravity 

as we shall see. In what follows, we shall treat the gravitational field in the so-called weak- 

field limit (also called the linearized approximation). It would however be desirable to 

formulate the contents of this section within the framework of general relativity.

The coupling of neutrinos to the gravitational field, strictly speaking, requires the intro­

duction of tetrads (vierbeins). However in the weak-field limit the coupling can be described 

by an external field metric of the form

G¥(P2)[7mP„ + 7„P#1]$(P1)ft'"'(i>2 - Pi) (5.2.1)

where P=l(P* + Pi) = tT + hfU/. (5.2.2)

Here P\ and Pi denote the Initial and final neutrino momenta and G is the gravitational 

coupling strength.
JBancd on the work in ref. [74]
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For the moment, we shall assume that only the diagonal components of the stress tensor 

of the neutron star are important. This yields

hm = GM/q2 and h^ = S»h00, (5.2.3)

where q — IP2 - Pi|- At first sight this appears to be different from the Schwarzschild 

metric

d s2 = 1-*
r.

df2
dr2

- r2[sin2 9 d(f>2 + dO2), (5.2.4)
(1 ~ *•*/*•)

(where rg is the Schwarzschild radius) but the metric (5.2.3) is indeed the Schwarzschild 

metric expressed in the isotropic spherical coordinates [76]: '

ds! =
(1 + rB/4r)2 1 + 4r

[dr2 + r d6 + r sin2 8 dcfr (5.2.5)

The 5-matrix element for the scattering of a massive neutrino of mass m is then given by 

S/i = -^^2S(P2,A2)P/j7^(P1,Ai)2^(^ - Ei)h>"(q). (5.2.6)

The differential cross section for helicity flip is given by

dff 1 (GMmf 
dO “ -r2 q2 2EP(l — cos#), (5.2.7)

where E(P) denote the initial neutrino energy (momentum). We have removed the sub­

scripts since in the absence of recoil E\ = Ei = E and |Pi| = |P2] = P. The angle of 

scattering is denoted by 6 . The total cross section for helicity flip is then given by

(6.2.8)

where qmax is equal to 2P. g~jn determines in some sense the maximum impact parameter 

of the neutrinos. Since we want to determine what happens to the cooling rate and other 

aspects of the neutron star, wo must restrict < R. ThuB the relevant total crosfl section 

is

or = |(GMmf~ ln(2PJ7) ~ 0.7 x 1032 ln(2PR)m2(keV)GeV~2. (5.2.9)

This is a very large number compared to the typical cross sections one encounters, namely 

the total cross section for helicity flip due to neutral current interactions [75]:

<rf,lip ~ 1.6 x 10-23m2(ifeeV) GeV~2. (5.2.10)
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However what is physically relevant is not the cross section itself but the product 

where n»c»t is the number density of scatterer's. For the gravitational scattering this is 

(volume of the star)-1. Thus the interesting ratio is

UTigcat U

ar.n:z '‘scat N<rz
(5.2.11)

where N is the total number of nucleons ~ 1057 x 1.4 (for a 1.4 solar mass neutron star). 

Then,

( = ixl°X P-212>

Thus for low-energy neutrinos (< 0(1 MeV)) this can indeed become larger than the stan­

dard model effect. Although this mechanism is not of much interest for the cooling rate of 

newly bom neutron stars where the average neutrino energy is ~ lOAfeV or more, it could 

be of potential interest when the neutrino temperature drops to 0.5 MeV or so. It should 

of course be kept in mind that at such temperatures the opacity due to weak interactions is 

also low. Only detailed investigations can tell whether the gravitational mechanisms play 

any observable role in late-time neutron star cooling.

By virtue of the fact that

ttvfPajToTiUAfPi) = 0 for A =4 A', (5.2.13)

one sees that the rotation of the neutron star, manifested as a non-vanishing g0* in the 

leading approximation, does not contribute to the effect.

In connection with the phenomenon of helicity flip due to magnetic moment in a mag­

netic field, Voloshin [79] has proposed the novel idea of a resonant helicity flip. We now 

demonstrate a similar effect for gravitational helicity flip. In the weak-field approximation 

the coupling of the neutrino spin S to the gravitational field is given by

^(axv).S. (5.2.14)

This can be thought of as if a magnetic moment n were interacting with a magnetic field 

H, such that

fiH =
ZGM 
2 R? '

(5.2.15)

Thus the requirement for an adiabatic resonant helicity flip due to gravity becomes [79] 

GM R 1
R Rf Rf

> 2 x 10-2 cm-1 [p/(1012 g cm-3)]1/2^ km/Rf]1^ , (5.2.16)
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where Rf is the resonant radius at which the density of nucleons is p.

Interestingly, gravitational helicity flip mechanisms combined with our understanding 

of the cooling rates of newly bom neutron stars can severely constrain the possible discrete 

symmetry violations in gravitation. The implications of the gravitational interactions not 

conserving discrete symmetries has been studied by Hari Dass [77]. He had also proposed a 

laboratory experiment based on ultra-cold neutron spin precession that could probe for such 

effects [78]. In a non-relativistic system interacting with a static non-rotating gravitational 

object of mass M such discrete symmetry breaking effects can be parametrised by the 

potential
GM GMy(r) = aiZ_S-r + a2^r-S.v. (5.2.17)

The first term violates parity and time reversal while the second term violates parity and, 

through the CPT theorem (the status of this theorem in the context of gravitational inter­

actions is not understood very well), charge conjugation invariance. The existing limits cm 

the parameters are a2 < 10“6 but ai < 104. The experiment proposed by Hari Dass[77] is 

capable of probing ai ~ 1 but technically is very hard to perform.

Before calculating the cross sections for helicity flip due to these interactions we present 

a (special) relativistic generalisation of the above potential. There are many such choices 

that reduce to the above form in the non-relativistic limit, but the choice is restricted if we 

demand smoothness in the zero fermion mass limit. Then the only possible term is

aifi(P2,A2)75[7McrMaga + 7v<rMaga]Ti(Pi,Ai)h'“,(P2 - Pi). (5.2.18)

In fact it is not possible to write a C violating term that contributes to helicity flip 

scattering. One need not be alarmed that the stress tensor in equation (5.2.18) does not 

appear to be conserved. It has been argued on general grounds that discrete symmetry 

violations in gravitation imply the breakdown of local Lorentz invariance [78] and hence 

the stress tensor is no longer symmetric. Even though the stress tensor is conserved, its 

symmetric part is not. It should be stressed that the asymmetry vanishes in the classical 

(as opposed to the quantum mechanical) limit so there is no conflict with the classical tests 

of general relativity. The total cross section for helicity flip due to the parity violating 

interaction is given by
trpv = a\-{GMmf-±-ki(2PR). (5.2.19)

x PE
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Numerically the total contribution to nsr.atO' from the standard model effect as well as from 

gravitational interactions (both parity conserving and parity violating) is

= in GeV-*■ (5.2.20)

assuming j~ P » m. The cooling rates of newly bom neutron stars appear to limit this 

quantity by < 3.2 x 1037 GeV~2, leading to the constraint

< 1.2 x 103. (5.2.21)

As noted by Gaemers et. al [75], a limit of 40 keV is obtained for the neutrino mass, 

independent of the considerations of this section. If the actual mass of the tau neutrino 

saturates this bound, there will be no room for any parity violations in gravitation. Even 

if the tau neutrino mass turns out to be as small as as 1 keV, ai will be constrained to 

be smaller than 300 which is already two orders of magnitude better than the existing 

limits. We have seen that cosmological bounds on the stable neutrino masses require that 

those neutrinos with masses in the keV range be unstable on a cosmological scale [80]. If, 

however, the neutrino is stable with a mass of approximately 50 eV, the limit imposed on the 

parity violating parameter ai will be similar to the existing limit. On the other hand if the 

neutrinos are found to be massless no limit on the parity violating gravitational interaction 

will obtain.

5.3 Model for the 17 keV Neutrino

Signatures of a 17 keV neutrino that mixes with roughly 1% strength with the electron 

neutrino have recently been reported [62,63]. The observations, if corroborated, seem to 

call for the tau neutrino to be a 17 keV Dirac one (unless, of course, the new particle is 

an exotic one altogether) as an identification of the new neutrino with is ruled out by 

the present experimental limits on mixings and the Majorana option negated by the non­

observation of neutrinoless double beta decay. But even with this, further problems like the 

cosmological limit [80] of 100 eV for the masses of stable neutrino species and the aesthetic 

one of such a bizarre mass hierarchy persist. Various models to accomodate the new find in a 

phenomenologically viable way have been proposed [81,82] with different degrees of success 

but none of these address the issue of the reported anticorrelation of the solar neutrino flux

m2(keV) 1 +
1 + 4a?

&E2(MeV)

1034m2(keV) 2.7 +
1 + 4af

3 E2(MeV)
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with the sunspot activity [47]. As we have seen in the section 5.1, perhaps the only natural 

way to explain such a phenomenon is the assumption of a non-zero magnetic moment for 

the neutrino [67].

Thus the problem on hand is to realize a scheme that not only produces the required 

hierarchy for the neutrino masses consistent with the mixing and decay constraints, but 
can also account for a substantial (transition) magnetic moment for the nearly massless vs. 

While doing so, care must be taken to ensure that the result is not dependent on a severe 

fine-tuning of parameters. A particularly appealing solution for the first part of the problem 

has been proposed by Glashow [81]. The idea is to extend the SM fermion spectrum to 

include three gauge singlet right handed neutrinos and employ the singlet Majoron scheme 

[83] to break the global B - L symmetry. The neutrino mass matrix, in the (vt vr) basis, 

then reads

where m gives the Dirac masses and M — Mr is the Majorana mass term. Assuming that 

M is of rank two (i.e. it has one zero eigenvalue), the see-saw mechanism [55] generates 

the lighter masses to give a spectrum comprising of four Majorana neutrinos, two heavy 

ones of masses ~ O(M), two light ones of masses ~ 0(m2/M) and a nearly Dirac one of 

intermediate mass ~ 0(m). Taking m ~ 17 keV and M ~ 300 GeV, one then identifies 

the Simpson neutrino with the pseudo-Dirac particle — comprised mainly of vtl, and the 

massless vr — and has Tn(i/e),m(v#1) ~ O(10~3 eV), values that can explain the solar 

neutrino puzzle via the MSW mechanism [46]. There however is one catch to this beautiful 

ansatz, for obtaining a 17 keV Dirac mass term necessitates Yukawa couplings of the order 

of 10~7, a none-too-pleasing choice.

In this section 3 we marry the concepts outlined above and in Section 5.1 to construct a 

model with all the required features, namely that the neutrino mass matrix should be such 

that it should accomodate a 17 keV Dirac vT with a 1% mixing with ve and be consistent 

with the (00)ou and neutrino oscillation experiments. Moreover a relatively large /x„e,v 

should be present. However, unlike in Glashow’s case [81], the neutrino mass matrix is a 

5x5 one with M now a 2 x 2 matrix of rank one. This results in one of the neutrino 

being exactly massless at the tree level. Further, the Dirac terms for the neutrinos arise as
3Based on the work in ref. [84]

(5.3.1)
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a consequence of radiative corrections and are hence naturally kept small.

The gauge group we choose is a slight modification of that in section 5.1 viz. SU(3)c ® 

517(2)/, ® U(1)y ® SU(2)h with the SM fermions ipL, #£, Ql, C7£ and D£ transform­

ing as triplets under the horizontal group. In addition, we include a singlet neutrino field 

Ncl [(1,1,0,l)i] with a non-conventional lepton number denoted by the subscript. The 

scalar sector consists of the SM higgs <f), and in addition the fields § [(1,2,—1/2,3)o], 

H, H [(1,2, -1/2,5)o] to give masses to the charged fermions; <r [(1,1,0,3)2], £ [(1,1,0,2)g] 

to break the SU(2)# and lepton number. The neutrino Dirac masses [~ O(10keV)] are gen­
erated by ^[(1,2, -1/2,2)2], which acquires v.e.v. only through radiative correction through 

a diagram involving the fields (1 [(1,2, -3/2,1)_2], 6 [(1,1, -1,3)o], 6 [(1,2, -3/2,1)2] and 

£4 [(1,1,-1,1)4]. We also need two color triplet fields 77 [(3,1,1/3,3)_x], x [(3,2,1/6,l)_i] 

to radiatively generate the magnetic moment. The model thus offers charge quantization 

as there is no gaugeable (i.e. anomaly-free ) global 17(1) symmetry [85].

We impose a further discrete symmetry (to be broken softly in the higgs sector), under 
which (ipl, U%, #, #,£3) —> -($£, U£, $, 3). The most general Yukawa term is then

£y = fi>aLQLT} +fDH>Lx + fii>L(9t$ + gs8) + UiQi'(93$ + 95fi) 

+DIQlIs&& + &H) + 9dNIiPl4> + 9mNINI<J.

Instead of writing down the full scalar potential, we rather focus on the terms that 

are responsible for the physics we seek, namely a radiative v.e.v. generation and a one- 
loop magnetic moment. These are <76(1 (^2#^ + A3^J), <76(3 (A45 + A5$),

<7&d(*8.ff + A7$) and t]x<t(k<P, + k'H).

A proper choice (always possible) of the higgs couplings along with the SU(2)u sym­

metry can be exploited to ensure that only the Tzh — ~1 component of er and T^jj = -2 
component of H acquire v.e.v. and $ does not acquire any tree level vacuum expectation 

values. The rest of the scalars may assume any v.e.v. consistent with charge conservation. 

For phenomenological consistency we demand that (a), (E) ~ O(106 GeV) and that any 

other v.e.v. be of the order of the electroweak scale or less. The v.e.v. of ^ is however not 

protected by any symmetry and at one-loop level the diagram in Figure 5.2 contributes.
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Figure 5.2: One-loop diagram responsible for radiative generation of {<£)

Written symbolically,
*4 W»gor»™2,fc

16tt2 100 feeF-1 MeF, (5.3.3)

on assuming that ~ niHoriz, ~ mwk and Ai ~ O(10-1)

The neutrino mass matrix is then a 5 x 5 one of a form similar to that in eqn.(5.3.1) 

(with M now a 2 x 2 matrix of rank one) and can be written as

where

Mi

/f Ml m2\
M “( a)

(0 0 0 Ol\ fbi\

0 0 0 02 b2

0 0 0 O3
and M2 =

bz

\Oi 02 «3
0) U/

(5.3.4)

(5.3.5)

Here A = gM(cr-i) and the elements a*, &,• are of the order of goifi) (the differences arising 

on account of the Clebsch-Gordon coefficients). As M. is of rank 4, we have one exactly 

massless neutrino. M can be approximately block-diagonalized (for details, see Section 
4.2) to the form ( ^ ~ ] + 0(p2Mi), where p — fh = Mi — M2p and A =

v 0 A 
A + | (pMi + M$pT).
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The rest of the spectrum then consists of a light Majorana neutrino of the order of 
tif/A ~ 0(1O~5 GeV), a pseudo-Dirac particle with mass /■w (the mass

splitting ~ b\lA) and a superheavy Majorana one with mass « A ~ 104 GeV (we have 

assumed Yukawa couplings go, 9m ~ O(10-2) ).

The neutrino mixing angles are given essentially by the ratios of a; and bi apart from 

the contribution from the electron mixing matrix and can easily be chosen to satisfy the 

experimental constraints. The contribution to neutrinoless double beta decay amplitude is 

very small and assuming a diagonal form for the charged lepton mass matrix, is given by 

[51,53] (m)u. However the ve and i/M masses are very small.

The Majoron (d) in our model is mainly comprised of Jm(<r) and Jm(E) with a small ad­

mixture of Im(4) of the order of (4>}/MHoriz and contributions from other S£T(2)x, doublets 
further suppressed by a factor of (((j>)/Mwk)2. The coupling of the charged fermions with 

t? is then very small and hence consistent with all astrophysical constraints [86]. Looking 

at the Dirac terms in the fourth row and column, we see that these arise due to the v.e.v. 

s of different components of 0. As these scalars do not have identical contributions to i? 

even to the leading order, the neutrino mass and the Majoron coupling matrices are not 

diagonalized simultaneously. This results in the light neutrinos having a substantial non­

diagonal coupling with i? (of the order of mvlMjiariz) and hence affords a decay channel 

to the tau neutrino of the form vr —> + -d. The vT is then comparatively short-lived,

with a lifetime ~ 105 sec and cosmological requirements are easily satisfied[8G]. As is easily 

recognised, this feature is a consequence of the Majoron having contributions both from 

SU(2)i doublets and singlets and is absent for the usual singlet Majoron models.

It is curious to note that the results of Section 5.2 can be sharpened in the context of 

the 17 keV neutrino. For, if it is actually comprised mainly of the SU(2)i, doublet vr, as 

is being hypothesised, then it satisfies all the criteria to be considered as a probe for the 

physics in the interior of a neutron star. This would result in the very strong bound (see 
equations 5.2.17 and 5.2.21} of ai£O(10) on parity violating effects in gravity.

The first set of criteria having been satisfied, we now turn to the problem of the magnetic 

moments. In fact, it is easy to see that the results of Section 5.1 are carried through without 

any modifications. We have thus obtained a model that naturally incorporates a 17 keV vr
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as well as a sole (neglecting lepton mixing) transition magnetic moment ~ 10_nhB 

for nearly massless neutrinos. The latter effect obviously vanishes exactly in the limit 

of SU(2)„ symmetry only to appear when the symmetry is broken. Yet the mass term 

remains identically zero, for the effective v.e.v. is antisymmetric in the family space. This 

effect allows us, unlike many earlier models [70,71], to totally dispense with any naturalness 

condition to suppress mass generation. Thus to this order, the only contribution to the 

light neutrino masses come from the see-saw terms which are very small anyway. However, 

as there is no conserved lepton number, one expects there to be radiative mass generation 

and the two-loop contribution would typically be of the order of 10~4-10-5 eV. That this 

is so is easily seen from the fact that diagrams similar to those in Fig. 5.1 but with the 

coupling k!HTjxv, contributes to the Majorana mass once the T^h = 0, -1 components of 

H get v.e.v.s radiatively. The 17 keV vT in the present model decays dominantly into a 

and a doublet-singlet Majoron.
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