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3.0 MATHEMATICAL MODEL

The internal manifolded .solar collector was described in 

Chapter 1. When several such collectors are connected in parallel, 

the basic configuration remains the same, that is the resulting

hydraulic pipe network comprises an upper and lower manifolds with
\

risers in parallel. In the following the conceptual model of such a 

pipe network will be discussed and subsequently the model for the 

solar collector will be developed. The model proposed here is quite 

different from those available in the literature and will be 

discussed in details.

When several collector modules are connected in parallel,the 

flow rates in the risers are never equal. The basic aim of the 

present work is to study flow distribution in collector array and 

suggest methods to maintain flow in each riser nearly equal such 

that the collector array efficiency can be maintained same as that 

of a single collector module. Theoretically, the simplest method to 

obtain the same flow rate in each riser is to keep the pressure in 

the manifold constant throughout its length. This implies a very 

large manifold with negligible pressure variation across the 

manifold.

A simple method is to have a manifold such that the
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cross-sectional area decreases at a rate that keeps the fluid 

velocity nearly constant while the mass flow rate decreases. This 

method has the disadvantage that while it works for a particular 

flow -rate- it will not for another flow rate. Further, this 

technique is certainly not practical for solar collector since 

tapered manifold has to be designed for a particular number of
t

collectors in parallel and an inventory of collectors are to be 

kept.

It would be sufficient to develop a method such that the flow 

in risers are practically equal or the flow distribution is such 

that the collector array efficiency is not reduced by a certain 

percentage, for example one percent. Thus the methodology developed 

here is for collector having same size of manifolds with constant 

diameter.

It would be worthwhile to discuss the behaviour of manifold 

both for dividing and combining flow separately to understand the 

pressure variations in the manifolds. Basically, the pressure 
change in a manifold having side port (tee junction) is caused by 

wall friction in the section between the ports and due to momentum 

change at the port. In a dividing manifold when the fluid leaves 

the side port, the pressure at the port rises because an opposing 

force is needed to cause the exit fluid to lose some of its forward 

momentum as it leaves. Similarly, a pressure change occurs at the 

side port of a combining manifold as the entering fluid acquires

momentum.



61

In a dividing manifold having several side ports the pressure 

in the manifold continues to rise and fall. For an isolated 

dividing manifold, the total pressure will continue to fall while 

the static pressure rises . When the static pressure rise due to 

momentum change at the side ports outweighs the static pressure drop 

due to wall friction in the section between the ports, for a uniform 

port discharge pressure, the flow leaving the port is not the same 

and exhibits increasing flow towards the closed end [Collier 

(1976)].

The flow distribution will strongly depend upon the wall 

friction and the ratio of the fluid pressure to the specific kinetic 

energy at the entrance. For no wall friction the flow continuously 

increases and the last port will have the maximum flow. The wall 

friction affects the manifold pressure and thus the flow 

distribution. Thus as the wall friction increases a stage is 

reached when the flow starts decreasing to a minimum before rising 

to the last port. For an isolated dividing manifold, it is possible 

to design the manifold diameter in such a way such that the flow 

leaving the side ports are practically the same for a given value of 

ratio of fluid pressure to the specific kinetic energy at the 

entrance. In general, keeping the manifold diameter large reduces 

the manifold velocity and the said ratio, thereby improving the flow 

distribution [Acrivos(1950)].

In case of combining manifold where the fluid enters the 

manifold from a constant pressure source, the wall friction and the
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momentum effect act in the same direction, causing the pressure in 

the manifold to become smaller in the direction of flow, that is 

towards the open end of the manifold where the total fluid leaves. 

In other words . the total pressure and the . static pressure fall 

towards the header outlet. The static pressure difference across 

the port(tee junction) due to momentum changes reinforces the head 

loss due to wall friction. The flow is always the maximum in the 

port near the exit. In such a manifold the flow variation is much 

more than in the case of dividing manifold. Thus, a larger 

combining manifold is needed for the same flow variation in a 

dividing manifold [Acrivos(1950)].

In a solar collector the dividing and combining manifolds are 

connected by the parallel risers of diameter smaller than that of 

manifold. The pressure variation in the manifolds are similar as 

described above except that the risers connecting the manifolds 

alter the flow distributions since the ports are no longer in 

communication with constant pressure. In the riser the pressure 

changes are due to wall friction and also at the ports at either 

ends due to flow direction and area change . The pressure variations 

in the manifolds are now interdependent.

It can be visualised that the flow distribution in an array of 

solar collector in parallel cannot be uniform unless it is designed 

so. In the following a mathematical model is developed which 

describes the interaction of the manifolds and riser. The

assumptions made in the model are mentioned as the sub-components
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are described. However, the general assumptions are as follows :

1. The model is for isothermal fluid flow i.e. the temperature 

effect on the fluid properties is neglected.

2. The thermosiphon effect, that is the head developed due to
>

density difference in the parallel risers is neglected.

3. The flow is steady.

4. The effect of non-uniform velocity in the manifolds or tee 

junction is accounted for in the semi-ertpirical loss 

coefficients.

5. The interaction of adjacent tees on the loss coefficient is 

negligible and is neglected.

6. Flow in the manifold and riser is Reynolds number dependent.

The internal manifolded solar collector array can be visualised 

as a pipe network consisting of two manifolds and parallel risers 

(Fig. lb). It is, therefore, possible to apply the hydraulic 

network algorithms developed by Daniel (1966), Bending and 

Hutchinson (1973) or the diakoptics method of Gay and Middleton 

(1971). In all these algorithms, the pressure changes considered 

are due to pipe friction only, neglecting losses at tees, bends etc,
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as the later would be negligible in the types of network for which 

the algorithms were developed. On the other hand, in case of a 

solar collector there are two tee junctions for every riser. 

Further,, there Is a cross-sectional area change at such tee 

junction, since the manifold is always sized greater than the riser.

In the present work such changes are accounted for as described 

in Sec.3.1, The approach is slightly different employing the loss 

coefficients as defined by Miller (1978) rather than the momentum 

loss coefficients for the tee junction. Tbs former is well 

documented as a function of the tee geometry and flow ratios. On 

the other hand, only few measurements are available in the 
literature for the momentum coefficients.

The model derived below is dicrete in nature as briefly 

discussed above, unlike the continuous model developed by Bajura and 

Jones(1976), Pigford et.al.(1983) and McFhedran et.al.(1983). Thus 

the present model will not be restricted to large number of risers.

The flow at tee junctions is described in detail in Sec. 3.1. 

Sec. 3.2 gives the frictional loss in riser and manifold. The 

network equations, selection of the algorithm, accounting of flow 

reversals and the effect of temperature are described in Sec. 3.3 

to 3.8. Sec. 3.9 describes the estimation of collector array 

efficiency due to maldistribution.
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3.1 Flow at Tee Junction

The pressure^changes at a tee junction, both for dividing and 

combining flow, can be ’treated either by momentum or energy 

conservation. Acrivos et. al (1959), Bajura and Jones (1960), 

McFhedran (1983) and Pigford (1983) employed momentum coefficients 

for describing flow at a tee junction. Bajura and Jones 1976) 

advocated the use of momentum conservation rather than energy 

conservation on the basis that it is very difficult to allow 

properly for localised heating effects around the junction as 

mechanical energy is lost through viscous dissipation. Momentum
icoefficients are, however, not widely reported in the literature 

Pigford (1983).

All the previous authors had employed constant values of 

momentum coefficients and they were assumed to be independent of tee 

geometry and flow ratio (riser flow to manifold total flow) In a 

solar collector the flow ratio changes at each tee junction 

(riser-manifold), typically 0.1 to 1.0, depending upon flow

distribution. Also the area ratio of riser to manifold
cross-sectional areas will affect the loss coefficients. The

variation in the coefficients can be appreciated from limited data 

obtained by Pigford (1983). The momentum coefficients varied from 

0.26 to 0.49 in the dividing manifold, while it varied from 0.91 to 

2.41 in the combining fold. This variation is certainly

significant.



66

The only well documented data for tee loss coefficients which 

account for both the tee geometry and flow ratio are that of Miller 

(1978). The coefficients are semi empirical and are based on energy 

conservation. These coefficients are used in the present model and 

discussed in detail below.
a

Fig. 3.1 shows the flow at a tee junction and the numbering 

nomenclature. The convention adopted is that the leg carrying the 

total flow is called leg 3. The branch leg of the tee junction is 

called leg 1 and the leg carrying throughflow is called leg 2.

The loss coefficients Kij shown in Fig. 3.1 are defined as :

total pressure in leg i - total pressure in leg j

mean velocity pressure in leg 3

The flow ratio is always expressed as Q1/Q3

3.1.1 Dividing Tee Junction

Considering flow entering the branch of a 90° sharp edged 

tee, Fig. 3.2, with A1/A3 = 1. For very small flows into the 
branch the static pressure in leg 3, and the velocity pressure in 
the branch is virtually zero. Since the energy level in the branch
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Fig. 3.1 Flow at Tee Junction and 
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Fig. 3.2 Loss coefficients for sharp edged 90° 
dividing 'T.f
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is lower by the velocity pressure in the leg 3, the branch loss 

coefficient is positive at about K31 = 1. At the other extreme, 

when all the flow is into the branch [ Qi/Q3=1 ] the loss 

coefficient is similar to that of a mitre bend at about 1.1. In 

between the two extremes the coefficient drops to a minimum of about 
0.85 at Q1/Q3 = 0.40. _ *

The loss coefficient for the throughflow K32 is virtually zero 

until Q1/Q3 = 0.50. For low flow ratios the fluid drawn off by the 

branch consists of the slow moving fluid close to the walls, so the 

energy per unit mass of the fluid in the throughflow may increase 

slightly. This increase is to some extent balanced by the diffusion 

loss as the throughflow slows down at the tee junction. Above Q1/Q3 

=0.5 the throughflow coefficient K32 increases steadily upto 0.35 

when all the flow is into the branch. K32 is not greatly affected 

by changes in the area ratio A1/A3. Reducing the area ratio 

increases branch loss coefficient K31, but the pressure loss in a 

branch is a smaller percentage of the branch velocity pressure.

Viewed from the momentum conservation approach the throughflow 

coefficient is the pressure recovery coefficient considered by 

Acrivos (1959) and Pigford (1983). The pressure rise at a dividing 

tee junction can be appreciated from the momentum balance at the 

tee, e.g. see Acrivos (1959) or Pigford (1983). The effect termed 

as the Bernoulli effect by McPhedran (1983), is important to account 

for in the total model since it influences the flow distribution. 

It is accounted for in the present work by the loss coefficient K31.
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The loss coefficients as a function of flow ratio Q1/Q3 and 

area ratio A1/A3 are given by Miller (1978). The effect of ratio of 

radius at branch-main leg junction to the branch diameter is also 

included. For the purpose of design and computer simulation it is 

more convinient to use the correlation given by Gardel (1955) 

presented by Collier (1976). These are as follows :

Kai = - 0.95(l-q)2

- q2 [(1.3cot(180-9)/2 - 0.3 + (0.4-0.1a)/a2)(l-0.9(r/a)i/2)]

- 0.4q(l-q) (1+1/a)cot(180-8)/2

..(3.2)

K32 = - 0.03(l-q)2 - 0.35q2 - 0.2q(l-q) ..(3.3)

where q = flow ratio, Q1/Q3 

a = area ratio, A1/A3

r = ratio of radius at branch to main junction to the 

branch diameter

8 = angle of junction, 90° in the present case.

3.1.2 Combining Tee Junction

Fig. 3.3 gives the loss coefficients for a combining sharp
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Fig, 3.3 Loss coefficients for sharp edged 90° combining VT'.
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edged 90® tee, area ratio A1/A3 = 1, as a function of flow ratio 

Q1/Q3.

Consider first flow entering from branch leg 1 into leg 3. For 
zero branch flow' the pressure in the branch is essentially the

rstatic pressure of the throughflow. If the pressure in the branch 

is raised slightly, a small flow will leave Hie branch and be 

accelerated upto the velocity in leg 3. There is a transfer of 

energy from the throughflow (leg 2) to the flow from the branch, so 

the loss coefficient for the branch is negative. When the flow 

ratio is close to zero the branch loss coefficient K13 is -1.0. The 

corresponding throughflow coefficient K23 is positive at about 0.05. 

As the flow ratio increases the branch loss coefficient K13 becomes 

positive at a flow ratio of 0.3, reaching a maximum at about 1.1 

when all the flow is from the branch. The corresponding value of 

K23 increases steadily from near zero upto a maximum of about 0.55 

when all the flow is entering from the branch.

If the area ratio A1/A3 is less than unity the velocity 

pressure in the branch, for a given Q1/Q3, is greater and 'the branch 

loss coefficients are higher. For instance, with all the flow from 

the branch, the branch loss coefficient will be greater than the the 

coefficient with equal area by roughly the increase of the square of 

the area ratio. Variation in the area ratio has a small effect on 

the throughflow coefficient K23.
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Gardel's tee loss coefficients for combining flow are as 

follows :

Ki3 = - 0.92(l-q)2

- q2[(1.2-ri/2)(cos(0/a)-l) + 0.8(l-l/a2) - (l-a)cos(0/a)]

+ (2-a)q(l-q)

..(3.4)

K23 = 0.03(l-q)2

- q2[l+ (1.62-r1/2)(cos(0/a)-l)- 0.38(l-a)]

+ (2-a)q(l-q) ..(3.5)

3.1.3 Applicability of the tee loss coefficients for solar collector 

network

Effect of spacing

The loss coefficients at dividing and combining tees given in 

the previous sections are for an isolated tee. In a solar

collector, there will be several tee junctions spaced at certain 

intervals. According to Miller (1978), when the tees are spaced at 

3 manifold diameters apart, or 4 branch diameters apart if the 

branch flow is less than 10 % of the total flow, the isolated tee 

loss coefficients can be used. Similar observations were made by
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Acrivos (1959) and Pigford (1983) based on the experimental values.

The present day solar collector typically employ riser spacing 

of 100 - 125 mm which is about 4-5 manifold diameter (25 rrra NB) or 

10 to 12 branch diameters (9 mm). The isolated loss coefficients 

therefore can be used for a solar collector.

Effect q£ Reynolds Number

The tee loss coefficients given in Secs. 3.1.1 and 3.1.2 due
\

to Gardell (1959) or Miller (1978) are for high Reynolds number 

(100,000). The flow in a solar collector is not highly turbulent 

and laminar flow in the risers are not unusual.

Miller (1978) recommended correction factors for lower Reynolds 

number for bends. However, for sharp bends, the effect of Reynolds 

number is not predominant. Fig. 3.4 reproduced from Fig. 5.82 of 

Miller (1978) indicates independence of Reynold number in the range 

of 800 - 100,000. Further, according to Perry (1963), the tee loss 

coefficient in the range of 500 - 1000, both for throughflow and 

branch loss coeffiicents, are not affected significantly by Reynolds 

number. Below Re = 500 the coefficient rises sharply with Reynolds 

number. The values are shown in Table 3.1. For comparison the 

coefficients for 90° elbow and different types of valves are also 

given. It is observed that for these fittings the loss 

coefficient is insensitive to Reynolds number in the range of 500 -

1000.
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It is apparent that Miller's or Gardel's tee loss coefficients 

can be used upto Re = 500 without significant error. This indeed 

will be tbs case as shown in Chapter 6.
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Table 3.1 Loss Coefficients for Tee, Elbow and Valves in laminar 
flow

Type of fitting Loss
(no.

coefficient, K
of velocity heads)

Reynolds No.

1000 500 100 50

a. Tee
-standard along run 0.40 0.50 2.5 —

(throughflow)
-branch 1.50 1.80 4.9 9.3

b. 9Qo elbow, short radius 0.90 1.00 7.5 16.0

c. Gate valve 1.20 1.70 9.9 24.0
d. Angle valve 8.00 8.50 11.0 19.0

e. Globe valve,disc plug 11.00 12.00 20.0 30.0

Source: Perry (1963), Table 5.20 after Kitteridge.
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3.2 Friction flow In riser and manifold

The flow in a riser of a solar collector is normally laminar. 

The pressure change in a riser is due to friction because of viscous 

dissipation. The 'flow in a manifold can vary from laminar to 

turbulent.

The friction factor for laminar flow is given by

f = 64/Re ' (3.6)

For turbulent flow, the friction factor is given by the explicit 

expression due to Swaroee and Jain (1976)

0.25

f =----------------------------- (3.7)

[log(k/3.7D) + 5.74/Re0-9]2

where, k is the pipe roughness,m .
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3.3 Solar collector Network Model

Model, both” for symmetric (U-manifolded) and asymmetric

(Z-raanif olded) configuration, will be derived. The pressure changes 

at tees, riser and manifold were discussed in Sec. 3.2 where the 

loss coefficients and friction factors were defined.

3.3.1 Network Pressure Equation
\

The pressure change in general is described as

AP = K. d UV2 (3.8)

where. Ap = pressure change, N rrr2 

d = density, kg nr3 

U = velocity, m s-i 

K = loss coefficient, dimensionless

In a network, flow rates are normally employed as this variable 

is used to satisfy Kirchoff's law at each tee junction and during 

iteration. The pressure equation is then modified to

Ap = K. d Q2/2A2 (3.9)

where, A = cross-sectional area, m2 

Q = flow rate, m3 s~i
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In fact this form is useful also since the tee loss 

coefficients are defined in terms of flow and area ratios.

Prsasass.Equa1aQnS.for..pipe.(riser.or manifold.)

The pressure change equation for a pipe is given by the well 

known formulae [Miller(1978)]

Z\p = Kd Q2/2A2

= (fL/D) d Q2/2A2 (3.10)

The friction factor f is given by eqns (3.6) and (3.7) for 

laminar and turbulent flow respectively. L is the length of the 

pipe.

pressure, Equation.for .a.Too., .Junction

Following the definition of loss coefficient at a tee junction 

given in Sec. 3.1, the pressure change equations are given below. 

The same nomenclature follows.

Dividing Tee :

Throughflow

P3 - P2 = d 022/2 - d 032/2 + K32 d U32/2

= d Q22/2A22 - d Q32/2A32 + K32 d Q32/2A32 (3.11)
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Branch flow

P3 - pi = d 0i2/2 - d U32/2 + K31 d O32/2

= d Q12/2A12 - d Q32/2A32 + Ksi d Q32/2A32 (3.12)

Confcining Tee :
Throughflow

P2 - p3 = d U32/2 - d Ua2/2 + K23 d U32/2

= d Q32/2A32 - d Q22/2A22 + K23 d Q32/2A32 (3.13)

Branch flow

Pi - P3 = d U32/2 - d U12/2 + Ki3 d U32/2

= d Q32/2A32 - d Q12/2A12 + K13 d Q32/2A32 (3.14)

Eqns 3.10 - 3.14 form the basis of network pressure equations
required to estimate the flow distribution in a solar collector

array.
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3.4 Network Pressure Equation for Asymmetric Flow

The solar collector with an internal manifold is shown in Fig. 

1.1 (c). It can be modelled by a resistive network similar to

electrical circuits. The resistive element represents the component 

in the pipe network which causes pressure change. These are 

essentially frictional losses in the riser and manifold, and the

presssure loss or gain at the tee junctions where tbs riser meets
\the manifold.

Fig. 3.5 shows the collector hydraulic network and also the 

equivalent resistive network. The numbering of the hydraulic and 

the resistive network is done to facilitate computer modelling. It 

is seen from the resistive network that it has repititive rassh which 

simplifies modelling and the solution of the network. It is 

therefore sufficient to write the equations for one close loop mesh, 

that is 3-4-6-5. The other meshes will have the same form.

The equations written for the branch represent the pressure 

change in the branch as shown in the resistive network of Fig. 3.5. 

In the total equations for the collector network, the potential head 

term will cancell out and thus not shown.

Considering mesh 3-4-6-5, the branch pressure equations are as

follows :
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Lm .

Resistances

R: RIsler.Frfctlonai Loss Including Entrance Effect 
M: Manifold,Frictional Loss Between Two 'T* Junctions 
Tc: Combining T; (13)and(23) Follows Nomenclature of Fig.3.1 
Ta: Dividing ’T; (31)and(32) Follows Nomenclature of Fig.3.1 
P. Iniet/Outiet Pipe

Fig.3.5 Collector Hydraulic and
Equivalent Resistance Network 
for Asymmetric Flow
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pb(3)= pi - po

= pressure change at dividing tee + pressure change in riser 

due to frietion + pressure change at combining tee 

or

Pb(3) = d/2[( Q32/A32 - Q12/A12 ) + Kd(3,l)Qi2/Ai2]

+ f3L3/D3 d/2.Q32/A32

+ d/2[( Q5VA52 - Q32/Ai2 ) + Kc(3,5)Qs2/As2] (3.15)
or

pb(3) = d/2.Qi2/Ai2[ Kd(3,l) - 1 ] + d/2.Q32/A32(f3L3/D3)

+ d/2.Qs2/A52[ Kc(3,5) + 1 ] (3.16)

Since only two types of pipes are considered, i.e. riser and 

manifold, it will be easier to change the subscripts to riser and 

manifold. Thus, eqn 3.16 can be rewritten as

pb(3) = d/2.Ql2/Am2[ Kd(3,l) - 1 ] + d/2.Q32/Ar2(frLr/Dc)

+ d/2.Q25/Am2[ Kc(3,5) + 1 ] (3.17)

where the subscripts m and r refer to manifold and riser 
respectively. It may be noted that the nomenclature of tee loss
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coefficients has been slightly modified to avoid confusion with the 

branch numbering. Thus, Ka(3,l) stands for dividing tee pertaining 

to flows in branches 3 and 1. While evaluating Kd(3,1) from eqn 3.2 
the corresponding~flow rates are considered for coinputing the flow 

ratio, q. The same applies for Kc(3,5), where the subscript c refers 

to combining tee.

On similar lines we get,

pb(4) = d/2.Q42/Am2[fmLm/Dm + 1] + d/2.Ql2/Am2[Ka(4,l) - 1] (3.18)

pb(5) = d/2.QsVAm2[fmWDn - 1] + d/2.Q82/Am2[Kc(5,8) + 1] (3.19)

pb(6) = d/2.Qa2/Am2[Kd(6,4) - 1] + d/2.Qs2/Ar2(frLr/Dr)

+ d/2.Q42/Am2[Kc(6,8) + L] (3.20)
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In general, the network pressure equations for asyrcmetric flow 

can be written as :

Riser

pb(i) = d/2.Qi-22/Am2[Kd(i,i-2) -1] + d/2.Qi2/Ar2(frLr/Dr)

+ d/2.Qi+2 2/Am2[Kc(i,i+2) + 1] (3.21)

Eqn 3.21 applies for i = 3,6,9.... (n-2)

Lower manifold

pb(i) = d/2.Qi2/Am2[fmLm/Dra + 1] + d/2.Qi~32/Am2[Kd(i,i-3) - 1]
(3.22)

i = 4,7,10,...(n-2)

Upper manifold

pb(i) = d/2. Qi 2/Am2 [ fmLm/Bm - 1]+ d/2.Qi+32/Am2[Kc(i,i+3) + 1]
(3.23)

i = 2,5,8,...n

where, n = total no. of branches 

= 3nr + 2
nr = no. of risers in a collector
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In evaluating the tee loss coefficients Kd(i,j) and Kc(i,j) in 

eqns 3.21 - 3.23, the flow ratio q. , as defined in Sec. 3.1 and 

eqns 3.2 - 3.5, is always computed as :

Riser

q. = Qi/Qj

or q = Qi/Qi-2 for dividing flow,

= Qi/Qi+2 for combining flow (3.24)

Lower manifold

q = Qi-l/Qj = Qi-l/Qx-3 (3.25)

Dpper manifold

q = Qi+l/Qj = Qi+l/Qi+3 (3.26)

since the flow ratio is always defined as the ratio of branch to the 
total flow.

The area ratio is always

a - Ar/Am (3.27)
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For asymmetric flow, Q2 = Qn-i =0, since branches 2 and n-1 

are the closed ends.

The pressure change at the inlet and outlet pipes is given by

Pb(i) = d/2.Qi2/Am2(fpLp/Dp) (3.28)

where, i = 1 or n

Lp = length of inlet/outlet pipe, m 

Dp = diameter of inlet/outlet pipe, ra
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3.5 Network Pressure equation for Symmetric Flow

Fig. 3.6 shows the collector hydraulic network for symmetric 

flow. Considering the mesh 3-4-6-5 we get

pb(3) = d/2[(Q32/Ar2 _ Q^/AmZ) + Kd(3,l)Ql2/Am2]

+ d/2.Q32/Ar2(frLr/Dr)

+ d/2[(Q22/Am2 - Q32/Ar2) + Kc(3,2)Q22/Am2] (3.29)

or

Pb(3) = d/2.Qi2/Am2[Kd(3,1) - 1] + d/2.Qs2/Ar2(frLr/Dr)

+ d/2.Q22/Am2[Kc(3,2) + 1] (3.30)

pb(4) = d/2.Q42/Am2(£mLm/Dm + 1) + d/2.Ql2/Am2[Kd(4,1) - 1]

....(3.31)

pb(5) = d/2.Qs2/Am2(fmLm/Dm - 1) + d/2.Q22/Ajn2[Kc(5,2) + 1]
....(3.32)

Pb(6) = d/2.Q42/Am2[Kd(6,4) - 1] + d/2.Qe2/Ar2(frLr/Dr)

+ d/2.Qs2/Am2[Kc(6,5) + 1] (3.33)
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Closed
P k Q5 0 P

Resistances

R: Riser.Frlcttonal loss including Entrance Effect 
M: Manifold,Frictional Loss Between Two 'T Junctions 
Tc: Combining T; (13)and(23) Follows Nomenclature of Fig.3.1 
Td: Dividing 'T;(31)and(32) Follows Nomenclature of Fig.3,1 
P: Inlet/Outlet Pipe

Fig.3.6 Collector Hydraulic Network and 
Equivalent Resistance 
Network for Symmetric Follow
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In general, the network pressure equations for symretric flow 

can be written as :

Riser

pb(i) = d/2.Qi-22/Am2[Kd(i,i-2) - 1] + d/2.Qi2/Ar2(frLr/Dr)

+ d/2.Qi-i2/Ajn2[Kc(i,i-l) + 1] (3.34)

i = 3,6,9...n

Lower manifold

pb(i) = d^.QiS/AmZCCfmLm/Dn,) + 1]+ d/2.Qi-32/Am2[Kd(i,i-3) - 1]
(3.35)

i = 1,4,7...(n-2)

Upper manifold

pb(i) = d/2.Qi2/Am2[(fmLm/Dm - 1]+ d/2.Qi-32/Am2[Kc(i,i-3) + 1]
(3.36)

i = 2,5,8...(n-1)

where n = total no. of risers 

= 3nr

nr = no. of risers
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In evaluating the tee loss coefficients Kd(i,j)
the flow ratio q is always computed as :

Riser

q = Qi/Qj

= Qi/Qi-2 for dividing flow

and Kc(i,j),

= Qi/Qi-i for combining flow

Lower manifold

(3.37)

q = Qi-i/Qj = Qi-l/Qi-3

Upper manifold

(3.38)

q = Qi-2/Qj = Qi-2/Qi-3 (3.39)

The area ratio is similarly defined by eqn 3.27.
change at the inlet/outlet pipe is given by

The pressure

pb(i) = d/2.Qi2/Am2(fpLp/Dp) (3.40)

i = 1 or 2
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3.6 Solution of Solar Collector Hydraulic Network

The solution of a pipe network is defined as the determination 

of the flows in the pipes and the pressures at the junctions given 

the structure of the network, physical dimension, the external flows 

and the physical properties of the flowing fluid. Most of the 

methods available are due to Hardy Cross (1936) which is essentially 

a relaxation method. The Hardy Cross method is based on Kirchoff's 

laws :

1. The algebraic sum of flows at any pipe junction is zero.

2. The algebraic sum of the pressure drops around any closed 

loop (mesh) of the network is zero.

A relationship between pressure drop and flow is needed to 

solve the network. This was derived in Sec. 3.4 and 3,5 for the 

asymmetric and symmetric flow networks respectively.

The above two laws lead to two iteration schemes. In the first 

scheme, the method of balancing heads, a flow distribution which 
satisfies the first law is assumed and is subjected to correction 

mesh by mesh until the requirements of the second law are satisfied. 

The second method, the method of balancing flows, starts from a 

pressure distribution which satisfies the second law and which is

iterated until the first law is satisfied.
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The algorithm developed subsequently, the latest of which is 

due to Daniel (1966), used essentially the same technique with 

slight modifications. The main disadvantage of the Hardy Cross 

technique is that., it requires selection of a set of meshes for the 

network. For a large network this is not a trivial task since there 

is no unique set of meshes and furthermore blie rate of convergence 

of the solution depends upon the selection made. In addition, an 

initial distribution of flow ( or pressures ) which satisfies one of 

Kirchoff's laws must be calculated. This could be quite complex.

To overcome these, Gay and Middleton (1971) developed a 

diakoptics technique. The technique involves transforming a network 

into an intermediate network whose solution can be found and the 

transforming this solution into the solutions of the given network. 

This is essential since in the Hardy Cross method the rate of 

convergence depends strongly upon selection of mesh. Daniel (1977) 

developed a computer program to find a set of basic meshes given a 

tree of the network. However, this procedure transforms the problem 

of mesh selection into the problem of tree selection. Daniel found 

this was computationally prohibitive. In this respect, the 

diakoptics method is superior.

Bending and Hutchinson (1973) developed another algorithm,

called linearisation technique, which is simpler in concept
/

compared to the previous methods discussed above and requires less 

computation time.
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3.6.1 Selection of Network Algorithm

The techniques developed by Gay and Middleton (1971), and 

Bending and Hutchinson (1973) are basically for very large pipe 

networks which are difficult to solve by simpler techniques. The 

techniques involve matrix representation and its solution is 

strongly dependent upon the network matrix correlating the flow and 

pressure in the branches. The diakoptics essentially simplifies the

matrix amenable to solution. So is the case with the linearisation
\

technique.

For the present work a simpler algorithm will be adequate since 

the closed loop meshes are identical. That is, the closed loop 

between the two risers is repititive, as shown in Fig. 3.5 by mesh 

3-4-6-5. Thus no tree selection or mesh selection is required to 

assure convergence. It is also not necessary to resort to matrix 

transformation and inversion needed in diakoptics and linearisation 

methods. For these reasons, Daniel's algorithm which is an advanced 

version of Hardy Cross technique is employed.

3.6.2 Daniel's Algorithm for Solar Collector

The relationship between pressure drop and flow in a branch i 

of a network can be expressed as

pb(i) = RiQi2 (3.41)
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The resistance factor Hi is the resistance of the branch i and 

can be drived easily from the pressure change eqns 3.21-3.23 and 

3.34-3.36 described in Secs. 3.4 and 3.5.
*a»

A steady state solution is found when the algebraic sum of the 

pressure drops round all the meshes are zero. Thus, for a single 

mesh

t, RiQi2 = 0 (3.42)

While carrying out computation, eqn 3.42 is satisfied for all 

meshes if the amount by which the pressure drop is out of balance is 

arbitrarily small.

The Hardy Cross method assumes that each branch in the network 

is assigned a flow such that Kirchoff's first law is obeyed, that is

^Tqx2 = 0 (3.43)

This is called initial solution and it is not necessary that at 

this stage eqn 3.42 is satisfied. Generally, the initial estimate 

of flow will result in eqn 3.42 being out of balance. This will be 

termed as a mesh current. The object is to successively improve the 

initial estimate until a sufficiently accurate solution is achieved. 

This is done by obtaining the Hardy Cross correction factor caused 

by the inaccuracy of the initial estimate of flows for each basic 

mesh. The correction factor is then applied to the flows in the 

branches forming the mesh. The improvement to the current best 

estimate ( nth iterate ) may be carried out by



97

Qj.n+1 r Qin + qmn (3.44)

qm is the Hardy-* Cross correction factor, the sign of which is 

dependent upon the accuracy of the initial branch flow.

Rewriting eqn 3.44 gives

Qin+l = Qxn + Cm,k qmn (3.45)

where Cm,k are the the elements of circuit matrix shown in Fig. 3.7 

and is described below. The correction factor qm is given by

,k sign Qin Ri (Qin)2 

2! Cm,k Ri Qin J

here k=4
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3.6.3 Circuit Matrix

Fig. 3.7 shows the circuit matrices for asymmetric and 

symmetric flow. The circuit matrix is a logical matrix having value 

of 1 or -1. The assignment of value is dependent upon the arbitrary 

mesh flow chosen. In Fig. 3.7 the mesh flow is clockwise for 

asymmetric flow while it is anti-clockwise for symmetric flow. The 

subscript m corresponds to mesh number in the network while k refers 

to the branches in the mesh. The value assignment is given below :

Cm,k = 1, if the flow in branch i in the mth mesh coincides with 

the mesh flow.

Cm,k =-l, if the flow in branch i in the mth mesh is opposite to

the mesh flow.
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Asymmetric Symmetric

Cm,k Value Cm,k Value

Cm,1 1 Cm,1 -1
Cm,2 -1 Cm,2 1
Cm,3 1 Cm,3 1
Cm,4 -1 Cm,4 1

Fig. 3.7 Circuit Matrices 
Symmetric Flow

for Asymmetric and



100

3.7 Flow Reversals

Flow can reverse in a riser due to unfavorable collector 

geometry, for example, high resistance of pipe interconnecting two 

collector modules or in case the riser diameter is higher than that 

of the manifold as observed by McPhedran (1983). In case of later, 

the manifold offers more resistance than the risers. It can also 

occur during iterations during balancing with orifices, which again 

is due to high resistance in the interconnecting pipe. The flow 

reversal can be taken care of easily by reformulating the resistance 

network. Essentially, the dividing tee will become a combining tee 

and vice-versa.

Fig 3.8 shows a portion of a network illustrating flow reversal 

in the ith riser. The necessary modifications in the network 

definitions are indicated. Also the corresponding changes in the 

resistance network are also illustrated in Fig. 3.9 for asymmetric 

flow.

Flow reversal in two adjacent risers and in alternate risers
%

are also considered and incorporated in the model as described 
above. The treatise for synraetric flow remains the same.

3.8 Effect of Tenperature

The network equations derived in Sec.3.4 and 3.5 were for
isothermal fluid. In an actual solar collector this will not be the
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(a) Normal Row In 

Branch i

Flow Ratio

q=Qi /Qi—2,Dividing Flow 

qpQi/+2,Combining Flow 

Circuit Matrix 

Cm, 4=

Cm+l,1= 1

(b) Reverse Flow In 

Branch 1

Flow Ratio 

qHQi/QI-H

qHQl/QH-11 

Circuit Matrix 

Cm,4= 1 

Cm+1,1=—1

Fig. 3.8 Modifications in the Network during Flow Reversal in 
flow ratio and circuit Matrix in Asymmetric Flow
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Tc M Tc M M Td M Tc M

a) Normal b) Reversal

Fig.3.9 Modification in resistance Network
Due to Flow Reversal in Asymmetric Flow
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case since the fluid temperature increases across the riser. The 

temperature difference which can affect the flow behaviour can be of 

two types.

Firstly, the temperature difference across the riser due to 

temperature gained by the flowing fluid. This affects the density 

and viscosity, which in turn affect parameter like friction factor 

and thus the pressure drop. Secondly, difference in the fluid 

temperatures between parallel risers due to maldistribution which 

induces a thernosiphon head due to density difference.

In a solar collector, the temperature rise per pass across the 

riser is typically 10® - 20° C depending upon the flow rate,
collector characteristics and solar intensity. For solar collector 

with selective coating and one cover, typical of present day 

collector, the temperature rise will be computed as follows.

The Hottel-Whillier-Bliss equation can be used to compute 

temperature rise [Duffie(1974)3 :

*

Fr [ I.(ta) - DL(Ti - Ta) ]

dT =--------------------- (3.47)
G Cp

where Fr = collector heat removal factor, dimensionless 

I = solar radiation, W nr2

(ta)= transmittance-absorptance product
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Ul = overall collector loss coefficient, W m-2K-i 

Ti = fluid inlet temperature, K 

Ta = ambient temperature, K 
G = collector flow rate per unit area, kg s-1ra-2 

Gp = fluid specific heat, J kg_1K

Typically, one cover selective collector and operating 

conditions will have the following values :

(ta) = 0.84

Ul = 4.0 W ra-2K-i

G = 0.0050 - 0.0075 kg s-inr*

Gp = 4190 J kg-ik-i

I = 300 - 1000 W nr2

Tx = 25 - 40 oc

Ta = 25 - 40 °C

For estimating the effect of temperature difference across the 
riser, all the conditions chosen below will result in dayti me 

average temperature rise :

G = 0.0075, I = 800, Ti = 30 <>C, Ta = 25 °C.

Fr can be estimated from the following [Duffie(1974)] :
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G CP

Fr =---- [ i _ exp( - F'0l/GCp)] (3.48)

OL

where F'= collector efficiency factor, typically equals 0.98 for 1 

cover selective collector.

Thus, Fr = 0.92 for G = 0.0075 kgs-im-2.

Using the above values, the temperature rise across the riser 

is 18.5® C. Considering the changes in density and viscosity at 

inlet and outlet, the friction factor differs only by 2 - 3 %. The 

change due to increasing the inlet temperature for the same 

temperature rise also is not more than 3 %. The effect of

temperature rise across the riser on the pressure drop computation 

can thus be neglected.

The . temperature effect will be even insignificant when the 

collector array is designed for nearly uniform flow distribution. 

In this case, the temperature rise in all the risers being 

practically the same, the change in the riser pressure drop will be 

almost identical. This, effectively, implies that the riser 

characteristics being almost the same, the overall effect on the 

flow distribution will be negligible.

The temperature difference in the parallel risers will occur 
due to malditribution. This temperature difference will create a
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thermosiphon head. It was shown by McFhedran (1983) that this could 

be quite small relative to the riser pressure drop. This is true 

for all cases where the riser pressure drop is controlling. 

Further,, it may"’ be argued that for an array with low flow 

maldistribution, the thermosiphon head will be small. And for a 

forced circulation system this bead will be small.

3.9 Collector Array Efficiency

Knowing the flow distribution in terms of actual flow rates in 

the risers, it is possible to estimate the collector array 

efficiency. Smirnov (1981) and Cawphob (1981) derived a simple 

expression which can be utilised to estimate the effect of flow 

maldistribution on the collector efficiency. Cawphob's expression 

was used by Jiang and Mao (1985) discussed in Chapter 2 and was 

found useful in describing the experimentally determined array 

efficiency.

The collector array efficiency will then quantitatively 

determine the effect of flow maldistribution. This will allow a 
designer to determine the number collectors which can be placed in 

parallel for a given collector geometry and flow rate within 

specified reduction allowable in the collector array efficiency.

Both Smirnov (1981) and Cawphob (1981) employed the basic 

collector heat transfer equation given by eqns 3.48. These
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equations apply to a collector or an individual fin-riser. While 

the above authors had considered a collector as a unit for analysing 

the flow distribution, in the present work an individual fin-riser 

assembly is considered. Majority of the present day commercial 

solar collectors have individual fin-riser placed together to form a 

collector. The individual fin-risers are normally not joined 

together thermally. In certain designs they are overlapping without 

good thermal contact.

In the following, the collector array efficiency is derived for 

solar collector array compromising of several collectors having a 

number of independent fin-riser. Eqn 3.47 is rewritten to give the 

useful heat gained by the ith fin riser

Qui = FRi [ I (ta) - Ul (Ti - Ta) ] (3.49)

The heat removal factor, Fr, is defined by eqn 3.48.

Assuming that the inlet fluid tempertaure Ti and Idle overall 

loss coefficient Ul are identical for all the risers, and summing up 

for all the risers, the overall useful heat gained by the array is 

given by

When the flow is uniformily distributed, the useful heat gained 

by the fin-riser is

(3.50)



108

Qu* = Fr* [ I (ta) - Ul (Ti - Ta) ] (3.51)

The total useful heat gained by the array will be nrQu*, since 

flow is uniform in each riser.

The collector array efficiency is simply given by

ceffs = / (nr Qu*)

= ^FRi / (nr Fr*)

Eqn 3.48 can be rewritten as
(3.52)

Fr = r x [ 1 - exp(-l/x) ] (3.53)

where x = G Cp / Ul F' (3.54)

Following Smirnov (1981) by expanding Fr(xx) into series of 

power of (xi-x*) and retaining second order terms only, an 

approximation of ceffs is obtained.

1
ceffs - 1 -

.- ^(Xx-X*)
(3.55)

2(x*)4 [exp(l/x*) - 1] nr

The above can be simplified to
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ceffs II-------------------------- J^(xi/x*-l) (3.56)

2(x*)2 [eotpCl/x*) - 1] nr

Xi Gi ' Qi

Since — = — = — (3.57)

x* G* Q*

the summation term in eqn 3.60 can be replaced by

1 Qi

nr Q*

Qi and Q* are the ith riser flow rate and the riser flow rate 

with uniform flow in the array, respectively. The quantity Qi for 

all the risers are known from the solution of the network.

Eqns 3.56 and 3.58 are used to estimate the collector array 

efficiency with respect to an array with uniform flow. In the 

present work the summation terra of eqn 3.58 is considered equivalent 
to the non-uniformity factor and is used in Chapter 6.

Application of Non-uniformity Factors

The collector array efficiency derived above will not be 
applicable to collectors having fin-riser in good thermal contact,
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since there will be redistribution of temperature in the adjacent 

fin-risers. This is not serious since normally only 8 to 10 risers 

are placed in a collector. Smirnov's collector array efficiency 

will therefore serves as an upper limit.

3.10 Ccsqputer Model Flow Chart

The flow chart given in Fig. 3.10 describes tbs procedure for 

solving the hydraulic network.



Fig. 3.10 Flow Chart for Solving Collector Hydrailc 
.Network(Asymmetrlc and Symmetric)
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Fig. 3.10 Cant'd



113

Fig. 3.10 Cant’d


