

LIST OF FIGURES

CHAPTER-11.1Global projections for the diabetes epidemic1.2Insulin signaling pathway1.3Molecular mechanism of Insulin resistance1.4Intertissue relationship in TIIDM1.5FFA and Lipoprotein metabolism in peripheral tissues1.6Remodeling in adipose tissue in different physiological conditions	2 8 12 13 16 19 20 22 25 30		
1.1Global projections for the diabetes epidemic1.2Insulin signaling pathway1.3Molecular mechanism of Insulin resistance1.4Intertissue relationship in TIIDM1.5FFA and Lipoprotein metabolism in peripheral tissues1.6Remodeling in adipose tissue in different physiological conditions	2 8 12 13 16 19 20 22 25 30		
1.2Insulin signaling pathway1.3Molecular mechanism of Insulin resistance1.4Intertissue relationship in TIIDM1.5FFA and Lipoprotein metabolism in peripheral tissues1.6Remodeling in adipose tissue in different physiological conditions	8 12 13 16 19 20 22 25 30		
1.3Molecular mechanism of Insulin resistance1.4Intertissue relationship in TIIDM1.5FFA and Lipoprotein metabolism in peripheral tissues1.6Remodeling in adipose tissue in different physiological conditions	12 13 16 19 20 22 25 30		
1.4Intertissue relationship in TIIDM1.5FFA and Lipoprotein metabolism in peripheral tissues1.6Remodeling in adipose tissue in different physiological conditions	13 16 19 20 22 25 30		
1.5FFA and Lipoprotein metabolism in peripheral tissues1.6Remodeling in adipose tissue in different physiological conditions	16 19 20 22 25 30		
1.6 Remodeling in adipose tissue in different physiological conditions	19 20 22 25 30		
	20 22 25 30		
1.7 Stages of 3T3-L1 pre-adipocyte differentiation	22 25 30		
1.8 Structure of human PARP-1 protein	25 30		
1.9 TGF-β signalling	30		
1.10 Model for the mechanism of metformin			
CHAPTER-3			
3.1a Chemical structure of SM	66		
Overlay of UV absorption spectrum of SM isolated in lab and reference			
3.1b standard.	66		
TLC profile observed under UV 254 nm: 1d Densitograms of tracks			
3.1c 1: Enicostemma littorale extract. and 2: SM.	66		
Change in body weight upon induction of diabetes and treatment of			
3.2 diabetic rats with EL. SM and standard drug MFO.	68		
Effect of EL extract. SM and MFO treatments for 40 days on the post-			
3.3a prandial serum glucose levels in diabetic conditions using GOD-POD.	68		
Effect of EL extract. SM and MFO treatments for 40 days on the OGTT			
3.3b profile in diabetic conditions using GOD-POD.	68		
Effect of EL extract. SM and MFO treatments for 40 days on the Serum			
3.3c insulin levels in diabetic conditions using ELISA kit.	68		
Effect of EL extract. SM and MFO treatments for 40 days on the specific			
3.4 activity of G-6-Pase enzyme from hepatic tissue in diabetic conditions.	68		
Effect of EL extract and SM treatments on the mRNA expression of PEPCK			
3.5a GK. Glut2 and B-Actin in the henatic tissue as compared to diabetic rats.	70		
Effect of EL extract and SM treatments on the expression of PEPCK.GK and			
3.5b Glut2 in the henatic tissue as compared to diabetic rats using RT-PCR and	70		
densitometric analysis.			
Effect of EL extract and SM treatments on the expression of insulin			
3.6a signaling proteins: IR. PI(3)K and β-actin.	70		
Effect of EL extract and SM treatments on the tyrosine phosphorylation of			
3.6b insulin signaling proteins: IR in the henatic tissue as compared to diabetic	70		
rats.			
Effect of EL extract and SM treatments for 40 days on the ratio of	+		
3.7 (absorbance of HMG-CoA/absorbance of Mevalonate). An index of the of	70		
HMG-CoA reductase activity from henatic tissue in diabetic conditions			
3.8a Effect of EL extract and SM treatments on the mRNA expression of SRFRP.	70		

	1c, PPAR- γ , Leptin, LPL, Adiponectin, Glut4 and β -actin in the adipose	
	tissue as compared to diabetic rats.	
	Effect of EL extract and SM treatments on the expression of the major	
3.8b	genes regulating the fat metabolism in the adipocytes as compared to	72
	diabetic rats.	
	Effect of EL extract and SM treatments on the expression of Glut 4 in the	
3.8c	adipocytes as compared to diabetic rats using semi-quantitative RT-PCR	72
	and densitometric analysis.	
2.02	Effect of EL extract and SM treatments on the expression of Insulin	70
3.9a	signaling proteins: IR, PI(3)K and β -actin.	12
	Effect of EL extract and SM treatments on the Phosphorylation of Insulin	
3.9b	signaling proteins: IR in the adipose tissue tissue as compared to diabetic	72
	rats.	
2.10	Schematic representation of SM in amelioration of insulin resistance and	75
3.10	TIIDM.	75
	CHAPTER-4	
	OA-induced steatosis in HepG2 cells determined by Oil O Red staining ,	
	Quantification of Oil O Red stain after extraction procedure; (a) Oil O Red	
4A.1	staining observed at 20X magnification under Phase contrast microscope.	92
	(b) Quantification of Oil O Red stain after extraction procedure is	
	represented in terms of % of Oil O Red stain compared to control.	
44.2	Effect of SM on a) Intracellular triglyceride accumulation. b) % LDH	02
44.2	release.	92
	Effect of SM on Signaling pathways using insulin resistant HepG2:	
	a) Western blot study showing the effect of SM treatments on the	
	expression of PPAR- α , TNF- α and insulin signaling proteins: IR, p_{ser307} -	
4A.3	IRS-1, p-Akt and PI(3)K in the HepG2 as compared to OA treated group. β-	95
	actin was taken as an internal control.	
	b) Densitometry analysis for the above western profile using image J	
	software.	
	Effect of SM on the expression of fat metabolism genes in the liver	
4A.4	steatosis. The expression levels of fat metabolic genes PPAR-γ, SREBP-1c,	96
	ACC-1, FAS and CPT-1 were checked using quantitative PCR.	
	Confirmation of myotubes by indirect immunofluorescence using smooth	
4B.1	muscle actin (SMA) taged with FITC and Desmin labeled with CF555	107
	captured.	
	Confirmation of myocytes to myotubes differentiation by DMEM with 1%	
4B.2	FBS and IGF-1 for 6 th days. Western blot study showing Desmin expression	108
	in differentiation group and β -actin was taken as an internal control.	
	Effect of SM on the expression of skeletal muscle metabolic genes in the	
40.2	TNF- α induced insulin resistant myotubes. The expression levels of	100
4B.3	metabolic genes GP, G-6-Pase and Glut4 were checked using quantitative	108
	PCR.	
	Effect of SM on insulin signaling pathways using insulin resistant L6	
4B.4a	myocytubes. Western blot study showing the effect of SM treatments on	108
	the expression of Insulin signaling proteins: IR, p _{ser307} -IRS-1, pAkt, PI(3)K	

	,pP38MAPK,Erk1/2 and Glut4.	
	Effect of SM on insulin signaling pathways using insulin resistant L6	
4B.4b	myotubes. Densitometric analysis of western blot study showing the effect	108
	of SM treatments on the expression of Insulin signaling proteins.	
4C.1a	Oil O Red staining under 20X magnification under Phase contrast	400
	microscope of adipocyte differentiation	122
	Quantification of Oil O Red stain after extraction procedure of adipocyte	
4C.1b	differentiation	122
10.1	Cell were lysed for quantification of triglyceride accumulation of	400
4C.1c	adipocyte differentiation	122
	Confirmation of mature adipocytes functional genes expression. The	
4C.1d	expression levels of fat metabolic genes PPAR-γ, CD36, SREBP-1c,	122
	Adiponectin, aP2, LPL and β-Actin	
46.0	Confirmation of dexamethasone induced insulin resistance model checked	400
40.2	for protein content of IR, PI(3)K, PPAR- γ and β -actin.	122
46.0	The expression levels of fat metabolic genes SREBP-1c, PPAR-γ, LPL CD36,	400
46.3	aP2, ACC-1 and Adiponectin	122
	Effect of SM treatments on the expression of Insulin signaling proteins: IR-	
4C.4a	β , p _{ser307} -IRS-1, pAkt, PI(3)K, PPAR- γ and β -actin in the adipocyte as	123
	compared to dexamethasone treated group	
	Densitometric analysis: The effect of SM treatments on the expression of	
4C 4h	Insulin signaling proteins IR-6, pIRS-1, pAkt, PI(3)K, PPAR-v and 6-	123
40.40	actin	125
	Effect of SM on the expression of Insulin signaling proteins: IR n -IRS-	
4C.5a	1 n Alt $DI(2)K$ Dn29 MADK Erk DKC DDAD v Clut4 and θ actin	125
	1, p-Akt, r I(5)K, r p30 MAr K, $EIK_{1/2}$, r KCS, r r Ak- γ , diut4 and p-actin	
4C.5b	Densitometric analysis: The effect of SM treatments on the expression of	125
	Insuin signaling proteins.	
4C.6	Immunoprecipitation study snowing the effect of SM treatments on the	125
40.70	Effect of SM treatments on the inculin stimulated glucose untoke assay	126
40.7a	Effect of SM treatments on the insulin stimulated glucose uptake assay:	120
4C.7b	Average fluerescence of intensity of cells (exhittensy units)	126
E 1	Dogo dependent studios of SM in anti-adionogenic phonotune	1/1
5.1	Treatment with adionogonic cocktail and SM during adinogonosis (a) Cono	141
	avprossions of C/ERD & DDAD v2 and CADDH	
5.2	(b) Densitometric analysis: Cone expression profile of C (EBD-R $DDAR_{2}$)?	141
	and CAPDH in day dependent manner $(1-8 \text{ Days})$	
	Treatment with adjongenic cocktail and swertiamarin during adjongenesis	
5.3	PPAR-v and C/EBP-B protein expressions.	142
	Treatment with adiopogenic cocktail and SM during adipogenesis: Gene	
5.4a	expressions of PPAR-γ2 dependent genes: CD36, aP2, LPL, adiponectin	142
	and GAPDH.	
	Treatment with SM during adipogenesis and gene expressions of PPAR-γ2	
5.4b	dependent genes profile: CD36 ,aP2, LPL, adiponectin and GAPDH.	142
	·	

CHAPTER-6		
6.1a	Effect of PARP Inhibitor(PJ34) on cell viability of preadipocytes, 3T3-L1 cells after 72 hours.	158
	3T3-L1, preadipocyte treated with DNA Damaging agent (H, O,) showed	
	an increase in DAPP activity and hence polymor formation $DAPP$	
6.1b	an increase in FARF activity and hence polymer formation. FARF-	158
	activation can be aboustied by treatment of 100M of FJ-54 without	150
	PARP-1 antibody(1.5000)	
	PARP activity (PARylation) was observed during 8 days of adipogenesis	
6.1c	in presence and absence of PARP inhibitor PI-34	160
	PARP inhibitor. PI 34 blocked adipogenic phenotype as confirmed by Oil O	
	Red staining, 3T3-L1 preadipocytes were subjected to adipocyte	
	differentiation using adipogenic cocktail for 8 days and were checked by	
6.1d	the Oil O Red staining. (i) Oil O Red staining under 20X magnification	160
	under Phase contrast microscope (ii) Quantification of Oil O Red stain	
	after extraction procedure is represented in terms of % of Oil O Red stain	
	compared to control	
	PJ-34 was treated in early and late phase of adipogenesis, confirmation by	
	(i) Oil O Red staining under 20X magnification under Phase contrast	
6.1e	microscope (ii) Quantification of Oil O Red stain after extraction	160
	procedure is represented in terms of % of Oil O Red stain compared to	
	control	
	Anti-adipogenic effect of SM combined with TGF- β ligand (Activin A) with	
	and without PJ-34. 3T3-L1 preadipocytes were subjected to adipocyte	
	differentiation using adipogenic cocktail for 8 days and were checked by	
6.2	the Oil O Red staining. ;(a) Oil O Red staining under 20X magnification	161
	under Phase contrast microscope (b) Quantification of Oil O Red stain	
	after extraction procedure is represented in terms of % of Oil O Red stain	
	compared to control	
	PARP activity and it's expression when treated with Activin A in presence	
6.3a	& absence of PJ-34 in Early and Late phase of Adipogenesis. Blot were	162
	probed with pADPr (10 H) (1: 500) and PARP-1 antibody(1:5000)	
	PARP activity and it's expression when treated with Activin A in presence	
6.3b	& absence of PJ-34 in Early and Late phase of Adipogenesis. Blot were	162
	probed with pADPF (10 H) (1:500) and PARP-1 antibody (1:5000).	
6.3c	After treatment with PJ-34 SM, Activin-A and their combinations,	162
	After treatment with Activin A. DI 24 and their combinations during	
	adinogenesis (a) Gene expressions of PDARy-2 CD36, aP2 and adinonectin	
6.4	were checked using semi-guantitative PT_PCR (b) $PDAR_V$ and C/FRP_R	163
	protein expressions were checked by western blotting	
	siRNA mediated down regulation of PARP-1. Western blotting and Oil O	
6.5a	Red staining	165
	PARP-1: Gene expression of Adipogenic transcription factors: PPARv2	
6.5b	Adiponectin and Leptin:	165
	Expression of pSmad3 with PAR by Immunocytochemistry on 2 nd and 5 th	
6.6a	day of adipogenesis	166

6.6b	Protein expression of pSmad3 and PARP-1 in chromatin fraction during adipogenesis.	167
6.6c	Co-Immunoprecipitation study showing the interaction of pSmad3 with PARP-1.	167
6.7	ChIP study: Interaction of pSmad3 with C/EBPs and PPARy promoters	168