LIST OF TABLES

Table No.	Title			
2.1	Drugs used in leukaemia: their formulations and dosage regimen			
2.2	Methods for preparation of Nanoparticles	27		
2.3	Drug loading, loading Efficiency and NP size by using PLGA 50:50	30		
2.4	PLGA Nanoparticles for sustaining the release of the drug	32		
2.5	HPLC methods and their details for estimation of Etoposide	49		
2.6	HPLC methods for estimation of Cytarabine	57		
2.7	Physiocochemical characterization of Pluronic block copolymers	66		
3.1	List of materials and their sources	84		
3.2	Calibration data for estimation of Etoposide in Methanolic Phosphate buffer saline (pH-7.4)	88		
3.3	Data for Accuracy and Precision for method of analysis of Etoposide in Methanolic PBS	89		
3.4	Linearity data and regression analysis for Analytical method of estimation of Etoposide in Methanolic PBS	89		
3.5	Stability of ETO in Methanolic PBS over 72 hours and Selectivity in presence of Excipients	90		
3.6	Calibration data for estimation of Etoposide in Chloroform	92		
3.7	Data for Accuracy and Precision for method of analysis of Etoposide in Chloroform	93		
3.8	Linearity data and regression analysis for Analytical method of estimation of Etoposide in Chloroform	-93		
3.9	Stability of ETO in Chloroform over 72 hours and Selectivity in presence of Excipients.	94		
3.10	Calibration data for estimation of cytarabine in PBS	97		
3.11	Parameters for UV spectrometric method of analysis of CYT in PBS	98		
3.12	Accuracy and Precision for the Cytarabine estimation using PBS by UV spectroscopy.	98		
3.13	Stability of CYT in PBS over 72h and Selectivity in presence of Excipients	99		
4.1	List of materials	101		

.

ii

4.2	Factor combinations as per 3 ² factorial design	104
4.3	Optimization of process parameters during Homogenization for Blank PLGA NP by 3 ² factorial design	109
4.4	Model coefficients estimated by multiple linear regression.	111
4.5	Analysis of Variance (ANOVA) of full model	111
4.6	Observed responses and Predicted values for MPS	112
4.7	Influence of ratio of volume of internal/external phase during homogenization on MPS	115
4.8	Formulation of ETO-PLGA NP by 3 ² factorial design: Factors, their levels and transformed Values, Response: %EE and MPS	116
4.9	Model coefficients estimated by multiple linear regression for EE.	117
4.10	Analysis of Variance (ANOVA) of Full and Reduced Model for EE	118
4.11	Observed responses and Predicted values for EE	119
4.12	Model Coefficients Estimated By Multiple Linear Regression For MPS	121
4.13	Analysis of Variance (ANOVA) of Full and Reduced Model for MPS	122
4.14	Observed Responses and Predicted Values for Full and Reduced Model MPS	123
4.15a	Actual level and coded level for check point analysis	125
4.15b	Regression analysis of check point analysis	125
4.16	Influence of Surfactant Concentration and drug loading on zeta potential	128
4.17	Optimization of Cryoprotectant : Influence of lyophilization on particle size and redispersibility	131
4.18	In Vitro Drug Release Profile of Etoposide and Etoposide loaded Nanoparticles	136
4.19	Summary of the R ² values of zero, first, Higuchi, Korsmeyer-Peppas models and n value of Korsmeyer- Peppas model	139
4.20	Formulation of Etoposide loaded PLGA-MPEG NP by 3 ² factorial design: Factors, their levels and transformed Values, Response: MPS	152
4.21	Model coefficients estimated by multiple linear regression for Response-MPS	153
4.22	Analysis of Variance (ANOVA) of full model for Response-MPS	153

-

	4.23	Observed responses and Predicted values for Response- MPS	154
	4.24	Formulation of Etoposide loaded PLGA MPEG NP batches for 3 ² factorial design: Factors, their levels and transformed Values, Response: %EE	157
	4.25	Model coefficients estimated by multiple linear regression for Response: % EE	158
	4.26a	Analysis of Variance (ANOVA) of Full model for Response: % EE	158
	4.26b	Analysis of Variance (ANOVA) of Reduced model for Response: % EE	158
	4,27	Observed responses and Predicted values for Response: % EE	159
1	4.28	Zeta Potential values of different batches of Etoposide loaded PLGA-mPEG NP	162
	4.29	Batch details of Etoposide loaded PLGA-Pluronic NP and their MPS, Zeta potential and %EE	165
	4.30	Optimization of Cryoprotectant for PLGA-mPEG NP and PLGA-Pluronic NP: Influence of lyophilization on Mean Particle Size (MPS) and redispersibility	167
	4.31	In Vitro Drug Release Profile of Etoposide and Etoposide loaded Nanoparticles	171
	4.32	Drug release Kinetics: R2 values of zero, Higuchi, Korsmeyer-Peppas models and n value of Korsmeyer- Peppas model fitted to EPMPEG NP and EPPLU NP	173
	5.1	Effect of co-solvent on mean particle size of Cyt-PLGA NP	187
	5.2	Formulation of Cyt-PLGA NP for optimization of volume of co-solvent and non solvent. Batches taken as per 3 ² factorial design: Factors, their levels and transformed Values and Response: MPS	188
	5.3	Model Coefficients Estimated By Multiple Linear Regression For MPS	189
	5.4	Analysis of Variance (ANOVA) of Full and Reduced Model for MPS	190
	5.5	Observed Responses and Predicted Values for Full and Reduced Model MPS	191
	5.6	Formulation of Cyt-PLGA NP for optimization of drug: polymer ratio and stirring time. Batches taken as per 3 ² factorial design: Factors, their levels and transformed Values and Response: MPS and %EE	193
	5.7	Model Coefficients Estimated By Multiple Linear	195

Regression For MPS

	Regression for MFS	
5.8	Analysis of Variance (ANOVA) of Full and Reduced Model for MPS	195
5.9	Observed Responses and Predicted Values for Full and Reduced Model MPS	196
5.10	Model coefficients estimated by multiple linear regression for %EE	199
5.11	Analysis of Variance (ANOVA) of Full and Reduced Model for %EE	200
5.12	Observed Responses and Predicted Values for Full and Reduced Model %EE	201
5.13	Formulation of CYT-PLGA NP batches by 3 ² factorial design: Factors, their levels and transformed Values, Response: %EE and MPS	204
5.14	Model coefficients estimated by multiple linear regression for EE.	205
5.15	Analysis of Variance (ANOVA) of Full and Reduced Model for MPS	206
5.16	Observed responses and Predicted values for MPS	207
5.17	Model coefficients estimated by multiple linear regression for EE.	209
5.18	Analysis of Variance (ANOVA) of Full and Reduced Model for EE	210
5.19	Observed responses and Predicted values for EE	211
5.20	Optimization of Sucrose as cryoprotectant and its effect on mean particle size and redispersibility	214
5.21	In Vitro Drug Release Profile of CYT and CYT loaded NP	219
5.22	Drug release Kinetics	221
6.1	List of materials	227
6.2	In-vitro cytotoxicity of Etoposide and Etoposide loaded NP on L1210 cells (% Viability \pm SD) by MTT Assay	232
6.3	In-vitro cytotoxicity of Etoposide and Etoposide loaded NP on DU 145 cells (% Viability \pm SD) by MTT Assay	233
6.4	Time based Cytotoxicity study on L1210 cells by MTT Assay	235
6.5	Cytotoxicity study of polymers on L1210 cells and DU145 cells by MTT Assay	237
6.6	In-vitro cytotoxicity of Cytarabine and Cytarabine loaded NP on L1210 cells (% Viability \pm SD) by MTT Assay	239
6.7	In-vitro cytotoxicity of Cytarabine and Cytarabine loaded	240

v [`]

	NP on DU 145 cells (% Viability \pm SD) by MTT Assay	
6.8	Time based Cytotoxicity study of CYT, CYT-PLGA NP and CYT-MPEG NP on L1210 cells by MTT Assay	242
7.1	List of materials	264
7.2a	Effect of amount of stannous chloride on the labeling efficiency of etoposide	267
7.2b	Effect of amount of stannous chloride on the labeling efficiency of etoposide loaded NPs.	267
7.2c	Effect of amount of stannous chloride on the labeling efficiency of Etoposide loaded PLGA Nanoparticles	268
7.3	Stability data of ^{99m} Tc- Etoposide, ^{99m} Tc- Eto-PLGA NP and ^{99m} Tc- Eto-PLGA-mPEG NP in serum	269
7.4a	Effect of amount of stannous chloride on the labeling efficiency of Cytarabine	271
7.4b	Effect of amount of stannous chloride on the labeling efficiency of cytarabine loaded PLGA NPs.	271
7.5	Stability data of ^{99m} Tc-CYT, ^{99m} Tc- CYT-PLGA NP in serum	272
7.6	Physiochemical characteristics etoposide loaded NPs used in biodistribution studies in mice	275
7.7	Biodistribution Studies of ^{99m} Tc-Etoposide in Mice	276
7.8	Biodistribution Studies of ^{99m} Tc- Eto-PLGA NP ₁₀₅ and ^{99m} Tc-Eto-PLGA NP ₁₆₀ in Balb/c Mice	277
7.9	Biodistribution Studies of ^{99m} Tc-Eto-PLGA-PLU NP and ^{99m} Tc-Eto-PLGA-mPEG NP in Balb/c Mice	284
7.10	Physiochemical characteristics of the formulations used in biodistribution studies in mice	290
7.11	Biodistribution Studies of 99mTc- Cytarabine in Balb/c Mice	291
7.12	Biodistribution Studies of ^{99m} Tc-Cyt-PLGA NP and ^{99m} Tc-Cyt-PLGA-MPEG NP in Balb/c Mice	292
7.13	Blood clearance of ^{99m} Tc- Eto, ^{99m} Tc-Eto-PLGA NP ₁₀₅ , ^{99m} Tc- Eto-PLGA NP ₁₆₀ , ^{99m} Tc-Eto-PLGA-PLU NP and ^{99m} Tc- Eto-PLGA-mPEG NP in Rats	300
7.14	Blood clearance of ^{99m} Tc-Cyt, ^{99m} Tc-Cyt-PLGA NP and ^{99m} Tc- CYT-PLGA NP in Rats	302

vi