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CHAPTER - 4

DIGITAL COMPUTER SIMULATION

SPECIFICATIONS OF THE COMPUTER USED :

The computer used in the present investigation is an 8 bit
INCONIX system 4000 control computer fitted with Z 80 CPU
(Central Processing Unit). It has 39 K TPA (transient progra-
mme area) and is provided with 128 K of dynamic RAM (random
access memory). It can be used with an auxilliary transporta-
ble memory in the form of 8" size floppy discs as it is provided,
with 2 numbers of 8" DSDD (double sided double density)
soft sectored floppy disc drives and can accomodéte two more
such extra drives. It is alsoc fitted with an STD Bus for
five parts. It is available with 12" monochrome monitor which
can display 24 lines of 80 character information on its screen
at a time. Centronic printer interface is provided as well
that can print 65 lines of 80 character information\ per page,
using dot matrix. Provision for printing in various configura-
tions is also available with the printer. The computer is
provided with 91 Key ASCII {American Standard Code for Infor-
mation Interchange) keyboard and is based on CPM 3 PLUS
Operating System.

The software supplied with this computer includes WORDSTAR
and SPELSTAR for character manipulation and text analysis.
Additionally, it is provided with BASIC, FORTRAN, . PASCAL,
COBOL, DBASE II, ASSEMBLY and SUPERCALC compilers.

FORTRAN IV COMPUTER PROGRAM :

Based on the computational algorithm developed earlier in
art.3.3 and the flow chart displayed in Appendix : A-5, a

computer programme in FORTRAN IV  was developed for the
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present investigation. The programme uses the following sub-

routines

i) Subroutine MESH for automatically generating nodal
co~ordinates and other geometric data for the finite
element grid with right angled triangular elements

chosen.

if) ~  Subroutine MODIFY to take into account effect of aspect

ratio on grid geometry.

iii) Subroutine PHITF which generates conduction generation
vector for conduction solution.
iv) Subroutine MSHOUT for printing mesh co-ordinates

and element areas.

v) Subroutine BCS which provides values of the functions
W, 0 and «w at the boundary nodes automatically for
Dirichlet or Neumann boundary cénditions.

vi) Subroutine SOLVE?' for solving the sets of simultaneous
equations, egns. (3.19, 3.20 and 3.21), using Gauss-

Seidel method of matrix iterations.
vii) Subroutine OUTPUT for printing the results.

The main programme code in FORTRAN which uses the above

subroutines is documented in Appendix : A~6.

SELECTION OF IMPORTANT PARAMETERS :

\

Before plunging into the main investigation, preliminary numeri-
cal experiments were performed for identifying the effects

of wvarious key parameters like boundary conditions, no,of



£ 40

elements, tolerance levels etc., based on which, these para-

meters

were selected for the present investigation, These

experiments are discussed now, as under

4.3.1

4.3.2

Selection of Boundary conditions : Boundary conditions:
for the top and bottom walls of the enclosure was
of Dirichlet type from the problem definition, however,
there was an option of selecting boundary condition
for the side walls. So, a numerical experiment was
performed to obtain the influence of side wall boundary
condition. Fig. 4.1 represents the results of this
experiment. It was observed that Dirichlet boundary
condition gives higher value of gap conductance compared
to that obtained using Neumann boundary condition
at all gap heights and aspect ratlos. However, the
difference is aspect ratio dependent and reduces with
increase in aspect ratio. As the present investigation
concerns high aspect ratio enclosures, and as Neumann
boundary condition results in reduction in no.of effective
boundary nodes, culminating in increased approximation,
Dirichlet boundary condition for side walls was selected

for the present investigation.

Selection of Number of Elements : Fig.4.2 represents
the effect of number of elements on computing time
and Nusselt number while Fig.4.3 shows the same
in percentage. It was observed from Fig.4.3 that
increasing the number of elements from 32 to 200 resulted
in 12.5% reduction in Nusselt number but increased
computing time by 1130%. Close study of Fig.4.2
also reveals that the curve for both the computing
time and Nu are 'flat near NEL=32, while the curve
for computing time shoots up exponentially near NEL=200.

Thus, a compromise was made between accuracy and
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4.3.3

economy of computation by selecting a finite element
grid with 32 right' angled - triangular elements having

25 nodes.

Selection of Tolerance Levels (Sensitivity Analysis)

A sensitivity analysis was performed in order to choose;
relative tiolerance limits or permiséble error limits
i.e. (new value-old value)/new value, for the system

variables & , 6 and w. For this, the equations were

iterated indefinitely and +the error values y’errorl‘,

(ger‘ror and &}err'or were documented for each iterations.

Fig.4.4, 4.5 and 4.6 represent the results of this
analysis, for different aspect ratios and Rayleigh
numbers. As can be observed, relative error for
temperature r*éduces steadily and remains insensitive
and very low, even when those for stream function
and vorticity are relatively large containing initial
bursts or fluctuations, though gradually reducing,
with outer iterations. This shows that larger error
limits for stream function and vorticity function can
very well be tolerated by temperature function, in

so far as its error limits are chosen low enough.

Thus, relative tolerance limits were fixed at 0.1
(10%) for stream function (W) and vorticity function
(«) solutions and at 0.05 (5%) for temperature ( G )

solution. Above criteria resulted in 2, 9 and 2 internal
iterations respectively for @ ; 8 and & solutions’ and
about 17 outer iterations were required for overall
convergence within the permissible error limits.

It is interesting to note that CPU time for the above
scheme was of the order of 33 minutes for each run,

while a test run made with a uniform error limit
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of 0.0t (1%) for all the three variables required
CPU time of 95 minutes, while giving results, differing

by not more than 0.7%, for Nusselt number.

It may be noted that actual relative errors in tempera-
ture solutions’ were much below the tolerance limit
of 0.05 i.e. 5%, selected in the present investigation.
For example, it can be varified from Fig.4.4 that,
for Werror of 10%, when the iterations terminate
at the end of 14th iteration, O error is less than
1%, well below the tolerance limit of 5%, selected

for temperature.

Comparing Fig.4.4 with Fig.4.5, it was observed that
for C‘)error of 10%, 14 iterations were needed a't AR=20,
while 16 iterations were required at AR=100. Also,
comparision of Fig.4.5 with Fig.4.6 reveals that,
while 16 iteratigns were required at Ra=0.8 X 104,
only 9 iterations were needed at Ra=1 X 106, for
Ooer‘r'or of 10%. This shows that number of outér‘ itera-
tions required for convergence increases with increase
in aspect ratio and with decrease in Rayleigh number,
Also, as the curve for Werror is top most in the
above figures, it may be concluded that vorticity
function is the key variable that will decide the

convergence or otherwise of the solution.

Numérical experiments were performed to investigaté
the effect of selected tolerance on actual errors, number
of iterations and Nusselt number, the results of which
are exhibited in Fig.4.7, 4.8 and 4.9. A close study
of these figu;"es reveals that Werror values are of
the order of tolerance levels while 6 error values

are much below tolerance levels, at all tolerance



NU

1TERATIONS

ERRORS IN “

108

107

1-06

— AR = 20 Ra = 0-83037 x 10

( 9

L

© - NUige, = NUge,

© NUop

\\9\0

_P_‘f’.'f'_—_,rlt’_".’:_x 100=-25714%
N1g ey,

L .
O =WERROR
A =Y ERROR
G = O ERROR

H 3 [ l
0 : 2 4 6 8
TOLERANCE IN %

L

FIG: 47

L 0 x100=- 09972%



NU

ITERATIONS

ERROR 1IN %

1007

1006

1005

120

100

B AR = 100 ( 50
Ra = 0-8 x10
M Nusmo - NU e
[ B —6 107 0% x 100 = ~0-1093%
NUse/,
-

"10% " "0%

10

—O— 0 x100=547-06 %
"10%
B /
- © Yerror
B @8 error
— A Werror

% S BT L | ; n{:
2 A ) 8 : 10
TOLERANCE 1IN °%

FI1G: 4-8



NU

ITERATIONS

ERRORS IN %

AR = 100 ‘

' Ra = 1038 x 10°
122 NU
NU,q4, 0% x100 =-0-575%
NUQ"/s
121 b —o— : ©
1.20 -
30 i~
n10°/a it noo/u
x100 = - 177-78%
20 B Ny o
10 |- — -
o l—
10
O =Y error //
o B=0error //
/

5 - A =Qerror

TOLERANCE IN %
FI1G: 4-9



levels selected, for varicus Ra and AR values chosen
as parameters., This suggests that It s the vorticity
function { « ), which should be closely watched for
obtaining & stable solution. Another interesting obser-
vation from the above figures is that increasing the
tolerance from 0% (extrapolated ideal condition) to
10%, changes the Nusselt number by not more than
1% while at " the same time reducing the number of
outer iterations from anywhere between 175% to 550%.
This shows that relatively liberal tolerance levels
may always be selected for variables w, 8 and w5,

for economiging in CPU time, practically without any

loss of accuracy in the results,

Effect of Rayleigh number (Ra) and aspect ratio (AR)
on O error V/s tolerance curve and on number of outer
iterations v/s teolerance curve, is shown in Fig.4.10
and Fig.4.11 respectively. Fig.4.10 reveals that
®error increases with decrease in aspect ratio for
a given Ra value at all tolerance levels, though the
increase is seen to be moderate. It also depicts
that error increases with increase in Rayleigh number
for a given AR value at all tolerance levels, however,
the increase is quite considerable at higher tolerances,
though quite below selected tolerance levels, This
shows that we may expect B8errors exceeding their
tolerance levels, if tolerance levels selecied for e are
too liberal and if Ra values are high enough. In
such a case, we may get an instability, which should

be closely watched for.

Fig.4.11 on the other hand, represents the effect
of Rayleigh number and aspect ratio on number of

outer iterations required for convergence at various

o9



© ERROR IN %

8 ERROR IN%

10

10

- AR=100

® Ra=10x10°
n 4
@ Ra=0-8x10 '
/

TOLERANCE IN %

~ Ra=0-8 x 10% 4
L G AR=20 . /
@ AR = 100 /S
- | /
/
- /
/
— /
B /
/
| /
/
i /
/
- /
/
- / -
Cos—tb—p——t—2 1T 2T |

0 2 4 6 8 10

TOLERANCE IN %
FIG: 4-10

&



ITERATIONS

ITERATIONS

100

100

80

| | ! | 1 | l | | |

2 4 6 8 10

TOLERANCE IN %

© AR =100
0 AR = 20

2 4 6 8 10
TOLERANCE 1IN %

FIG: 4:11

Ra

o
o

AR =100

0-8 x10



tolerance levels. This shows that number of outer
iterations increases with decrease in Ra values for
a given aspect ratio and with increase in AR values
for a given Rayleigh number, at all tolerance levels.
However, this increase is more pronounced at lewer

tolerance levels,

We may summarise the results of the sensitivity analysis

as under :

i} * Larger tolerance limits can be accomodated by
stream function and vorticity without Iimpairing
the accuracy of the results, in so far as the
tolerance limits for temperature are chosen low

enough.

ii) Larger tolerance limits for ¥ and w and a smaller
tolerance limit for o , results in considerable
saving of computing time, without significantly

impairing the accuracy of the results,

iii} Actual errors iIn temperature solutions are far
below the selected tolerance limit, though the
errors in vorticity solutions are of the order

of selected tolerance limit.

iv) Number of outer iterations required for convergence
increases with, decrease in Ra and with increase
in AR.

v) Vorticity function is the variable that decides

the convergence or otherwise of the solution.

vi) g error increases with decrease in AR and with
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increase in Ra at all tolerance levels.
vii) At high Ra values, errors in temperature solution
may exceed its tolerance limit if they are too

large, resulting into an arithmetic instability.

Study of Convergence and overflow conditions : Effect
of aspect ratio and Rayleigh number on number of
cycles for convergence to the selected tolerance level

is shown in Fig.4.12, It was observed that the number

of outer iterations (i.e. cycles) for convergence reduces

with increase in Rayleigh number for all aspect ratios.
It is interesting to note that ‘the maximum number
of cycles for convergence were 17 while minimum number
of cycles for convergence were 9 at all the aspect
ratios investigated. It may also be noted that, at
all aspect ratios, as the Ra value exceeds that corres-
ponding to minimum number of cycles for convergence,
number of cycles for convergence shoots up almost
vertically, eventually resulting in arithmetic overflow

condition and solution breakdown.

The value of Ra at which such an arithmetic overflow
condition appears and solution breakdown occurs, depends
strongly upon aspect ratio, as can be observed from
Fig.4.13. This deperidence can be correlated as,

(Ra)oV = 562.34 AR2 for 20 < AR g 300 (4.1)

Fig.4.14 is an extension of Fig.4.13, which includes
aspect ratios from. 1 to 300. An  interesting point
revealed in this figure 1is that the curve Iindicates
the presence of three distinct regions. In the region

where AR wvaries from 1 to 5, Ra for overflow Iis

et

independent of aspect ratio while in' the region where
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AR varies from 10 to 300, it varies as square of
aspect ratio. The intermediate region 5 <€ AR < 10,
appears to be of transition type where a smooth transi-

tion from one region to another is effected.

Fig.4.15 is the result a preliminary study undertaken

to investigate the effect of enclosure inclination (¢f)

with reference to horizontal, on arithmetic overflow
condition. It shows that the gap height and hence
Ra for overflow increases with aspect ratio at all
inclinations from 0° to 180°. It also shows that Ra
for overflow decreases dramatically with increase
in inclination for 0°sg & < 90° and with decrease in
inclination for 90°g & < 180° and at g = 90°, solution
breakdown occurs at a dramatically low value of gap
height (2 mm) or Rayleigh number (66). This shows
that the present method fails to give results for inclined
enclosures, particularly near vertical orientation and
a fresh approach is needed to obtain a satisfactory

solution.

History of Central Temperature : History of central
temperature for a typical enclosure from iter‘ation,
to iteration for both inner and outer iterations is
shown in Fig,4.16. This shows that during any outer
or global iteration considered, the central temperature
gradually increases with number of inner or local
iterations and eventually settles down to constant value
when internal or local convergence occurs. This inter-
nallyaconverged central temperature, is again dependent
upon outer iterations, as shown in Fig.4,17, It was
observed that this temperature, first falls down from
conduction temperature and then rises again gradually
with number of outer iterations, till it settles down

at a constant value below conduction temperature,
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when outer or gfobal convergence occurs. This outer
convergence of central temperature depends strictly
upon simultaneous outer convergence of stream function
and vorticity. This 1is depicted in Fig.4.18,, which
shows that, on the same scale, BC values are relatively
insensitive compared to Y c and W, values with
reference to outer iterations. Heavy fluctuations in
central vorticity (CL.)C) values during initial outer
iterations, proves beyond doubt, the key role played

by this function-in obtaining a satisfactory solution.

Effect of Computing Environment : On the INCONIX
system 4000 computer that Was used in the present
investigation, there was an option of computing in
single precision environment or in double precision
environment. Thus an experimenit was conducted to
investigate the effect of computing environment on
the results. This is shown in Fig.4.19. It was observed
that the errors involved in the results due to single
precision (SP) computations were moderate, to within
5% of these obtained by double precision (DP) compu-
tations, for moderate values of Rayleigh number, of
upto 2.24 X 105 in the test runs for AR=100. However,
there was a noticeable increase in the errors at higher
Ra wvalues. This observation was complimented by
the fact that single precision computations required
about 5 minutes for a test run while double precision
computétions for the-same run required about 50 minutes,

a ten-fold increase in CPU time.

Thus for reasons of economy of computation and keeping
in view the possibility of frequent power supply
failurje during computation, from operational point
of view, it was decided to use single precision environ-

ment for computations,
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4.4

COMPUTATIONAL PLAN :

The computer programme in FORTRAN 1IV. developed ' for the
present investigation, was tested for conduction and after
getting satisfactory solution in conduction, the programme was

run as under

i) Fixing the aspect ratio of a horizontally oriented
enclosure, solutions were obtained at various gap
heights 1i.e. Rayleigh numbers, Similar runs were
made for a range of aspect ratios from 1 to 300,
while gap height was varied from 2 mm to 160 mm
thus varying the Rayleigh number from 66 to 3.4 X

107.

ii) Similar solutions were obtained at various enclosure

inclinations from 0° to 180° with reference to horizontal.

i

iii) The output of each run for horizontal enclosures and
of r‘ep;‘esentative runs for inclined enclosures was
obtained on the printer which included documentation
of Nusselt number, gap conductance, & error, 6error,
& error and number of outer iterations, at the time
of convergence. -1{ also included stream function,
vorticity function and temperature values at all the

nodes of the finite element grid.

i
Present investigation, following the above computational plan,
resulted into number of interesting and enlightening observations,

which are discussed in the next section.

[



