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CHAPTER IX

DETERMINATION OF SINGLE THREE CLASS ATTRIBUTES

SAMPLING PLAN BASED UPON A LINEAR COST MODEL

AND A PRIOR DISTRIBUTION

9.1 In this chapter we have given the techniques for the
deterﬁination of a single three class attributes sampling
plan based upon a linear cost model and a prior distribution.
Three prior distributions are considered. The development of
the techniques is similar to that given by Guenther [15) who
considered the problem of the determination of a single two

class attributes sampling plan.

9.2 The full significance of a‘sampling plan can only be
developed on the basis of the prior distribution and the
economic consequences of the decision of acceptance and
rejection of a lot. In recent years a number of papers have
appeared concerning two class attributes sampling inspection
models which are constructed incorporating both costs and a

prior distribution of the process fraction defective.

The costs associated with the declision of acceptance

and rejection of a lot are more real to the firm and the
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corresponding choice is easier to make than the choice of
risk points and risks. This is mainly because the'various
decision costs are closer to the type of daﬁa that firm cen
supply on & rational basis than are the various risks and
risk points. Tippett [46,pp.146] has pointed out that, in
practice the sampling plan based on even the rough estimates
of costs can be found quite satisfactory.During fifties, based
on various decision costs some valuable work on the method of
determining inspection sampling plan on the economic basis
was done.Some of them are by Anscombe {11, Hamaker [26],
Weibull [47]), Pandey [36] and many others cited by Pandey
himself in [36].

To evaluéte the minimum expected value of the associated
cost function, it is required %o consider some prior
distribution of the guality of a lot. Barnard [2] pointed out
the close correspondence between the theory of statistical
decisions and the theory of sampling inspection. He
established an important result which shows that, not only
nust we know +the prior distribution in ordef 0 solve a
decision problem, but we may have to know 1t in considerable
detail. Assuming prior distribution for the lot quality
several other papers on Bayesian sampling inspection such as

Guthrie and Johns (18], Wetherill [48], Pfanzagl [39],
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Hald [19],[21],[22],123],[24], Johansen [27], Hald and
Thyregod [25], Thyregod [45], Guenther [15] have appeared.
The sampling plans discussed in these papers are two class
attributes sampling plans and are based on two decision
criteria, i.e., they are eilther acceptance-rectification or
acceptance-rejection sampling-plans. Pandey [36] has
discussed Bayesian single two class attributes sampling
plan with three decision criteria for discre%e prior

distribution.

In the following sections of this chapter we havé
considered the problem for the détermination of a single
three class attributes sampling plan (with two decision
criteria) based on a linear cost model and a prior
distribution. Three bivariate distributions for a lot quality
given in terms of by and p2 are considered as priodp
distributions. They are the bivariate degenerate, the
bivariate two point, and the bivariate beta distributions.
The linear cost model formulized by Hald [19], [20], [22],
is modified for the single three class attributes sampling
plan. The expressions for the expected value of the cost
function based on this linear cost model and the above prior
distributions are obtained. Determination of a sampling plen

under two side conditions on AOC and under a prior bivariate
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degenerate distribution is illustrated numerically.

9.3 Terminology, Assumptions and Some Results 3

9.%.1 Single Three Class Attributes Sampling ?1an :

Single three class attributes sampling plan (curtailed
as well as uncurtailed) is discussed in Chapter V. We
rewrite here the stateﬁent of the uncurtailed single three ‘
class attributes sampling plan.Assume that units produced
by a process are assembled at random into lots of size N.
From each lot a random sample of size n is selected. During
" the inspectioﬁ of a sample, each unit is classified as!
either bad, marginal, or good. Let D, be the number of
marginal uni}s and D, be the number of bad uni}s observed
.during the inspection of a sample of size n. The decision
o < a2'and
to reject a 1ot otherwise. Here a4 and a, are called the

rule is then to accept & lot when d1+d2é_a1 and d

acceptance numbers.

9.%.2 Assumptions and Some Results

-

Assume that, when lots are accepted, &ll marginal units

»

and bad units observed during the sampling inspection are

replaced by good units. Furthermore, rejected lots are



inspected completely and marginsel and bad units found
during the screening are replaced by good units. This can be
considered as an obvious extension of acceptance-rectification

criterion commorly used in two-class attiributes sampling plan.

Let
Py = proportion of marginal units in the production run.
P, = proportion of bad units in the production run.
p_. = proportion of good units in the production run
= 1P 7Py
Y1 = number of marginel units in & lot.

Y2 = number of bad units in a lot.

We assume the following marginal and joint probability

functions of Y1 and Y2.

A Anh
P(Y =y,) = ( ¥ ) o, ' (1-p,) F4=0, 1,000, N
179 v 1 1
Ne e..(9.3.1)
-y
o )e ¢ T2 2 0

«..(9.3.2)
N“Yq‘yg v, Yo

NiD p D =0."
] ‘ ‘ 1 2 ¥.=0,1T,...,N3
and P(Y,=y,,Y,2y,)= N G [PSO
151012772 y1-y2;(N‘y1 yo)t F5=05 15+, X5
y1+y2 < N.
<2 (9.3.3)

For a given lot Y,=m, and Y,=m, are fixed. It follows that

the joint probability function of Dy and D2 for given Yﬁzm1ﬂ

i
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and Y2=m is the bivariate hypergeometric distribution. Hence
P(Dy=d,, D2=d2AY1=m1, Y2=m2)
I
m N, ~m
my 2 2
_ (ba‘) ( d2>( n‘d‘]“dz) d_,‘ = 0,1,. .,Il,
( N) d2=0’1,0 .,Il)
n
< .
dqtdy = 1 e (9.3.4)
Define
= the number of marginal units in the remaining
N-n units in a lot
Uz = Y,-D,

the number of bad units in

]

N-n units in a lo%te.

Consider the unconditional events U=

iy

D= §Dy=d;, Dy=a,1 .

*
L]

Result

distributed.

Proof s P [(D1=d1,D2=d2), (U1=u1,U2=u2)]

i

P[ (D=4, Dy=d,), (Y,=u +dy, ¥,
P (Y,=u,+d,, Y,=u,+d,) P[ (D;=d,

Using (9.3.%) and (9.3.4), we get

the remaining

=u1,U2=u2§ and

The unconditional events U and D are independently

=u2+d2

)]

’D2=d2>&(Y1:Y1’Y2=y2)]
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P[(D1=d1,Dzzdz),(u1zu1,U2=u2)] = P(D,=d,,D,=d,) B(U,=w,,T,=u,)

. e .(9.3.5)
" n.§1 dz d1 d2
-PO P1 qu

12 Dp=dy) = Ty T, T(Ea, A,

where P(D1=d

and ¥=n-u, -u u
(-m)t p 12

- = [}
5=Uy) ,

P(U1=u1, U

Hence the result.
From this result it follows that

Dy ig binomial with parameters n and 2
D2 is binomial with parametsrs n and by,
U1 is binomigl with parameters N-n and O

U2 is pinomial with parameters N-n and Py

9.3%.3 The Probability of Acceptance
(Operating Characteristic) :
a, -4 a
1 72 2 i} m N-m., ~m
1 2 1 72 N
oc = Y. Y0090 5 g5)/C )
D e AR -
2 (9.3.6)
2
= dzz p(N,n,m,,d,) P(N—mg,n—dz,m1,a1—d2)
270 e (9.3.7)
where p(¥,n,M,x) = ( Bﬁ)( g:i‘i)/( g), a<x4D ...(9.3.8)
=max [O, n-N+M7] , b=min{M,n]
r ,
and P(N,n,M,r) = 3 p(N,n,M,x) . (9.3.9)

X=8



217

Since (9.3.7) is a conditional probability depending on m,
and m,, We may be wore interested in the average operating
characteristic (AOC) which is the expected value of (9.%3.7)

taken over Y, and Y,. The A0C is given by °
Ny, § %79

a0c = ¥ % {;: z (91>( 92)(n !;1_22)/( N)]

¥y4¥0 yp=0 d1=o d2 =0
N-y,-¥y y ¥
192 1 P

Nt p, Py Py

y"j yzf’(N-y""yE)!
. n—d1~d a a

a%zaz ;? 2 % - D, sz
4,0 d,=0 d;t ‘{n-d,-d,)
Al az .
;T F b(d,3n,p,) Bla;-dys n-d,,p]/ «++(93.10)
=0
2

WMrep§=pV“%+%)

9.4. The Linear Cost Model :

Consider the following costs associated with a three

class attributes sampling plan :

2]
"

Cost per unit of sampling and testing.

w
i

1 Repair cost of a marginal unit found in sampling.

B, = Repair cost of & bed unit fownd in sampling.

=g
1l

Cost per unit associated with handling N-n units
not inspected in an accepted lot (frequently it is

assumed to be zero).
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A1 = Cost associated with a marginal unit in N-n units
not inspected in an accepted lot.

A2 = Cost associated with & bad unit in N-n unite not
inspected in an accepted lot.

R, = Cost per Unit of.inspecting the remaining N-n wnits
in a rejected lot.

R1 = Repair cost associated with a marginsl unit in the
remaining N-n units.of a rejected lot.

R, = Repailr cost associated with a bad unit in the

remaining N-n units of a rejécted lot.

R1 < RQ. It may be noted that equality sign holds frequently

81 < 82, and

in all the cases. Purthermore, assume that A1 and A2 are
very large quantities. This assumption implies that the
occurrence of a bad or a wmarginal unit in the remaining

units of an accepted lot is a very costly affair.

The linear cost function is then given as below $
H(d-1 9d2’m-] 7m23 p1 ap2§ Nynyaq ’az)

nSO+d1S1+d282+(N—n)AO+(m1 -d, )A1+(m2-—d2)A2

- for d4d,+d, £ a

q+dy d

13 Yo =8
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A +u.d, for d.+d

1 ot ptdy £ay3dy4

03 +d, S,+d,.8 +(N>n)A +u

17272 2= 8

54+ (- . i
ns +d18 +@,5 ,+(T-n)R +u, Reg R,  otherwise e.el9.4.1)

Generally, the sampling plans are based upon the average
cost per lot. For this purpose one should take the expected
value of the random variables involved in (9.4.1). Thus the

average cost is
K(N1nﬁa‘1 ,8'2,}_31 7?2)

nS _+8,np, +52np2+(N~n)A0+(N—n)p131+(N—n)p2A2

— ’ - - Z
= fo_r d1+d2 éa‘i H d2 <, a2

nSo—k«STnp,l+82np2+(N-n)Ro+(N—n)p1R1+(N——n)p2R2 otherwise.
= 0[8yt5 28,0, ] +(Wm) [A 4D Ateoky] By
+(N-n) [Ro+p1R1+p2321 P,

= 1Ko (pq,0p)+(8-n) [ Ky (py,0,)B, + K (py,0,) + B -0 (9:4.2)

il

1K (py 10, )+ (8n) [K, (p;,05)+{K, Py, 0y ) K, (91,050} 2]
‘(9-4-3)
where K_(p,,p,) = 8 +8,0,+5,p,

Ka(Pyspy) = Aj+hypi+hoDo,
and  Kp(PysPy) = R +RiP+RoP,

are nonnegative linear functions of p, and’ug)g. Pa is given
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by either expression (8.3.7) or (9.3.10) and P =1-P,. Since
Ks(p1,p2?, Kr(p1,p2), and Ka(p1,p2? are nonnegative linear

functions of Py and?pz, expression (9.4.3) will be minimum

provided
Kr(p17p2) - Ka(pPpZ) = 0 ...(9.4.4)
i.e. (RO-AO)--(Af-}:q)131-(13?--1@12)1;2 =0 eee(9.4.5)

Let (p1r, p2r) be the solution of the equation (9.4.4) or

(9.4.5), 0 <« I < 1. Then if

Por
Py <P, end Pr«b,., K.(py,p,) - K (py,p,)>0

- <
and p,>P,, and P, >D,, K (p,,p,)-k (p,,p,) < O. ( |
.0 9'4"6

9.5 Bayesian Sampling Plan when a Prior Distribution

of the Lot Quality is Bivariate Degenerate ¢

The problem is to determine a sampling plan which
minimizes the expected value of the cost function given by
either (9.4.2) or (9.4.3). The expected value of the cost
function is obtained under the given prior distribution of
the lot quality. We first consider the case in which the
distribution of (p1,p2) is degenerate. This means that the
whole mass of the distribution is congentrated at a single

point.
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If we knew p, and p,, say, p1=pTO and P5=Psq then we
could &always minimize (9.4.2). If Pyg< Pqp 804 Py <D,y
then we would always accept the lot without sampling. In

this case Paz1 and n=0; hence

K(N,n,aq,az, pTO,pQO) = NK_\Pq» pQO) «e.(9.5.1)

If Pyg> Py and Dy Py, then we would. alway s reject the

lot without sampling. In this case‘Er=1 and n=0. Hence

K(N9naa1’32, P1O’ sz) = NK:;:'(p‘IO’pZO) e++(9.5.2)

In practice P, and p, are unknown. Then the problem 18 to
minimize K(N,n,aT,az, 51,§é), where 51 and Eé are the
guess values for the true values of < and P, respectively,
subject to one or two conditions on the OC (or AOC) curve

given below :
(a) 0¢ (or ADC)<P, «..(9.5.3)
(b) 0C (or £0G)> 1- , cee(9.5.4)
(e¢) 0C¢ (or AOC)< P and 0C (or AOC)> 1-X eee(9.5.5)

where < and p are producer's and consumer's risks

respectively. Rewrite the expression (9.4.%) as given below
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K(Ny n, 3-1 ’ 8'2’ p1 ypz):n [Kg(p—% ypz)"KI,(pa’ 9p2 )]+(N—n) [Ka(p1 ,pz)
“K$(91’Pg)] P+ (p,,p,) ...(9.5.6)

Then the expected value of the cost function under given

bivariate degenerate prior distribution is

K(N,n,a1,a2,§1,§2)
=n [k, (9,,5,) - £.(5,,5,)]+ (¥-n)[K,(5,,5)%.(5,,5,)]
B (By, B,) + MK (D,,D,) © o e..(9.5.7)
where Pa(§1,§2) is obtained from (9.3.10) by substituting
for p,=p, and k=h-
Consider the expected value of the cost function
under the following two cases @
Case-1 3 RO=SO, R1=S1, R2=82
Under this case KS(§1,§2) - Kr(51,§éy0, hence the expected

value of the cost function is

" K(N,n,2q,8,5,D,0,) =(8-n) [K,(P;,5,)-k.(,,0,) ] B, (P;,D,)

+ ¥, (P;,p,) -.-(9.8.)

~’-R(N§‘n,a 732,‘51 ,’52) = (N“H)Pa(-§1 ,52) "’(9'5'9)

_ -, E(Wmn,a,2,),5,,8,)-% (p,p,)
where R(N,n,aj,az,p1,p2} - 1772 1772 r P{1Pp

K, (7,,9,)-k.(7,,0,)
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To winimize (9.5.8) one has to maximize or minimize (9.5.9)
depending on whether the quantity Ka(p1,p2?-Kr(p1,pg? is

negative or positive.
Case-II : R <8, By £8;, R, « S, (at least one of these
inequalities should be true) :

In this case Ks(§1’§2)"Kr(§1’52) is dlways positivet

Then, the function to be minimized is
R;QN,n,aq,a2,§1,§2) = n+(Nﬁn)Y'Pa(51,§2) e (9.5.10)

K(Nv n, a'} ,a2,p1 7P2)—NKr(p1 :p2)

where R!(N,n,8,,8,,04,P,) =
’] H 1] 1’ 2’ 1’ 2
- Ks(p1yp2) - I{I‘(p1’p2)

and Y=[K, (B, D,)K.(5;,5,)] /[Kq(By50,) K, (D;,3,)]

9.6 Expected Cost Tunction when & Prior Distribution of

the Lot Quality is Bivariate Two Point Distribution :

8,6.1 The Two Point Prior Distribution :

The probability function of the bivariate two-point

prior distribution for the lot guality 1is given below

£(py,py) =Wy | (p45P5) = (Py01Ps0)

i
2

2 (p‘}’p2) = (P"T’pZ?)

= Q elsewhere vee(9.6.1)
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where WT,WZ,(p1O,p20) and (p11,p21) are assumed to be known.
The entire probability distribution is ¢encentrated on two
points (p10,p20) and (p11,p21). Ai}ernatively the above

probability distribution can be represented as follows :

P, _

pg\\\ Pyo p,,  Total

Py w, 0 Wy

P21 0 o W

Total L2 Wy 1 ...(9.6.2)

From (9.6.2) it foliows that the marginal distributions of

joF and p, are as given below :

(i) Marginal Distribution of Py

Ty (py) = w, P1=P1g

= Wy Py=Pq

= 0 wehksewbere ee+(9.6.3)
£2\py) = W py=Dyg

= Wy PyTPoy

= 0 elsewhere eee(9.6.4)

Hald's justification for the use of this type of model

appears to be that those associated with quality conirol
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can frequently identify good quality (with quality level
(910’950)) and poor quality (with quality level (p?q,p21))
together with Wy and W, even if they cannot furnish any

additional information.

9.6.2 Expected Value of the Cost Function :

Consider the cost functiom given by (9.4.2) in the

following form
K(N,n,8q,85,0,1P,) = nK (py,0,)+(¥-n) [1K,(p;,0,)K (p;,0,)1B,
4K (py,0,) ] e+ (9.6.5)
To find the expected value of (9.6.5) with respect to the
given prior distribution (9.6.1/, we require the following
expectations :
B [Kg(pys0p)] = w K (0 0000+ Wk (pyq,0,9)

= Ky ...{9.6.6)

E [K.00q50,)] = WK (0ygimp0)t wekp(Pygipp) o0 (9:6.7)

B(2y)= Wiy (py gy Py )+ WoPy (Ry50p7) o (368)
B[Py Py] = wpyoBs PygrPag)t Wby a(P1i’P21)
«..(9.6.9)

E [0nP, "W PooPs  P1orPag) *WpByyBy(PyqsPpy) -0+ (9:6410)
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where Pa = Pa\p1,p2)
= Probebility of acceptance at point (p1,p2)
and is given by the expression (9.3%.10)
Ks(p1o,920) = the value of Ks$p1,p2) at point
Ks(p11,p21) = the value of Ks(p1,p2) at point
(PyqsPpq)
Kg(Pyg1Ppq) = the value of K .(p,,p,) at point

i

Kr(p11,p21) the value of Kr(p1,p2) at point

(Py11Ppq) -

Using these expectations the expected value of the cost

function which is to be minimized is
K(N;n,a1,a2) = nKS+(N—n) iW1Kr(p1o,p20)-w1Ka(p1O,PQO)

=Ky (9101250 {0y s Ppg 1w, Ky (2165 Pp0)

+Po Py 01 Pp0 ) WK, (B4 45000 )P, ()4, ;)

21
WK By 45050 ) B, (By 5 0p0 14K ]
ees(9.6.11)
where K = WK, (D14,P50) + WK, {1,054
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Ka(p10,p20)= the value of Ka$p1,p%? at point
(PygrPp0)

Ka(pj1,p21) = the value of Ka(pq,pz) at point
Alternative form of the function which is to be mimimized
is given below :

I 4 -

Rz(N,n,aW,a2)= n+(N-n) {qur(p1ofPZO)+YéPa(p11,p21)}

ee.{9.6.12)
‘ v = ( - -
where XH Wy {Kr p10’920) Ka(p‘lO’pQO)]/(Ks Km)'
Yo=W, [Ka(p11,p21) - Kr(p11,p21)1 /(Ks_Km)'
PI‘\p'] 1pz)z 1"Pa(p1 ’pz)
= Probability of rejection at point

(p4,0,)

9.7 Expected Cost Function whern a Prior Distribution

of the Lot Quality is Bivariate Beta Distribution s

9.7.1 The Bivariate Beta Distribution :

Consider the following distribution as a prior
distribution for the lot quality :

Fq?fagiﬁRE d1—1 d2-1 d3—1

Py Dy N AR
[y T g Ty

g(py,05) =
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(ii) Pz = D defined in Section 9.3.2.

(iii) oy are positive and real.
The distribution is known as bivariate beta distribution
(or Dirichlet distribution). The means, variances and

covariances of the distribution are given by the following

eXpressions
E(p,) =°<i/o<o for i=1,2,3% e (9.7.2)

var (p,) =*-°<i(of0~°<i)/E><§ (x,+1)] for i=1,2,3...(9.7.3)

. _ 2 Liq -
and cov (pi,pj) ~°f~'i «><j/[c><O (°<6+1)3 for i¥j=1,2,3

eee(9.7.4)
where o T Kyt T xz «..(9.7.5)

FPor the further developments of the results in the

following section we assume that v(i(i='1,2,3) are integers.

9.7.2 Bxpected Value of the Cost Function :

Consider the linear cost function in the form given
by (9.6.5). To find the expected value of the linear cost
function with respect to the prior distribution given

bj' (9.7.1) following expectations are found useful :
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B[ K (0,050 ] = (854 + 8¢ 44 8,5 5)/%, ee(9.7.6)
E[K.(py,0,)] = (Re¢ + R4yt Ryt ,)/4 oo (9.7.7)
1-p
[ 1
E[2,(p;,0,)] = ) {) P_\p,,p,) &(p;2P;) dp,dp,
N 4 +d1-—1) (o(2+d2-’i)( Moty =dy =41
- o, ~1 ol -1 ol = 1
- L L ! 2 3
d2zo deo ( i, = 1)
« -1
o «..(9.7.8)

Consider the following result which gives the relation
between the hypergeometric distributiom and the inverse

hypergeometric distribution.
P*(N,M,k,r) = 1-P(N,r,M,k-1) «ee(9.7.9)

AN R | N- N
where (i) P*(N,M,k,r) = 2_ ( =1 ) M-k )/ ( M')

X:
k-1 -
(33) 2(07,0,-1) = 2 e yen

Making use of this result, (9.7.8) can be expressed as

B [Pa(p1’P2)]

a
2
= dZ_ i P(n+°(0_1 1 °<2+d2—1 ] °(o"1 ,“2-1 )"'P(l’l‘fo(o"'; ,062+d2,
2"'0
+°<3'
”(0"1 :“‘2-1 )} i 1 -P(n+°<1l\—d2—1 < T ay -—d2 ey +a<3_1 ’0(1 -1 )}

...(9.7.10)
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1-p
’
. . (o<1+d1 e +d2-—‘i)( nes -4y a1
=< 2 1.72 o1 o,y =1 o =1
- ¥ I : 2
o d,=o d,=o b
(o ®)
e {9.7.11)

Again making use of the relation between hypergeometric

and inverse hypergeometric given by (9.7.9) we get

E [9,P,(p,;,p,)]

a
ol
= > i}?(m« ,c(2+d2 1,0(0, -?)-P(n+o< o(2+d2,e<o,
0 d2~o

42—1)} {1~P(n¢u ok —dz,a +1+a ~d 24 oy X )}

31 1 1 5
‘(907-12)
=Py 1
= / > akp1,92) g(p,,0,) dp,dp,
) 0
— £ +d "1 =-C'+d n+ol _d -4 -.1
D) a, a;-d, ( tx 11 ) ( 5 2 43—11 2 )
- —:Z_ 5: zz 1 ) 3
0 d2=0 d1=0 n+°(0
( )
"o .. (97.13)

Making use of result (9.7.9) we get

E [p,P,(p;,p,)]

a
=4

= -2

= o dgwo {P(n+x ’“2+62’“o’“ )= P(n+x x2+d2+1 oL ’“g)

. §1-P(n+d1+d3—dg—1,=x1+aw-d2,oc1+«3—1,«1~1)}

ee o (9.7.14)



Expressious (9.7.10), (9.7.12), and (9.7.14) can be

by
evaluated using hypergeometric table given’\}}iebe rman and

. Owen [30] .
Now define
R(N,n,8,,8,) = K(W,n,8,,8,) - B /(KK ) +..(9.7.15)
where K_= (o(OSO+x1S1+v<282)/°<O
K = (u(OAO+QITR1+°<ZRg)/o<O .

m

Then using the results of expectations, namely, (9.7.6),

(9.7.7), (9.7.10), (9.7.12), (9.7.14), we get
R(N,n,8,,8,) =nt(§-n) (v;E, + Y, B+ Y5E5) .. .(9.7.16)
where ¥, = (R -A )/[x (K K )]
Y, =48, )“1‘:l /o KgmK )]

V3= [(A?B"RQ)&,?‘.J /{-°<0(K53'-Kr11>3

‘ a
2
B = [1-—-«0 dz—:_:o i P(n+°<o-1 ,o<2+d2—1 ,o(o—‘l ,°<2-1 )_P(n+°<o—1 ,
2
042-1—612, c<o~1 ,n<2-—1 ) } i 3—P(n+=(1+o<,5-—d2_.1 )Xy +a 'dz'
oy + Ky o<y =1 )]
%2
E, = dzzo { P(ntx ,o,+a,-1 ,eco,oz2~1)—P(n+«0,42+a2,“0,°<2_1 )}
2

4 =P(nts ol =Gy oty 148y =G, oy Hots oy )}
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a
_ oo _
Eg = dzzog]?(n+o<0,o<2+d2,o<o,o<2) P(n+“o’°(2+d2+1’“o”°(2)}
2
. i'l ---:P(n-i-'agI +e¢3—d2-—1 ,ca(,l +a1 "dz 1°('1+°(3"1 $°(3 -1 )}

9.8 Determination of the Sampling Plan when Prior

Distribution is Bivariate Degenerate :

In Sectionsg 9.5, 9.6, 9.7 we have obtained the
expressions for the expected cost functions under three
prior distributions of the lot gquality. Here, the problem
is to determine a sampling plan which minimizes the expected
cost when a particular prior distribution is given. If a
triplet (n,a1,az) is determined such that the expected
value of the cost function is minimum, the sampling plan
(n,a1,a2) is called the unrestricted Bayesian sampling plan.
When a triplet (n,a1,a2) is determined such that the
expected value of the cost function is minimized subject to
the side conditions on either 0C or AQC curve, then the
sampling plan (n,a1,a2) is called a restricted Bayesian
sampling plan. Generally, three side conditions are used:
(1) Py(pygrPpg)2 1=, (i1) P (pyq,0y)<p, (111)
Ba(PygsPop)2 1-%, and 2.(pyyipyy) =, waere (g,pp0) is
the good quality level and (p11,p21> is the bad quality

level and o and F are the producer's and consumer's risks
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respectively. In the following sections we consgider the
determination of thé restricted Bayesian sampling plan when
prior distribution is bivariate degenerate. The side
conditions under which the sampling plan is determined are

(1) B (py0rPpq) > 1= o¢ end (ii) Pa(p11,p21) <p .

9.8.1 A Numerical Exeample

To illustrate the determination of the restricted
Bayesian sampling plan when the prior distribution is

~ bivariate degenerate we consider the following example :

Lot size : N=100

Different costs associated .with the linear cost model s

A, = 0.00, Ay ='4.00, Ay = 4.00

R, = 0.10, R, = 2.00, R, = 2.00

S, = 0.20, Sy = 2.00, 8, = 2.00
Good quality level : Pyg = 0.15, Py = 0.05
Bad quality level P Pyq = 0.30, Py = 0.10
Guess Value : 51 = 0,06, 52 = 0,02
Consumer's risk : = 0.10
Producer's risk i ot = 0,05

It follows that KS(EH,EE)# Kr(§1,§é). This leads to the

Ceses-IT described in Section 9.5. Hence, the problem is to

ot
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determine a sampling plan which satisfies the given side
condition and minimizes the expression (9.5.10). We have
determined the sampling plans under two side conditions (i)

P, (PygiPyg) = 1- ¢ and (11) P (pyqs00q) B .

Sampling Plan under the Side Condition P, (p,5,Ppq) 2 1= 3

It may be noted that for fixed n and increasing a, or
a, or both (82-<81< n)Pa will increase. This fact leads to
the following practical procedure for the determination of

the sampling plan-under the side condition ?a(p1o,p20)2‘1-°<:

For any fixed n, one may start with 32=O, a1=1 and
continues to increase élither a, or a, or both till the
condition Pa(p1o,p20)2 1-¢ig satisfied. Once such pair is
determined, ssm any further increase in either a, or a, or
both will also satisfy the given side condition. Thus there
will be number of pairs (31’32> satisfying the side condition
Pa(p1o,p20)2.1-e¢ for fixed n. FPor all such pairs one finds
the value of R;(N,n,a1,a2,§5,§é) given by the expression

(9.5.10) and selects the pair for which the value is minimum.

There are different minimum values for the expression
(9.5.10) for different n. One should select the smallest
value from all such minimum values. This smallest minimum

value will determine the desired plan.
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For the given exampie it is observed that for any
fixed n, the pair (a1,a2) which satisfies the given side
éondition for the first time (starting from aZ:O, a1=1) will
give the minimum value for R;(N,n,a1,a2,§1,§é) given by
(9.5.10). Table 9.1 gives an idea how the minimum values

0f(9.5.10) behave for some initial values of n :

Table 9.1
n a, a, Minimum Value of (9.5.10)
1 2 3 4
3 1 2 61.105957
4 1 2 61.372101
5 1 3 61.772949
6 1 3 62.056946
7 1 4 62.359512
8 2 4 63.169708
9 2 4 63.551193
0 2 4 63.925156

It is observed that the minimum value of(9.5.10) has an
increasing pattern as n goes on increasing. Hence the plan
which satisfies the given side condition Pa(P1o'P20) > 1=t

and minimizes the expected cost function is n=3, a1=2, a2=1.
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The minimum value of the expected cost function, given by

the expression (9.5.7), is 32.11057.

Sampling Plan Under the Side Condition Pa(P11,921)i§? :

It may be noted that for fixed (31’a2) and increasing
n(a241a1<: n) P, will decrease. This fact would lead to the
following practical procedure for the determination of

the sampling plan under the side condition P (p,q,D,, 1B

For any fixed (a1,a2) (one may start with a2=0, a1=1)
one continues to increase n till the condition Pa(p11,pz1)5p
is satisfied.Once such n is determined, then for any further
increment in n one will observe that Pa(p11,p21) reduces.
Therefore in this case also the condition Pa(p1?,p21) <P
is satisfied. Thus there are different values of n satisfying
the side condition Pa(pﬂ,pm ) <8 for fixed (a1 ,a2). ‘For all
such vélues of n, one finds the value of R%(N,n,a1,a2,§?,§2)
given by the expression (9.5.10) and selects the n along
with (a ,ag) for which the value of R%(N,n,a1,a1,§1,§2) is

minimum.

Next one considers the variation in a, for fixed a2 and
then variation in 8, These variations will give different

minimum values for the expression (9.5.10). The smallest
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minimum value among all such minimum values will determine

the desired plan.

Table 9.2 represents few triplets to give an idea

about the behaviour of the minimum values of R;(N,n,a1,§1,52)

Table 9.2

n ay a, Minimum Value of (9.5.10)
1 2 % 4

26 1 0 %9.694.000
29 2 0 46.527679
28 % 0 50.350800
35 2 1 52.405609
39 3 1 59.842270
17 4 1 64 .305847
41 % 2 61.484390
18 4 2 66.440491
21 5 2 67.82%166
18 4 s 66.622591
21 5 % 68.140762
24 6 3 69.453888
21 5 4 68.16%956
24 6 4 69.4994 20

27 7 4 70.752777
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The explanation for the first row of Table 9.2 is

as follows :

For fixed pair a2m0, a1=1, and for diiferent values of
n from 8 to 50 the side condition Pa(p11,p21):éﬁ is satisfied.

Lmong 211 these triplets, the expression (9.5.10) is minimum

at a2=0, a,=1, n=26.

It is then observed that for fixed &, and changing 8,
the minimum value of the expression(9.5.10) increases.
Similarly, for fixed a, and changing &, the minimum value
of the expression (9.5.10) also increases. Thus, the sampling
plen which satisfies the given side condition Pa(p11,p21)559
and minimizes the expected value of the cost function is
n=26, a1=1, end a2=0. The expected value of the cost

function, given by the expression (9.5.7), is 29.96938.

Evaluation of different ftriplets satisfying the given
side condition and calculation of the value of the function
(9.5.10) for such triplets under two side conditions was
dome with the help of computer. We have used EC 1030 computer
at Operations Research Group, Baroda. It may be noted that
the maximum value of n attained in the program used was

50 (a 50% value of the lot size).
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Thus, for the numeric values stated at the beginning
of this section the Bayesian Sampling Plan satisfying the
side cmdition ?a(pm,pzo)zi—o( is n=3, a,;=2, 2,=0 and
the one satisfying the side condition Pa(p,m,p21 )<P is

n=26, a1=1, azzO.



