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CHAPTER II

DETEHENATION OP SINGLE THREE CLASS ATTRIBUTES 

SAMPLING PLAN BASED UPON A LINEAR COST MODEL 

AND A PRIOR DISTRIBUTION

9.1 In this chapter we have given the techniques for the 

determination of a single three class attributes sampling 

plan based upon a linear cost model and a prior distribution. 

Three prior distributions are considered. The development of 

the techniques is similar to that given by Guenther [15] who 

considered the problem of the determination of a single two 

class attributes sampling plan.

9.2 The full significance of a sampling plan can only be 

developed on the basis of the prior distribution and the 

economic consequences of the decision of acceptance and 

rejection of a lot. In recent years a number of papers have 

appeared concerning two class attributes sampling inspection 

models which are constructed incorporating both costs and a 

prior distribution of the process fraction defective.

The costs associated with the decision of acceptance 

and rejection of a lot are more real to the firm and the
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corresponding choice is easier to make than the choice of 

risk points and risks, ihis is mainly because the various 

decision costs are closer to the type of data that firm can 

supply on a rational basis than are the various rides and

risk points. Tippett £46, jap.146] has pointed out that, in
«

practice the sampling plan based on even the rough estimates 

of costs can be found quite satisfactory .During fifties, based 

on various decision costs some valuable work on the method of 

determining inspection sampling plan on the economic basis 

was done.Some of them are by Anscombe in, Hamaker [26], 
Weibull [473, Pandey £36] and many others cited by Pandey 

himself in [36}.

To evaluate the minimum expected value of the associated 

cost function, it is required to consider some prior 

distribution of the quality of a lot. Barnard [2] pointed out 

the close correspondence bet?</een the theory of statistical 

decisions and the theory of sampling inspection. He 

established an important result which shows that, not only 

must we know the prior distribution in order to solve a 

decision problem, but we may have to know it in considerable 

detail. Assuming prior distribution for the lot quality 

several other papers on Bayesian sampling inspection such as 

Guthrie and Johns [18], Wetherill £48], Pfanzagl [39J,
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Hald [19], [21] , [22], [23], [24] » Johansen [27], Hald and 

Thyregod [25], Thyregod [45], Guenther [15] have appeared.

The sampling plans discussed in these papers are two class 

attributes sampling plans and are based on two decision 

criteria, i.e., they are either acceptance-rectification or 

acceptance-rejection sampling-plans. Pandey [36] has 

discussed Bayesian single two class attributes sampling 

plan with three decision criteria for discrete prior 

distribution.

In the following sections of this chapter we have 

considered the problem for the determination of a single 

three class attributes sampling plan (with two decision 

criteria) based on a linear cost model and a prior 

distribution. Three bivariate distributions for a lot quality 

given in terms of p^ and Pg are considered as priop 

distributions. They are the bivariate degenerate, the 

bivariate two point, and the bivariate beta distributions.

The linear cost model formalized by Hald [19], [20], [22], 

is modified for the single three class attributes sampling 

plan, i’he expressions for the expected value of the cost 

function based on this linear cost model and the above prior 

distributions are obtained. Betermination of a. sampling plan 

under two side conditions on AOC and under a prior bivariate
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degenerate distribution is illustrated numerically.'

9.3 Terminology, Assumptions and Some Results ;

9*3*1 Single Three Class Attributes Sampling Plan s

Single three class attributes sampling plan (curtailed 

as well as uncurtailed) is discussed in Chapter Y. We 

rewrite here the statement of the uncurtailed single three 

class attributes sampling plan.Assume that units produced 

by a process are assembled at random into lots of size N. 

From each lot a random sample of size n is selected. During 

the inspection of a sample, each unit is classified as 

either bad, marginal, or good. I»et D1 be the number of 

marginal units and .Dg be the number of bad units observed 

during the inspection of a sample of size n. The decision 

rule is then to accept a lot when d^+dg-^a^ and d2 •£. a2 and 

to reject a lot otherwise. Here and a2 are called the 

acceptance numbers.

9*3*2 Assumptions and Some Results

Assume that, when lots are accepted, all marginal units
“ N

and bad units observed during the sampling inspection are 

replaced by good units. Furthermore, rejected lots are
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inspected completely end marginal and bad units found 

during the screening are replaced by good units. This can be 

considered as an obvious extension of acceptance—rectification 

criterion commonly used in two-class attributes sampling plan.

p„ = proportion of marginal units in the production run.

= proportion of bad units in the production run. 

p^ = proportion of good units in the production run

= 1"Pi"P2'

= number of marginal units in a lot.

Yg = number of bad units in a lot.

We assume the following marginal and joint probability 

functions of Y1 and Yg.
N-y1

PO^-,) = ( y ) P^O-Pt)

y »-y2
P(Y2=y2)= ( y2)p2 (1"P2}

y-j'Of 1»•..»n

...(9.3.1 )

y2=0>^ ’’* *’^
...(9-3.2)

H-yi-y2 y, y2
N*. P0 P-j P2

and P(Y1=y1 ,Y2=y2)- y1 iy2 i (N-y1 -y2 )T y-,^,1, 
y2=°»1»
y-j+y2 - n-

..'.(9.3.3)

For a given lot Y^=m^ and Yg—m2 are fixed. It follows that 

the joint probability function of and Dg for given Y^m^
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and Y =m is the bivariate hypergeometric distribution. Hence 
2 2

P(D1 =d1, H2=d2/|''Y1 =111.,, Y2=m2)

ra-mil ) (
mr )(

N>
n'

I-nu -m9 n-d.,-dg) d^ -

dg = 0,1 ,..., n,
d^+dg <_ n. .(9.3.4)

Define

U., = Y1-D1

= the number of marginal units in the remaining 

N-n units in a lot

U§ = Y2-I>2

= the number of bad units in the remaining 
N-n units in a lot.

Consider the unconditional events U= ^U.,-U,, Ug-Ug*^ and 

D= ^Dl=d1 , 4)g=dg] .

Result s The unconditional events U and D are independently 

distributed.

Proof ; P [ (D1=d1 ,Dg=dg), (U., , Ug=Ug)]

= P[(D1=d1, Dg=dg), ^Yi=ui+di» Y2=u2+d2^

= P (Y1=u1+d1, Y2=u2+dg) P[ (D1=d1,Dg=dg)|(Y1=y1,Y2=y2)]

Using (9.3.3) and (9.3*4), we get
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pjjD^a.j ,D2=d2), (11,=^ *U2=u2)] = P(l31=dl >D2=d2) ?(!!, =1^ ,U2=Ug)

...(9.3.5)
n-.d^ -d2 d-j d2 

nlp„ - pi p2"'
where P(P1=d1, P0=d0) - 0

l1 ~“21 "1 ’ ^2 "27 I. id0l(n-d1-d0;i

and

pOl,^, u2=u2)
(H-n)l p

N-n-Uj -u2 u1 u2 
P-j P2

u-j '. u2(H-n-u^ -u2 ) l

Hence the result.

Prom this result it follows that

D.j is binomial with parameters n and p^,

Dg is binomial with parametsrs n and Pg,

U-j is binomial with parameters N-n and p^ ,

Ug is binomial with parameters M-n and Pg.

9.3*3 Ihe Probability of Acceptance 

(Operating Characteristic) :

a1~d2 a2 m, m„ „

oc= i x0 (d»4 x n.d .4)/(;>d^=0 hg=o 12 12

a„
Z p(N,n,m2,dg) P(N-m2,n-dg,m1,a1 -dg

dg = 0

where p(l,n,M,x) = ( ^)( J“^)/( ®), aixlb

. . .(9.3.6)

...(9.3.7)

...(9.3.8)

a=max [0, n-H+M] , b=min[M,n] 

r
and P(N,n,M,r) = )T p(¥,n,M,x)

x=a
• • • (9.3.9)
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Since (9-3*7^ is a conditional probability depending on 

and mg, we may be more interested in the average operating 

characteristic (AOC) which is the expected value of (9-3-7)

taken over and Yg. '4h

N-y2 I a1 -dg
AOC = r

y1 =° y2=o

oII

fi-y-, ~7n 
Nt p0

, c 2 y9 U-y.-u , „
4n^’A *

Vr
y-l' 72 1 ^T"y1 "y2 )1

a2 ... ”1

E Z
ai-d2

d. d,
n:

d^-o dg=o d^dgi(n-d^-dg)I

b(d2;n,p2) BCa^dgj n-dg,p.j
dg o

where p» = P1/(p1+pQ)

-(93-10)

9-4* The Linear Cost Model :

Consider the following costs associated with a three 

class attributes sampling plan :

Sq = Cost per unit of sampling and testing.

S.j = Repair cost of a marginal unit found in sampling. 

©2 = Repair cost of a bad unit found in sampling.

AQ - Cost per unit associated with handling N-n units
not inspected in an accepted lot (frequently it is 

assumed to be zero).
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A1 = Cost associated with a marginal unit in N-n units 

not inspected in an accepted lot.

k2 - Cost associated with a bad unit in N-n units not 

inspected in an accepted lot.

R0 = Cost per \&iit of .inspecting the remaining N-n units 

in a rejected lot.

R-j = Repair cost associated with a marginal unit in the 

remaining N-n units of a rejected lot.

Eg'= Repair cost associated with a bad unit in the 

remaining N-n units of a rejected lot.

We assume that Sq>Ro, S1 > ^ , Sg > Rg, S1 ^ S2, and

R-] — ^2* may that equality sign holds frequently

in all the cases. Furthermore, assume that A1 and Ag are 

very large quantities. This assumption implies that the 

occurrence of a bad or a marginal unit in the remaining 

units of an accepted lot is a very costly affair.

The linear cost function is then given as below ;

H(d1 ,d2,m1 ,m2,p1 ,p2; N,n,a1,a2)

n^0+d'i +^2^2+^-n^o+^m1 — +(m2—d2 )A2

-■ for d,j+d2 £ a1 ; dg £a2

nS0+d1S1+d2S2+(N-n)R0+(m1-d1 )R1 + (m2-d2)R2 otherwise.
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£lSo+d1S1+d2S2+(lT“n)'A‘o+U1A'1+U2A2 f0r d1 +d2 “ a1 ’ d2 - a2 

nSo+d1S1+d2^2+(I-n)E.o+u1 otherwise ..,(9.4.1)

Generally, the sampling plans are based upon the average 

cost per lot. lor this purpose one should take the expected 

value of the random variables involved in (9*4*1). Thus the 

average cost is

K (S, n, a^ , a2 > P-j »p^)

rnSQ+S 1 np1 +S 2np2+ (W-n) Aq+ (N-n) P1 A-| + (N-n} P2 A2 

-j for d^+dg ^a1 ; d2 A a2

,nSo+S1 np-j +S2np2+(R-n)fio+(F-n)p^R1 +(N-n)p2R2 otherwise.

= n[S0tBlPl+S2p23 +(N-n) [ A^ ^ H-p^l Pa

+ (l-n) [VP1E1+P2E2l Er

= nKs(p1,P2) + (N-n)[Ka(p1,p2)Pa + Kr(Pl,P2) ’ Pr*] ..*(9*4.2)

= nKs(Pl,P2) + (N-n) [Ka(Pl ,P2)+{VPl ,P2)-Ka(Pl ,P2>1 Pp“]

• • .(9.4.3)

where Kg (Pl , pg ) = SQ+S1 Pl +S2P2 

Ka(Pl,P2) = Ao+AiPi+A2P2, 

and Kr (P-j > ^ = Eo+E1p1*E2p2

are nonnegative linear functions of Pl andnpg. is given
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by either expression (9.3*7) or (9*3«10) and P =1-P . Since
P 3.

KgCp^Pg), ^(p^Pg), and K^P-pPg) are nonnegative linear 

functions of p^ , and'-'p^, expression (9*4.3) will be minimum 

provided

Kr (p.| t Pg) ~ (p^ , Pg) = 0 •••(9*4*4)

i.e. (Ro-Ao)-(A1-E1 )p1-(Ag-R2)p2 = 0 ...(9-4.5)

Let (P^r» Pgr) °f "the equation (9.4.4) or

(9.4-5), 0 < p1r, P2r<1- Then if

P^P1r and P2^P2r, Kr(p1 ,p2) - Ka(p1 ,p2) > 0

and P-,>P1r and Pg>P2r» ^P-j * P2 ^"Ka^pi»$2 ^ < °*

-..(9.4-6)

9*5 Bayesian Sampling Plan when a Prior Distribution 

of the Lot Qualify is Bivariate Degenerate :

The problem is to determine a sampling plan which 

minimises the expected value of the cost function given by 

either (9-4.2) or (9.4.3). The expected value of the cost 

function is obtained under the given prior distribution of 

the lot quality. We first consider the case in which the 

distribution ,of (p-pPg) is degenerate. This means that the 

whole mass of the distribution is concentrated at a single 

point.
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If we knew and p2, say, P1 =p and P2=P20 ^^len we

could always minimize (9.4.2). If P1o-k P1r and p^-cp^,

then we would always accept the lot without sampling. In

this case P =1 and n=0, hence
8.

KClSfjn^ ,a2, P10,P20) = HKa^p10» ...(9.5-1)

If P-jo> pir P2o> p2r’ ^en we would- always reject the 

lot without sampling. In this case 1? =1 and n=0. Hence

Kdftn^^g, P1Q, P20) = ffir(pl0,p20) ...(9.5.2)

In practice p,j and p2 are unknown. Then the problem is to 

minimize K(N,n,a^»a2, P-jjPg), where and p2 are the 

guess values for the true values of p-j and p2 respectively, 

subject to one or two conditions on the OC (or AOC) curve 

given below :

(a) OC (or AOC)-P , .. .(9.5.3)

(b) OC (or AOC)> 1-* , ' ...(9.5-4)

(c) OC (or AOC)£P and OC (or AOC)> 1-°< ...(9.5-5)

where c< and ji are producer's and consumer's risks 

respectively. Rewrite the expression (9.4*3) as given below
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K(l,n,a1 ,a2,p1 ,P2)=n [Kft(p1 ,P2)-Ki>(p1 ,P2)]+(N-n) [Kft(p1 ,p2)

-K (p1fP2)] patNKr^P-, »P2) ...(9.5-6)
T*

Then the expected value of the cost function under given 

bivariate degenerate prior distribution is

K(N,n, a1 ,a2?p1 ,pg)

=n [|Cg(p., ,P2) - Kr(P-, >P2)] + (N-H)[K&(p1 ,P^-Ky(p.,, P2)]

• ^a(Pt , P2) + M^Cp-pPg) ' ...(9.5.7)

where Pa(p^,P2) is obtained from (9.3.10) substituting 

for p^p-j evnd

Consider the expected value of the cost function 

under the following two eases :

Case-I : R0=S0, R^S.,, R2=S2

Under this case K0(p1,p0) - K (p. hence the expected

value of the cost function is

K(U,n,a1 ,P2) =(U-n) [k&(p1 , P2 J-K^Cp., , P2) ] Pa(p1 , P2

+ NKr(p1 ,P2) ... (9.5.8.)

. ‘ .R(lyn»a1 ,a2,p1 ,p2) = (N-n)Pa(p1 ,pg) ...(9.5-9)

_ _ , K(N,n, &. »a2;*fP1 ,P2)-flK (p-j ,P2)
where R(N,n,a1 ,a„,p1 ,p„) = ------------------------------- --------------------

»P2)“KrCp'1 »P2)
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To minimize (9.5*8) one has to maximize or minimize (9.5*9) 

depending on whether the quantity K&(p^ ,P2)-Kr(P-| ,P2) is 

negative or positive.

Case-II ; R Y S . H. 4S., R0 .2 S0 (at least one of these 
o o 1 1 2 2

inequalities should he true) :

In this case ,P2)-K;r(p1, pg) is always positive.

Then, the function to he minimized is

RJj(u,n,ai ,a2,prp2) = n+(N-n) ...(9.5.

K(N,n, a., ap,p 1, p „)-M (P1?P?)
where R’(u,n,a1 ,a„,p1 ,p2) = -------- -——--------—— -------------

Kg(p1 ,pg) - ICr(p1 ,P2)

and Y= [Ka (P1, P2) -Kp(p., , P2)] / [Kfl (P-, , P2) -Kr (p., , Pg) ]

9.6 Expected Cost Function when a Prior Distribution of 

the Lot Quality is Bivariate Two Point Distribution :

9.6.1 The Two Point Prior Distribution :

The probability function of the bivariate tw©-point 

prior distribution for the lot quality is given below :

f(P1,P2-1 = w1 v (Pn,P2) = (P10,P20)

= w2 (p1 ,P2) = (pn1 ,P21 )

= 0 elsewhere ...(9.6.1)

10)
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where w.j ,Wg, (p.j q,p q) and (p^jPg^) are assumed to he known. 

The entire probability distribution is Concentrated on two 

points (P-jo’^cP an^ (P-j-j > P21 ^ * Alternatively the above 

probability distribution can be represented as follows s

p2\

P10 P11 Total

P20 W1 0 W1

P21 0 w2 W2 ■

Total W-j Wg, 1

Prom (9.6.2) it follows that the marginal distributions of 

p^ and Pg are as given below :

(i) Marginal Distribution of p^ :

...(9.6.3)

...(9.6.4)

= W1 P1 ~P1 0

= Wg P1=P11

= 0 v.e^se where

= W1 p2=p20

= Wg P2=P21

= 0 elsewhere

Hald's justification for the use of this 1ype of model 

appears to be that those associated with quality control



can frequently identify good quality (with quality level 

(P10,P£0>) 811(1 Poor quality (with quality level (p^jPg-j)) 

together with w1 and wg even if they cannot furnish any 

additional information.

9.6.2 Expected Value of the Cost Function :

Consider the cost function given hy (9-4.2) in the 

following form s

K(N, n, a1 f ag f p,j » P2) — uK-g (P-j > P2)+(N~n} Ka^ P-| > P2 ^—Kg.(P-| »P2 )3Pa

' +Kr(p1,P2)] ...(9.6.5)

To find the expected value of (9.6.5) with respect to the 

given prior distribution (9-6.1 we require the following 

expectations :

E LVvty] = W1 Ks(pio*p20>+

K, ...(9.6.6)

E (_P-j »P2 ) ” ^ P"| 0 ’ P2O ^ w2Er ^P11 ’ P21 ^ •••(9.6.7)

E(Pa)= w1Pa(pl0»P20^ w2Pa(p11 ’P21}
•• (q.fi-S)

E[p1 pal W1 p10Pa^p1 0,p20^+ W2P11Pa^p11 ,p21 ^

...(9.6.9)

E [P2Pa]=w1p2oVplO’p20} +w2P2lPa(Pl1,p2l) ...(9.6.10)
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where P„ = P„VpJ,p0) 
a a 1’

= Probability of acceptance at point (p1,P2) 

and is given by the expression (9.5-10)

Ks(Pio,P2o^ = the value °f Kgip^Pg) at point

(»10.P20)

KgCp^jPg-j) = the value of Ks(p1,p2) at point

(pn ,p2i )

Ki(p10’p20* = the vaiue of Kr(p1,p2) at point

(P10.P20)-

Kr(pii,P2i) = the value of Kr(p^,p2) at point

(P11»P21

Using these expectations the expected value of the cost 

function which is to be minimized is

= riK0+(N-n) [ (p1 Q, P2o^"wiKa^pi o» p20 ^

-wlVp10’p20)Pa(p10’p20)+w1Ka(p10>p20)

•Pa(p1 0'p20>+w2Ka(p11 - p21 >Palp11 ’ P21 >

Vp11’p21)+Ku}

... (9-6.11)

where 1^= w1Ka(p10,p20) + -^(p^.Pj,),
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Ka^p10’p20^“ the Talue of Ka^p1 >p2^ &t Polnt
r

^ P10 ’ p20) •

E (p11tP2l) = the value of Ea(p1,P2^ at point 

(P-j -| > P21 )

Alternative form of the function which is to he minimized 

is given helow :
®‘2^,n’ a1 ’ a2^~ n+(lf—n) QirP2Q)^''^2^>a,^P"j *P2-i ^

...(9.6.12)
' where *, = w, [Vho’PpO5 ~ K&(p1 0,P20>1/<VV ’

Y2=w2 /(VV-

Pr(p,,P2)= 1-Pa(Pl,P2)

= Probability of rejection at point 

(p-i» p2 )

9.7 Expected Cost Function when a Prior Distribution

of the not Quality is Bivariate Beta Distribution :

9.7.1 Phe Bivariate Beta Distribution :

Consider the following distribution as a prior 

distribution for the lot qualify :

pl+ o<p+ o<^ °^1 “1
-------=----2— p1RjRgP^ 1

^-1
p2

-1
g(p-,,p2) = . ..(9.7.1)
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where (i) 0 ± pi < 1, X) Pa -1 •

1 i=1 1

(ii) = pQ defined in Section 9*3*2.

(iii) o<^ are positive and real.

The distribution is known as bivariate beta distribution 

(or Dirichlet distribution). i‘he means, variances and 

covariances of the distribution are given by the following 

expressions :

E(pj_) =c<iA0 for 1=1 >2,3 ...(9.7.2)

var (p±) = 04j_ )/[°<o A0+1 )] for i=1,2 ,3. • • (9-7.3)

and cov (p^p^J = Ae+1) 3 for ifj=1,2,3
. ..(9.7.4)

where c*0= cx.^ + «Tg+ oc^ ...(9.7.5)

For the further developments of the results in the 
following section we assume that o<_(i=1,2 ,3 ) are integers.

9.7*2 Expected Yalue of the ^ost Function :

Consider the linear cost function in the form given 

by (9.6.5). To find the expected value of the linear cost 

function with respect to the prior distribution given 

by (9.7.1) following expectations are found useful ;
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E [ Kr(p1 ,P2)]

E [Pa(p1(P2)]

a2 a1 _d2 
= i I

d2=o d1 =o

<SoV S1”V

<Vo+ Hl“l+

1-P1 11 I Pa^p., ,P2) g(p1 *Pn )

+(1.-1 oC0+d0-1 n+^-d.
^ <^-1 1 K c*2-1 n ot3 - 1

n+'x; - 1
f )W - 1 '

...(9.7.6)

...(9.7.7)

dp1dp2

.. .(9*7.8)

Consider the following result which gives the relation 

between the hypergeo metric distribution and the inverse 

hypergeometric distribution.

P*(l,M,k,r) = 1-P(l,r,M,k-1 ) (9.7.9)

_r
where (i) P*(H,M,k,r) = 2_ (

x=k
k-1

(ii) P(E,r,M,k-1 ) = 21
x=o

Making use of this result, (9

x-1 w E-x w( N \ 
k-1 n M-k B '

c;><tz>/<; >

N

.7.8) can be expressed as

E [VVP2)]

a2
= 21 ^P(n+<< -1, <s<2+d2""^ ’ ,^“1 )~P(n+o<o“1 >oC2+<^2’

d2=0

+*°<3 -j
^0"1 ^2_1 )}11-p(n+0<i“d2"1 ’0<l+al“d2’0'l+0<3_1 »^1"1 M

...(9.7*10)
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i-p/1 1
E [p1PalP1 ,P2^J = J I p1Pa^p1’p2^ g(pi >pi ^dpidp;

o o c

1 a2 al~d2
~ I I
‘o d2=o ^=0

oC,+d„ +d„-1 n+^-d.-d0-1
( 1 1 )( 2 2 w 5 121 *1 n ^ A -1

22

n+c<( ° )

)

...('9.7.11)

Again making use of the relation between hypergeometric 

and inverse hypergeometric given by (9.7*9) we get

E [p1Pa(p1 ,P2)]

a2
- Z lP(n+*o,<*2+d2-1 , <*n,*p-1 )-P(n+«n,<3+dp,c<n,

o ’ 2 o’ 2 ~2’^o!

°^2"1 ) } { 1 -P(n+c<^+^ -d2, +1 +a^ ) ]

...(9.7.12)
E [p2Pa(Pl,P2)] '

i-h 1 • . .
= /' / ?^2 «<VV dPldp2

o o

*2 a2 a1-d2 ( ' ' )(
xj- oc ^ — i o<2

*o dg=o =o

P<1+d1-1 o<0+d n+oc-d. -d0-11 1 \( 2 5 1 2
o^_~15

)

n+c*( . °) 
o<0 ...(97.13)

Making use of result (9*7.9) we get 

E Lp2Pa^p1 ,p2 ^3
&r

*0 d2=o
*Z) ^ P (n4*oc^ joc24~d2 ’ °^o ’°^2) 'p *̂ °^o)

0>2 2 ’ o’~2

. |l -PCn+^+u^-dg-l, «<1+a1-d2, «x ^<*^-1 ,^-1 ) ]

...(9.7.14)



Expressions (9.7-10), (9.7.12), and (9-7.14) can “be 

evaluated using hypergeometric table given ^Lieberman and 

Owen [30 J •

Now define
E,(l,n,a1 ,a2) = K(N,n,aiJa2) -

where KV*1S1+,<2S2)/o<o

^<oAo‘W1R1+*2R2)/l*<o *

...(9.7.15)

Then using the results of expectations, namely, (9.7*6), 

(9.7.7), (9.7.10), (9.7.12), (9.7.14), we get

R(N,n,a1,a2) =n+(N-n) (v'1E1 + y2E2+ Y^E^) ...(9.7.16)

where y, = (VV'WVV3

Ta = [(A,-E., K, 3 /t<0UC8-Km)]

r3= [(A2-K2Kl AV^V3

‘ p a2
E1= L1”"^ Jz. I P^n+0<'o"1 »oC2+d2-1 ,0<o_1 ,oC2_1 ’

Ctg™* 0
o£2+(L2, =c0-1 ,<2-1 ) } [ l-PCn+^+rt^-dg-l ,«<1+a1-d2f

°^.j +C<2—1 , o<^ — 1 ) ^ J

S2 .
Eg = Z | P(n+«<o,<^2+d2--1 ,<^o,)-P(n+«<o,<^2+d2,<^o,'^2-1)}

d2=o
•|l —P(n+«<j+<>4j -dg+1 +a^ —dg,o<^ + J
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- £2 ^P(n+c<oj6<2+d2, =<o,o<2 i-P(n+»:o, <^2+d2+1 

d2=°

. ^1 -PCn+oc^+of^-dg-l +a^ "^2 j04-)+a<3-1 )}

9.8 Determination of tbe Sampling Plan when Prior 

Distribution is Bivariate Degenerate :

In Sections 9.5, 9*6, 9.7 we have obtained the 

expressions for the expected cost functions under three 

prior distributions of the lot qualily. Here, the problem 

is to determine a sampling plan which minimizes the expected 

cost when a particular prior distribution is given. If a 

triplet (n,a^,a2) is determined such that the expected 

value of the cost function is minimum, the sampling plan 

(n,a^,a2) is called the unrestricted Bayesian sampling plan. 

When a triplet (n,a^,a2) is determined such that the 

expected value of the cost function is minimized subject to 

the side conditions on either OC or AOC curve, then the 

sampling plan (n,a^,a2) is called a restricted Bayesian 

sampling plan. Generally, three side conditions are used:

(i) Pa(p10,P20)> 1-oc , (ii) Pa(p11 ,p2l )ip , (iii)

Pa(p10»P20^ 1“* » 31101 pa^p'i1 ,P21 ^ " P ’ where (P-iO’^Cp is

the good quality level and (p^jPg^) is the bad quality 

level and o' and p are the producer’s and consumer's risks
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respectively. In the following sections we consider the 

determination of the restricted Bayesian sampling plan when 

prior distribution is bivariate degenerate. The side 

conditions under which the sampling plan is determined are 

(i) Pa(pl0>P2cP > 1_oC and ^ij-) Pa(pi-| >p2i ) ^ f *

9.8.1 A Numerical Example :

To illustrate the determination of the restricted 

Bayesian sampling plan when the prior distribution is 

bivariate degenerate we consider the following example :

Lot size : N=100

Different costs associated .with the linear cost model :

Ao = 0.00, A1 ='4.00, A2 = 4.00

RQ = 0.10, R1 = 2.00, R2 = 2.00

SQ = 0.20, S1 = 2.00, S2 = 2.00

Good quality level : P-10 = 0..15, p2o = 0,.05

Bad quality level J P11 = 0.• 50, P21 .= 0..10

Guess Value : h = 0,.06, P2 = 0..02

Oo nsumerfs risk • P = 0.,10

Producer's risk s oi = o.,05

It follows that KgCp-pPg)^ Kr^p^,p2). This leads to the 

C«s&8-II described in Section 9*5. Hence, the problem is to
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determine a sampling plan which satisfies the given side 

condition and minimizes the expression (9-5*10). We have 

determined the sampling plans under two side conditions (i) 

Pa^pl0’p20^ > 1“°< and (ii) P&(p1 1 ,P21 ) ^ P •

Sampling Plan under the Side Condition Pa(p.j o,p20^ " ^ _oC *'

It may he noted that for fixed n and increasing a^ or 

a.^ or both (a2<a^ n)P& will increase. This fact leads to 

the following practical procedure for the determination of 

the sampling plan-under the side condition Pa(p.j q> p20^ ~ 1 -oC5

Por any fixed n, one may start with a2=0, a1 =1 and 

continues to increase either a^ or a2 or both till the 

condition Pg^Cp^ qjP^q) > 1is satisfied. Once such pair is 

determined, mm any further increase in either or a2 or 

both will also satisfy the given side condition. Thus there 

will be number of pairs (a^,a2) satisfying the side condition 

Pa^p1 O’p20^ ^ por l^-xecS- n* ■Por sll such pairs one finds

the-value of R^( N, n, a^, a2, p^ ,p2) given by the expression 

(9-5-10) and selects the pair for which the value is minimum.

There are different minimum values for the expression 

(9.5.10) for different n. One should select the smallest 

value from all such minimum values. This smallest minimum 

value will determine the desired plan.
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For the given example it is observed that for any 

fixed n, the pair (a^,ag) which satisfies the given side 

condition for the first time (starting from ag=0, a^=l) will 

give the minimum value for (N,n,a«j, ag,p^ ,Pg) given by 

(9.5.10). fable 9*1 gives an idea how the minimum values 

of_C9.5.10) behave for some initial values of n :

Table 9.1

n a1 a2 Minimum Yalue of (9-5-10)
1 2 3 4

3 1 2 61 .105957

4 1 2 61.372101

5 1 3 61 .772949

6 1 3 62.056946

7 1 4 62.359512

8 2 4 63.169708

9 2 4 63.551193

0 2 4 63-925156

It is observed that the minimum value ofC9.5*10) has an 

increasing pattern as n goes on increasing. Hence the plan 

which satisfies the given side condition -^a(P-jQjPpO^ - '\~oC 

and minimizes the expected cost function is n=3, a^=2, a2=1.
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The minimum value of the expected cost function, given by 

the expression (9.5-7), is 32.11057.

Sampling Plan Under the Side Condition P&(p^ ,Pg^ ) 4 p :

It may be noted that for fixed (a^ag) and increasing 

n(a0^a. n) will decrease. This fact would lead to the 

following practical procedure for the determination of 

the sampling plan under the side condition ?a(P-j -j *P21 ) - P s

For any fixed (a^ag) (one may start with ag=0, a^=1) 

one continues to increase n till the condition Pa(p^^,Pgi )-P 

is satisfied.Once such n is determined, then for any further 

incremaat in n one will observe that Pa(P-|i»Pgi) reduces. 

Therefore in this case also the condition P&(p1 ^, P21 ) ~ f 
is satisfied. Thus there are different values of n satisfying 

the side condition Pa(p^, Pg-j ) £ ^ fen fixed (a^a^). For all 

such values of n, one finds the value of (N, n, a^, a^,p^ , p^) 

given by the expression (9.5.10) and selects the n along 

with (a1?ag) for which the value of r' (u,n,a1,,p^ ,p2) is 

minimum.

lext one considers the variation in a^ for fixed ag and 

then variation in ag. These variations will give different 

minimum values for the expression (9-5.10). The smallest
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minimum value among all such minimum values will determine 

the desired plan.

Table 9.2 represents few triplets to give an idea 

about the behaviour of the minimum values of (N,n, , p^, )

Table 9.2

n a1 a2 Minimum Value of (9*5.10)
1 2 3 4
26 1 0 39.694000
29 2 0 46.527679
28 3 0 5O.3.5O8OO
• • •

35
• • •

2

• • •

1
• • •

52.405609
39 3 1 59.842270
17 4 1 64.305847
» • •

41
* * •

3
* * •

2
• • •

61 .484390
18 4 2 66.440491
21 5 2 67.823166

• • •

18 4
• * •

3
• • •

66.622391
21 5 3 68.140762

24 6 3 69.453888

21
• • •

5
• • *

4
• • *

68.163956
24 6 4 69.499420
27 7 4 70.752777
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The explanation for the first row of Table 9*2 is 

as follows ;

For fixed pair ag=0, =1 , and for diiferent values of

n from 8 to 50 the side condition P&(p.j ^ > P21 ) - P is satisfied. 

Among all these triplets, the expression (9.5*10) is minimum 

at a2=0, a^=1, n=26.

It is then observed that for fixed a^ and changing a^ 

the minimum value of the expression(9*5 *10) increases. 

Similarly, for fixed a^ and changing a^ "the minimum value 

of the expression (9-5*10) also increases. Thus, the sampling 

plan which satisfies the given side condition P&(p^ ^, Pg-j ) - P 
and minimizes the expected value of the cost function is 

n=26, a^=1, and a^=Q. The expected value of the cost 

function, given by the expression (9*5*7), is 29.96938.

Evaluation of different triplets satisfying the given 

side condition and calculation of the value of the function 

(9*5*10) for such triplets under two side conditions was 

dome with the help of computer. We have used EC 103O computer 

at Operations Research Group, Baroda. It may be noted that 

the maximum value of n attained in the program used was 

50 (a 50$ value of the lot size).



Thus, for the numeric values stated at the beginning 

of this section the Bayesian Sampling 1*1 an satisfying the 

side condition (P-jq>Pg()) - 1 ~ 04 is n=3> ai=2> &2=0 and 

the one satisfying the side condition PaCp^ ^) — P is 

n=26, a^=1, a2=0.


