
CHAPTER II

THE MAXmOM LIKELIHOOD ESTIMATION OP THE 

PR APT I OR DEEEOTIYE UNDER CURTAILED MULTIPLE 

TWO CLASS ATTRIBUTES SAMPLING ELM

2.1 In this chapter we define curtailed multiple sampling 

plan by attributes. A particular case of a curtailed multiple 

sampling plan, namely, the curtailed double sampling plan is 

studied extensively under two different situations, Situation-A 

and Situation-B. Situation-A takes into consideration the 

reporting of complete information of the records of sampling 

inspection whereas Situation-B occurs when censored 

information of Type-I on inspection records, as defined by 

Gupta [17] is reported. The maximum likelihood estimator 

(ILE) of the fraction defective and the asymptotic variance 

of the MLE are given under both the situations, Situation-A 

and Situation-B. In Situation-B the MLE is not available in 

the explicit form. Hence in the Appendix of this chapter we 

have given a SUBROUTINE which will evaluate the MLE by an 

iterative method. The SUBROUTINE also evaluates the 

asymptotic variance of the Mle.



28

2.2 Curtailed Multiple Sampling Plan :

2.2.1 In the multiple sampling plan (MSP) by attributes

a sequence of k samples of size (i=1,2,... ,k) isitaken from 

a lot of size S’. The design of the sampling plan specifies 2k 

numbers a^ and r^ (i=1,2,... ,k). If the accumulated number 

of defectives, d^, is equal to or less than a^, the lot is 

accepted. If d^ is equal to or greater than r^, the lot is 

rejected. If d^ falls between a^ and r^, the decision of 

acceptance or rejection of the lot is differed until the next 

sample of size n^jj is inspected. The constants a^ and r^, 

known as acceptance and rejection numbers, are predetermined 

numbers satisfying the following conditions :

(i) 0<a1 <a2 <... >

(ii) r^ < r2 < ... < ,

(iii) a^+1< r^ i =1,2,...,k-1,

(iv) V1 = rk,

(v) ai < J- n^ i = 1,2,..., k , 
j=1

k
(vi) rk 5 £ ni* 

i=1

The condition (iv) ensures that not more than k samples are
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required for inspection. It also implies that only 2k-1 

numbers are to be specified.

2.2.2 If the inspection has no other purpose than to 

determine which faaepoetioH lots to accept and which to reject, 

it would be obvious to stop the inspection as soon as the 

decision of acceptance or rejection is reached. This leads

to the curtailment in the inspection. Two.forms of the 

curtailed inspection can be distinguished. The sampling plan 

which considers the curtailment in the inspection arising due 

to observing enough defectives to reject a lot is termed 

here as a semi-curtailed sampling plan, following the 

terminology of the Statistical Research Group [44]. Similarly 

the sampling plan which considers the curtailment in the 

inspection arising due to observing either enough defectives 

to reject a lot or enough nondefectives to accept a lot is 

called a fully-curtailed sampling plan.

2.2.3 Statement of a Fully-Ourtailed MSP :

Consider an attributes sampling plan in which individual 

units randomly selected from a lot of size K are inspected 

one at a time till one of the following 2k events occurs :
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( <*.) r. defectives are observed and the number of units 
11 i

inspected is greater than X n. 1 and less than or equal to 
i j-1 3

1^,3=1 3
( g^ nondefectives are observed and the number of

units inspected is greater than X n. and- less than or 
^ 4_1 J •

equal to X n-i >
3=1 3

for i=1,2,...,k
Here nQ is assigned a value zero.

Then, the decision rule is to reject the lot if one of 

the k events of the set occurs and to accept the lot if 

one of the k events of the set occurs.

The relations between the consants given in the above

statement and those of the un cur tailed MSP are
i

n.=n. , r.. =r. , g. = X n.-a. . 
l i’ 1 i* &x rz^ 3 x

2.3 Curtailed Double Sampling Plan s

2.3.1 A double sampling plan (PSP) is a particular case 

of MSP for k=2 given in Section 2.2.1. 1’he design of the PSP 

specifies four numbers and r^ (i=1,2.). The relation 

a2+1=r2 ensures that not more than two samples are required 

to inspect. In the usual text books [3],[ll3, [13] and other 

literature [8] , in the definition of PSP, the common practice 

is to take r^=r2=r and hence a2+1=r. Pue to this practice
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the design of the sampling plan specifies only two numbers 

a^ and ag. We call this latter sampling plan, .usual ISP (TJ33SP).

2.3.2 Statement of Pully-Gurtailed Sampling Plan :

Statement of a fully-curtailed PSP can be easily obtained 

from the statement of the fully-curtailed IBP, given in 

Section 2.2.3, by considering k=2. She four events ,«<g,/3,j , 

and /3g of fully-curtailed PSP are designated here as 

E^(i=1,2,3,4) and are as given below :

(E^ ) r,j defectives are observed and the number of units 

inspected is less than or equal to n^,

(Eg) r2 defectives are observed and the number of units 

inspected is greater than n^ but less than or equal to n^+ng,

(E^) g^ nondefectives are observed and the number of 

units inspected is less than or equal to n^ ,

(E^) g2 nondefectives are observed and the number of 

units inspected is greater than n^ but less than or equal to

n,j +n2.

The decision rule is then to reject the lot if one of the 

events E^ and Eg occurs and to accept the lot if one of the 

events E^ and occurs. The constants r1,r2,g1 and gg are
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the predetermined .numbers such that

n^-g^l < r1 £ r2 6. n,j+n2 

0 < g1 < g2

(2.3.1)

.. .(2.3.2)

(2.3.3)

g2=n1+n2~r2+1 (2.3.4)

It may be noted that the constants of a fully-curtailed DSP 

are related to the constants of the corresponding uncurtailed 

DSP of Section 2.3.1 as given below ;

It is then clear that the events E^ and of a fully- 

-curtailed DSP lead respectively to rejection and acceptance 

of a lot on the basis of enough information of the defectives 

and nondefectives observed during the inspection of the 

first sample. Similarly the events E2 and lead to 

rejection and acceptance of a lot respectively on the basis 

of enough information of the accumulated total of defectives 

and nondefectives observed during the inspection of the 

second sample.

g1=n1-a1, gg^+ng-ag (2.3.5 )
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2.3• 5 A Remark on Statement of [12].

Statement of a fully-curtailed DSP is also given by 

Girschick, Mosteller and Savage [12]. Shis statement is 

somewhat confusing. For ready reference we reproduce the 

same here :

"A sample of size n^ is drawn and items are inspected 

until (i) r^ (1<i^£ n^ ) defectives are found, or (ii) 

n.j-a+1 (a > 0) nondefectives are found or (iii) the sample 

is exhausted with neither of these events occurring. If 

case (iii) arises, a second sample of size is drawn and 

inspection proceeds until a grand total of ^(r^rg £n^+ng) 

defectives are found or n^+ng-rg+l nondefectives are found.

In this scheme we call r^ and rg rejection numbers and a 

an acceptance number".

Following remarks will reveal the confusion involved 

in the above statement :

(i) fhey aught to have called a-1 as an acceptance number,

(ii) a=0 is meaningless, for a=0 implies finding n^+1 

nondefectives in inspection of n^ items.

(iii) Non-existence of a condition of the type n^-g^+l^r^ 

as given by (2.3-1 ) allows in their plan to have
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a=r^ . Then for instance, a = =3 and n^ = 6

will not allow us to take a second sample at all.

2*4 gully-Curtailed DSP under Situation-A :

As stated earlier, Situation-A takes into consideration 

the reporting of complete information of the records of 

sampling inspection. Now in case of fully-cur tailed DSP the 

complete information of the sampling inspection means the 

information on (i) the number of units inspected (or the 

number of defectives found) when the inspection is stopped 

by finding sufficient number of non defectives and (ii) the 

number of units inspected (or the number of nondefectives 

observed) when the inspection is stopped by finding sufficient 

number of defectives. A lot is accepted when (i) occurs and 

is rejected when (ii) occur. In the succeeding sections of 

this section we study fully-curtailed DSP in detail 

(particularly its probability function, the maximum likelihood 

estimate of the fraction defective, asymptotic variance of 

the maximum likelihood estimate etc.) under this situation.

At the end of this section the results of our study are 

generalized to fully-curtailed MSP.



35

2*4*1 Probability Function i

Let the process average proportion of defectives be p 

and for sufficiently large lots it can be considered as the 

probaoility of selecting a defective in a single trial. 

Furthermore, let the probability p remain constant from trial 

to trial and the trials be stochastically independent. This 

applies to the type B situation of Lodge and Romig [10], 

hence, the lot size N does not subsequently appear.

let Y denote the number of units inspected when the 

inspection is stopped due to the occurrence of the event 

E^(i=1,2,3,4)• Let (i=1,2,3,4) be the set of possible

values attained by Y. Then

A1 =

A2 = {rg-r^+n^+1, rg-r^+n^+2, ..., n^+ng} }

~ * * • * ^"1^ *

A4 = +I11+1 ’ g2“g1+n1*2* ***’ nl+n2^ *

Further define a random variable T as follows s

T = i if occurs, i=1,2,3,4.

Then the joint probability function of the random variables 

Y and T can be expressed- as
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P (Y=y, T=i) =1^ (yjp) y e A±, i = 1,2,3,4

IP el sewhere ... (2.4 • 1 )

where

f-j (y;p)

f2(y;p)

y-1 p
y-r1

U1

= Z (
u=1

n„

«T *u
) ( y-^-1

bi-H
y-r2

. .(2.4.2)

. .(2.4*3)

f5(y;p) y-1 v
Si"1

y-gi g
QL

1

f4(y;p)
1
I (

U=1

n1
g-j-u

)(
y-^ -1 y—gp gp

P q.

...(2.4.4) 

...(2.4.5)

and q = 1-p, u=d1~a1, =g^ +r^ -n^ -1 b2=gl+r2-n1 -1 .

While calculating the various terms of the summation 

involved in f2(y;p) and f^yjp), (“) is regarded as zero 

whenever x exceeds n or whenever x is negative.

The probability function of the number of units

inspected, Y, which is the marginal probability function of

(2.4.1) can be expressed as

4
P (Y=y) = £ f.(yjp) ...(2.4.6)

i=1

Similarly the probability of occurrence of the events

EWi = 1,2,3,4) is given by ( i=1,2,3,4 )
1
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where ■n-i= P(l=i)

= Z fAy;p) • i = 1,2,3,4
-

Then the probability that a lot is rejected is

T1 + TT2

and that it is accepted is

"3 + "4

..(2.4.7)

..(2.4.8)

..(2.4.9)

2.4.2 The Maximum Likelihood Estimate i

In this section we derive the maximum likelihood 

estimate (MKE) of the fraction defective, p, when m lots are 

inspected in accordance with the fully-curtailed PSP. Suppose 

for the inspection of every lot, the information about the 

number of units inspected and about the fact that the event 

has occurred is supplied, l'his information could be 

concisely expressed by the following pairs.

(yi3,I=i) i =1,2,.- -,m±;

i = 1,2,3,4 ...(2.4.10)

4
where y. .6 A., j = 1,2,..., m. for fixed i and Z m. = m.

X J J- J- __ .j J-

The m pairs given by (2.4.10) can be considered as a 

random sample' of size m from a bivariate distribution whose 

probability function is given by (2.4*1 )• r4he likelihood
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function, L, based on this sample can be expressed as

4
¥

m- f(y^;p)
13i=1 j=1

mi ri ffl2 r? y,rr?(const.) ¥ (p 1 q 13 ) ¥ (p ^ <3.24
3=1

) , “4- , y4-fg2 g2;
¥ (p ' q. 1 ) ¥ (V Q. )

3=1 3=1 ...(2.4.11)

where we use (2.4*2) through (2.4.5) to obtain (2.4.11)

On taking logarithms of (2.4*11 ), differentiating 

partially with respect to p, equating the partial derivative 

to zero, and solving for p we obtain the MLE of p, p, as

0 _ (TD) 
p “ ~TW7

where (TD) = Total number of defectives observed
m„ m4

= m^+ryr,, + Y/ (y33 - 8,) + Z (5r43_g2)

. . .(2.4.1 2)

3=1 3=1
.. .(2.4.13)

(llj) = Total number of units inspected

“1 ”2 m3 m4
= 1— + 21 y0* + 21 + 21 jA *3=1 3 3=1 3 3=1 53 3=1 43

...(2.4.14)

This feature was also observed by Phatak and Bhatt f40]

when the maximum likelihood estimators of the fraction
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defective under semi-curtailed and fully-curtailed single 

sampling plans were obtained.

2.4.3 The Asymptotic Variance of the MLE s

Differentiating partially the logarithm of the likelihood 

function, L, given hy (2.4*11) twice it is found that

.=  |~|- (ED) + (TU) ...(2.4.15)
P <T 1

Doting that

(i) E (TD) = p E (TU)

= p m (ASH)

(ii) The expression for ASF is

r1 r S,ASF = |_1 (r., ; a.,+1, p)J + ~ B (n.j-g.jj i^+l.p)

v1 T b2+1~t
+ 2. b (n. -g1 + t; a,,p) |_ —«----- 1

t=1 1 1 1 p
+^+—5— {B(h2-t;n2+1 ,p)}]

.. .(2.4 .16) 

rwhere b(x;n,p) = ( “ ) px and B(r;n,p)= Z h(x;n,p).
x - x=o

The detail about ASF is given in Qhapter IV of the thesis.

(iii) The asymptotic variance of ®lDE of p is given by

T Cp) = - -----r------------
e(2

■ap^
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In case-I, when inspection is terminated, inspector 

reports the Information on (i) acceptance or rejection of 

a lot and (ii) the number of defectives found. Information 

on either number of nondefectives found or number of units 

inspected is not reported.

In case-II, when inspection terminates, inspector reports 

the information on (i) acceptance or rejection of a lot and 

(ii) the number of nondefectives found. Information on either 

number of defectives found or number of units inspected is 

not reported.

In the succeeding sections of 2.5 we study the various 

aspects (such as the MLE of the fraction defective, asymptotic 

variance of the MLE etc.) of fully-curtailed BSP under both 

the cases of Situation-B. The cases given above are mutually 

exclusive. Furthermore, it is observed that the evaluation 

of the MLE in Situation-B is not as simple as that in 

Situation-A. To get the MLE in both the cases of Situation-B 

we have to follow 3n iterative procedure. We use the method 

of scoring for parameters given on page 49 of the Advanced 

Theory of Statistics vol.2 [29]. A SUBROUTINE is given for 

both the cases to evaluate the MLE by this method and the 

asymptotic variance of the MLE. Numerical examples are worked
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out, using this SUBOUT^INE, on EO 1030 computer at Operation 

Research Group, Baroda.

2.5*1 Brobability Function under Case-I s

Let Y be the number of defectives reported by the 

inspector along with the information about the acceptance or 

rejection of a lot. Recall the events Ei(i=1,2,3,4) defined 

in Section 2.4.1. These four events are modified to suit the 

Case-I of Situation-B and are given below :

(P1 ) r.j defectives are observed and it is reported that 

the lot is rejected,

(l2) rg defectives are observed and it is reported that 

the lot is rejected,

(E^) V (0 IV £n^ -g^ ) defectives are observed and it is 

reported that the lot is accepted,

(E^) V (n^-g^+1 £V £ n-j+Ug-gg) defectives are observed 

and it is reported that the lot is rejected.

Let B^(i=1,2,3,4) be the set of possible values attained by 

V. Then
B-, = {r^

Bg = ^ r2^
— {.0,1,.. .n^ —g^

B4 = {n.j-g.,+1 , * * .n^ng-gg}
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Further define a random variable I as follows :

I = i if Pi occurs i = 1,2,3,4•

Then the joint probability function of the random variables 

Y and I can be expressed as

P(Y=v, I=i) = g^vjp) veBi? i=1»2,3,4 

= 0 elsewhere .. . (2.5 .1 )

where

g1(v;p) = 

g2(v;p) =

g5(v;p) = 

g4(v;p) =

n„

r ( T-i) p1
y-r1

y=r1 -1
*1 n, n1+n2 
I ( 1 ) I 

u»1 VU y=r2-r1+n1+1

V+Si "1 s v g1■) pt * 1

)1 , ni w «g2-nr1 

u=i K g,-v} K

y-^-1( bg-u

v °2P q

. . .(2.5.2)

r?P 2 q 2

...(2.5.3)

...(2.54)

.. . (2.5 .5 )

and b.j and bg are defined in Section 2 44.

It may be noted that while calculating different terms ( n )
DC

is regarded as zero whenever x exceeds n or whenever x is 

negative.

2.5.2 The Maximum Likelihood Estimator under Case-I :

let m be the number of lots which are inspected
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according to the fully-cur tailed DSP under Case-I. Let the 

event F^(i=1,2,3,4) has occurred (i=1,§,3,4) times, ^or 

the inspection of every lot, the information about the number 

of defectives observed and the occurrence of the event Ih 

has supplied. This Information could be expressed by the 

following pairs

(vij’i) 3=1 ,2,...,i.,

i=1,2,3,4. ...(2.5.6)
where v. .€B. , j=1,2,.. .,m. for fixed i and T m.=m.

13 1 1 1

Considering these m pairs as a random sample of size m from

a bivariate distribution with probability function given by

(2.5.1), the likelihood function, L, based on this sample can

be expressed as

...(2.5.7)
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Taking logarithm of (2.5*7), differentiating partially with 

respect to p, and equating the partial derivative to zero we 

get the likelihood equation as given below s «

“(g1m5+g2m4.)P = 0

• £* P

m3 m4
I + I v4j

.1=1 .1=1 43

(g1m3+g2m4) + ( v33 + l’4 v^ )-m1 (^-^+1 )^-m202
3 1 , 3 1

.. .(2.5.8)
where

= b(r.j-1 jn,, p)/a
1

'4T (g2-g1+u)b(n1-g1+u;n1 ,p) b(r2-(n1-g1+u)$2= ~T^ a2 Lu=1
b1 ,

“1;n2»p)+ni £ b(n1-g1+uT1 ?nj»,p) B(r2-(m1-g1+u);n2,p)

^ 2"J »

A1 = Btnj jn, ,p),

“2 “I b(n1-g1+u;n1 ,p) B(r2~(n1 -g1 +u); n2,p), 
u=1

, . z \ / n s x n~xand b (x;n,p) = ( x ) P q. ,

rB (r;n,p) = £ b (x;n,p),
x=o 

nB (r;n,p) * T b(x;n,p). 
x=r
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2.5*3 Asymptotic Variance of the MLE :

Differentiating partially the logarithm of the likelihood 

function, 1, given hy (2.5.7) twice it is found that

r ; )4 + p{l_(w1)(n+„lrt]
"bP P d lP q. 

b*m?p r _1 f
I (gg-g^H) { B^Cr^-1 ) q-ggP) +IL, pB.j J+ ~T~2 

P q

h - 1+n. r Bp {(n. -g^ +u-1 ) q-^-uJp} -p$g-p 
u=1

^2[a ^ V33+ |Li V4-j^+ P ^S1m3+g2m4^l *

where
B1 = bCoj-g^ujn, ,p) h(r0-(n1-g1+u)-1 ;n0,p)A 0,

2

B.J = h(n^ -g^+u-1 ;n^-1 ,p) bCrg-Cr^-g^uM ;n2,p)/A2, 

Bg b(n.j-g^ +u-1 5^-1 ,p) B' (rg-(n.j-g1 +u) ;Ug, p)/Ag.

Noting that

i) E(nL. ) = mB' (r. ;n, ,p)
b

ii) E(m2)=m X. b(n, -g1 +u;nj ,p) 3' (rg-C^ -g1 +u) ;n2, p)
u=1

iii) E(m5)= mB(n1 -g1 ;n^ ,p)

b1
iv) E(m.) = m ^ b(iL,+u;rL, ,p) BCn2“g2+g1-u?n2’p^

m,_3 mSiP
T) s( I=1 v33) - -f bCil,Jilj ,p)

q
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vi) E ( I. vA.) = m X Mn^-g-i+ujrt-j »P) j=1 4,j u=1

j- p(g2“gi+u)B^n2"‘S2+gi”'u"1 5 n2 > P)

• i r
+ (rLj-g-j+u) BCng-gg+g^usng.p) }

and
(vii) the asymptotic

V (P) - -

variance of the MIS of p is given by 

1
l(^2logl/ 9>p2)

one has

n p)=

2 2 
P q.
hlEL .. .(2.5.9)

where

= P q. g1 B(n1-g1 ;n^ ,p)
bi

tpq. r‘ (g2“g1+u) bC^-g^ujiL, ,p) BCng-Cgg-g-j+u-l );n2,p)

+ q. Z (i^-g^u) b(n1 -g^ +u;n^, p) BCrig-Cgg-g^u) ;n2,p)
u=1

2+ P g1 B(n1-g1 ;ru, ,p) 

b1
+ p2g I b (-g^ +u5n^, p) B(n2-(g2-g.,+u) jn2, p) 

u=1

-(n.j-r.,+1 ) p<01[(x*1-1) q. + p{ 1-C^-^+l )(1+^ )11 

.fc'Cr.j jil, ,p) b

-p ((r-j-Og-gg p} I (gg-^+u) fc(ni“S1+u*n1 *P)

.b(r2~(n^ -g-j +u)-1 ;n2,p)

con t...
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2 1
-p xl, E (g2-g1+u)b(n1--g1+u-15^-1 ,p)b(r2-(n1-g1+u) 

u=1
-l;n9,p)

-n.,p {(^-g.j+u-1) bC^-g^u-l sxl,-1,p)

• B' (rg-CxLj-g^iOjng,?)

+ P^2 ^2 {'^2+^n1-”' ^)*

2.5*4 Probability Function under Case-IX;

Let W be the number of nondefectives reported Tqy the 

inspector along with the information of acceptance or rejection 

of a lot. Under this case the four events, given in Section 

2.4*1, are modified as given belbw :

(G., ) V4(0£ V<l i^-r^) nondefectives are observed and it 

is reported that the lot is rejected.

(Gg) W(n1-r^+1 n^+n2-r2) nondefectives are observed

and it is reported that the lot is rejected.

(G^) g^ nondefectives are observed and it is reported 

that the lot is accepted.

(G^) g2 nondefectives are observed and it is reported 

that the lot is accepted.

Let Ih (i=1,2,3,4) be the set of possible values attained by 

W when event Gj_ occurs.
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Then
D-j = ^G,1,.*»» H-j —3? ^ ^

B2 = ,^-^+2, .. .,n.,+n2-r2 ]

1

D4 ^S2 1
Further, define a random variable I=i if G-^ occurs i=1,2,3,4« 

Then the joint probability function of the random variable W 

and I can be given as s

P(W=w,I=i) = hi(w,p) 

= 0

w £ D±, i=1,2,3,4 

elsewhere .(2.5.1 0)

where

h1 (w;p) :

h0(w;p)

w+r. -1 r.< rr11 .> ’ V

n- w+r0-m, -1I ( 1 )( 21
u=1 S1"U Vu

r0) P V . .(2.5.12)

h5(w;p) :

h4(w;p) =

z < rly'g-! S1

*1 a-
I (*. 1J
u=i gru

1 (2 5-13)

n1 +n2

ry=g2-g1+»1+i

y-^-1
^gg-g-j+U”1

x y-go s 
)p

...(2.5.14)

and b1 and bg are as defined in Section 2.4.1. It may be 

noted that while calculating different terms ( * ) is 

regarded as zero whenever x exceeds n or x is negative.
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2.5*5 The MLE under Gase-II :

Let m he the number of lots which are inspected 

according to the fully-curtailed 3)SP under Case-II. Let the 

events. (i=1,2,3,4) has occurred m.(i=1,2,3,4 ) times. lor
3- ■**

the inspection of every lot, the information on the number 

of nondefectives observed and the occurrence of the event 

has supplied. This information could be expressed by the 

following pairs :

Considering these m pairs as a random sample of size m from

a bivariate distribution with probability function given by

(2.5.10), the likelihood function, L, based on this sample

can be expressed as 
4 m1

L = h (w ,;p)
i=1 1 13

j—1,2,...,,

i=1,2,3,4 (2.5.15)

where w..L. , j=1,2,...
X J X

4
,m. for fixed i and T. m.=m. 

1 i=1 1

...(2.5.16)
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Taking the logarithm of (2.5.16), differentiating partially
., / 0£V.__

with respect to p, and equating the partial derivative-Ifcp: 1
^y

zero we get the likelihood equation as given below J;/

m.

m
^r^+m2r2-v{m^Tj+m2T2) - p( Z w^+ 2* w^):1

3=1 3=1

-Wj&l P H/1 ~m^%= 0
if- I u „

• *. p
m1r1 + m2r2

m1 m2
(mir1+m2r2)+( I w1;j+ £ »y )t*3«,y( «,V 2<3 3

...(2.5.17)

where

y1 = b(n1-g1;n-,, p)/ & 1

. 1
$2 1 u—1

£1 (gg-g-j+u) t(llT"g1+u»n1 ,p) b(n2-(g2-g1+u) ;n2,p)

1-n-j Z b(n1-g1+u-1 ;n.,-1 ,p) £(n2-(g2-g1+u);n2,p)+n1 s 2*]
u=1

S1 = B(n1-gl jil, , p)

I%2= Z_ b(nl-g1+u;H1 ,p) B(n2-(g2~g1+u) ;n2>p)
u=1

and b(x;n,p), B(r;n,p), B*(r;n,p) are as defined in 

Section 2.5.2.



2.5 .6 Asymptotic Variance of tbe MLS under Case-II s

Differentiating partially the logarithm of the 

likelihood function, L, given by (2.5-16) twice it is found 

that m
logL _ * ^mi ri +m2r2 ^ p2( *,i^i W2j

^>P
~2~T 

P q.
2 2

P q.

m,g1 P
-2Y~? [Yli(ni-gl)q + p(1-g1 + V1 )}]

m'p ^-|
------~2 [ ^ (g2“«'i+u) { (r2-1 )q-g2P+pt2]

_n1 1 ApLl ^§2 “S-j +u)+L2( (n^ -g^ +u-1 )q-(g1-u)p+p ^2)]
+P H'o 1

where

L1 = b^ni"Si+u»ni »p) b(n2~(g2~g-|+u) ;n2,p)A2,

L] = b^-g^u-l ;a,-1 ,p) bUg-Cgg-g-j +u) ;ng,p)/%2,

L2 = ^(n-j-g^u-15^-1 ,p) BCng-Cgg-g^uJjng^lAg.

Noting that

(i) E(m.j ) = m B ’ (r^ ; n^, p)

(ii) E(m2) = m 2T b (n1 -g1 +u;n1 ,p) 
u=1 1

B» (^-(^-g^u);n2,p)

(iii) E(m5)= mBC^ -g1 , pj)
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iv) sCm^) = m

*v»1
v) E( X

D=1
W1j

m2
vi) E( X

j=1
W23

1
T

U=1

mr^ q

1
X

U=1

B' (x*14-1 ;n.j ,p)

(rg-C^-g^u) )q

B’ (r2-(n1-g1+u)+1 ;n2,p) + (g1-u)B’ (rg-C^-g^u) ;n2,p)]

and

vii) the asymptotic variance of the HE of p is given by

v(p) =
E( o logL/ lip^)

one has

V (p) * p2q2/mH, .. .(2.5 .18)

where
2 2 ^

Ig = q ri B' (r^ ;n^, p)+q rg T b(n.j-g^ +u;n1,p)

•B'(r2-(nllg1+u);n2p)

t pqr1 B' (r.j+1 jn-j ,p)

+pq . Z^ (rg-C^-g^H) JtoCrLj-g^ujjij ,p)B' (rg-

(jXj -g1 +u)+1 ;n2 ,p)

2 - -+p 2. (g1-u)h(n1-g1+u;n1 ,p)B’(rg-C^-g.+u) ;n2,p)
u=1

+ S1pg1 C(kl,~e1 k + (i-g-]+ )p ) }

cont...
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+ p (gg-g-j+u) (r.,-1) (q-ggP) S2>Li

■, b„
+ n^v2 £1 (g2-g-j+u) S2Ill"n1P E U^-g^u-1 )q-(g1-u)p} 

u=1 U=1
• *2 *2

+ p\^2{v2 •

2.5*7 Evaluation of the MLE and its Asymptotic Variance j

We observe that the expressions (2.5.0) and. (2.5.17) 

are not in the explicit forms. Hence the actual evaluation of 

the MLE is not as simple as it is under the Situation-A. It 

is required to use an iterative procedure for the actual 

evaluation of the MLE. We have used an iterative procedure 

which is known as "The Method of Scoring for Parameters" due 

to Eisher (1925) explained In the usual text hooks such as [29] • 

According to this method the expression for the MLE, is

P = t + (.)t [¥(p)] t ...(2.5.19)

A , A .
where t = initial value of p and v(p) is the asymptotic

variance at p = t. The method is as given below :

"Pind ('dlogij/'?> p) and v(p) for initial value of t, and 

hence find p using (2.5*19). Initial value of t is the first . 

approximation of p, denote it by PQ(the procedure for the



determination of the initial value is further explained in 

the next Section 2.5*8). If |p - pQl is negligible stop 

the iteration and the MLB of p is p. If the absolute difference 

is not negligible take t = p , where p is the new approximation 

of the MLB* Using this new value of t, find ( "SlogL/"3 p),V(p), 

and hence obtain p from (2.5*19). Compare p obtained at the 

second iteration with that of first iteration. If the differenc 

is negligible we stop iteration aid take this last p as the 

MLE. If the difference is large repeat the iterative procedure 

till the difference between the two consecutive approximations
A

of p is negligible. Once this is achieved, the MLE is the 

value of p obtained at the final iteration. Using this value 

of p one gets the estiimte of the asymptotic variance. The 

method converges rapidly for large m [29]."

In the Appendix of this chapter we have given a 

SUBROUTINE, written in programming language FORTRAN IV, to 

evaluate the MLE and the asymptotic variance using the 

method given above for both the cases discussed in Sections 

2.5.1 through 2.5.6. Some important points about the 

SUBROUTINE are given below :

(1) SUBROUTINE is called by the main program through the

name AISLE.
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(2) The input parameters of the SUBROUTINE AMIE are 

explained below ;

i) 1} = 

ii) 11 = 

iii) R3 =

iv) S1 =

v) G 3 ' =
i

vi) G1 =

vii) TD =

viii) TND=

ix) J1 =

x) J2 =

size of the first sample, 

size of the second sample.

number of defectives required for the rejection 

of a lot on the basis of first sample, 

accumulated total of defectives required for 

the rejection of a lot on the basis of second 

sample.

number of nondefectives required for the 

acceptance of a lot on the basis of first sample, 

number of nondefectives required for the 

acceptance of a lot on the basis of second sample. 

Total number of defectives observed when m lots 

have undergone the inspection under Case-I. It 

is regarded as zero under Case-II.

Total number of defectives observed when m lots 

have undergone the inspection under Case-II. It 

is regarded as zero under Case-I.

Number of rejected lots when a lot is rejected 

on the basis of first sample.

number of rejected lots when a lot is rejected 

on the basis of second sample.
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xi) J3 = number of accepted lots when a lot is accepted 

on the basis of first sample,

xii) J*jf = number of accepted lots when a lot is accepted 

on the basis of second sample,

xiii) AD = number of defectives observed in the accepted

lots under Case-I.:(Assign a zero value to this 

parameter under Case-Il) .

xiv) RND= number of nondefectives observed in the rejected 

lots under Case-II. (Assign a zero value to this 

parameter in Case-I)

(5) .The output parameters of the SUBROUT HE Alffi are :

i) P = the MLE of p.

ii) A? = the asymptotic variance of the BffiE.

iii) I = the total number of iterations.

(4) We have considered both the cases in the SUBROUTINE.

The value of AD will distinguish these two cases. When 

AD^O evaluation will be according to CaSe-I. When 

AD = 0, evaluation will be according to Case-II.

The main program is also given aLong with the

SUBROUTINE.
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2.5*8 Humerical Example :

Two examples are worked out, one for each case, usirg 

the SUBROUTINE given in the appendix. Bor this purpose we 

have used EC 1 030 computer available at Operations Research 

Croup, Baroda. We have considered the following fully curtailed 

ESP:
n., = 5, n2=10, Tj=3, rg=5, g =4, g2=11.

Using the model sampling method the above plan was 

administered on 25 lots each with fraction defective equal 

to 0.2. The results of the sampling inspection under Case-I 

and C&se-II are respectively given in Table 2.1 and Table 2.2.

Table 2.1 : Results of the Sampling Inspection under Case-I.

Lot Humber of defectives Lot Humber of Defectives
Ho. a.1 r.1 a.2 r.2 Ho. a.1 r.1 a.2 r.2
1 _ 3 - - 14 1 - - -

2 1 - - - 15 1 - - _

3 1 - - - 16 - - 4 -

4 0 - - — * 17 0 - - _

5 1 - - - 18 _ 3 - _

6 ~ 3 - - 19 1 - - _

7 0 - - - 20 1 - - _

8 - - - 5 21 1 - - _

9 0 - _ - 22 1 - - -

10 1 - - - 23 0 - - -

11 0 - - - 24 - - 2 _

12 0 - - - 25 - - 2 -

13 0 - — -
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Table 2.2 i Results of the Sampling Inspection Under Case-II.

Lot Number of Nondefectives Lot Number of Nondefectives
No. a.1 r. 1 a.2 r.2 No. St* 1 r. 1 a.2 r.2

1 - 1 _ _ H 4 _ _ -
2 4 - _ , _ 15 4 - _
3 4 - _ 16 - - 11

4 4 - - 17 4 - _
5 4 - _ 18 - 0 -

. 6 - 1 _ 19 4 - -
7 4 - _ 20 4 - _
8 - - 5 21 4 - _
9 4 - _ _ 22 4 - _

10 4 - _ 23 4 - _ -
11 4 _ - 24 - - 11

12 4 - _ 25 - - 11
1'3 4 - - -

Mote: a,1 = lot accepted on the basis of first sample.

a.2 = lot accepted on the basis of second sample.
r.1 = lot rejected on the basis of first sampl e.

r .2 = lot rejected on the basis of second sample.

It is observed that m^ =3, mg=1, m^=18, and m^=3. The 

numeric values of the input parameters of the SUBROUTINE 

obtained from the results of the sampling inspection and 

given plan are as given below :

LI =5 R1 = 3 Q] = 4 = 3 J3 = 18

LI = 10 R,2 =5 G2=11 JI=1 = 3
C~ f. L t 1



Values of TD, AD, TED and RED under different cases are 

given in Table 2.3* In the same table values of the output 

parameters are also given.

Table 2.3; Results.

TD AD TED RED
A
P V(P> Itera­

tion

Case-I 32 18 - - 0.21538216 0.000743H 8

Case-II - - 112 7 0.22211182 0.00199202 12

It may be noted that the initial value pQ(or t) for the 

first iteration can be given by the following expressions :

Case-I pQ = TD/TU

„QOq tt o _ 1 TEDCase-IX Pq— * "" "•“jjyjj

where TU = Total number of units inspected.. But information

on TU is not available under the Situation-B. Hence TU can

be approximated by averaging the possible number of units

inspected under events (i=1,2,3,4) of the Situation-A.

Let l^ be the average number of units inspected when

l^(i=1,2,3,4) occurs, then the total number of units

inspected when m lots have undergone the inspection can be
4

approximated as H l.m..
i=1 1 1
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2.5.9 Curtailed jfeP under Sjtuation-B :

We have noted in Section 2.4.4- (Situation-A) that the 

results of fully-curtailed DSP can be generalized to fully- 

-curtailed MSP. Unlike this, it may be pointed out that the 

results of fully curtailed DSP cannot be generalized to 

fully-curtailed ISP in this situation, namely, Sitm*.tion-B.



APPEND X.X

C PROGRAM FOR COMPUTATION OF MLE OF FRACTION 
C OEF P by ITERATIVE PROCEDURE WHEN CENSORED
C SAMPLING OF TYPE % IS CONSIDERED UNDER FULLY '' pp
C CURTAILED DOUBLE $AMP-UNG PLAN-ASYMPTOTIC d<'
C VAR OF THE MLE IS ALSO COMPUTED-FOR COMPUTA 
C TION OF MU AND ITS ASY VAR SUBROUTINE IS Cl
o ven-progran by oks-dpt of statistics

REALNi,N2,NR1,NR2iNGi,NG2iNTD.NTND 
REALMUH2,M3.M4,NA0 ,NRN0 
REAOC5,105)1 

105 FORMA T!1X.I 2 5 
DO 110 J = 1 , L
READ(5»5)N1 ,N2,NR1 ,NR2,NGl ,NG2.NJD 
READ!5»5}NTND,MlfM2.M3,M4>NAD>NRND

5 FORMAT I 1Xi7F5 * 1)
CALL AMUElNtiN2,NRi,NR2>NCt»NG2,NTD,NTND,Ml»M2iM3iM4»NAD,NRND, 

1D»V.I) '
WRITE! 6.6) PiV,I

6 FORMA?! IX,9HMLE OF p= , F32.8»2X♦6HASYVps , FH-8i2X*5H1TER«,I 4!
110 CONTINUE

C MAIN PROGRAM JS OVER
STOP
END
SUBROUTINE AMLE(L1,L2,R!,R2.G1,C2,TD,TN0,Ji,J2,J3,J4»A0,RN0,P,AV, 
II)

C LI IS THE SI?E OF FIRST SAMPLE. L2 IS THE SIZE OF SECOND SAMPLE,R1 ,R2. 
C G1.G2 ARE THE PREDETERMINED NUMBERS OF A FULLY-CURT AILED DS3 , TD IS 
C TOTAL NUMBER OF DEFECTIVES AND T NO IS TOTAL NUMBER OF NONDEFECT IVES 
C OBSERVED IN M LOTS. OUT OF M LOTS jl LOTS ARE REJECTED ON THE BASIS OF 
C FIRST SAMPLEi J2 LOTS ARE REJECTED ON THE BASIS QF 2ND SAMPLES, J3 LOT 
C S ARE ACCEPTED ON THE BASIS OF FIRST SAMPLE, AND J4 LOTS ARE ACCEPTED 
C ON THE BASIS OF 2*10 ^SAMPLES . JsJ1+J2+J3+J4 , AD IS NUMBER OF DEFECT I - 
C VES OBSERVED IN ACCEPTED Lots under GASEtI. RND is THf number OF NOND- 
c EFECTIVES OBSERVED IN REJECTED LOTS UNDER CASE II. P IS THE MLE AND AV 
C IS THE ASYMPTOTIC VARIANCE OF THE mLE, I IS THE ITERATIONS REQUIRED. 

REAL U»L2«JIi02*D3,J4 
DIMENSION PR1 ( 10! ,PL1 ( 12) ,pl 1 ( 10)
DIMENSION PR2! 13) »Pl2! 1?) ,PI2 ( iS)
DIMENSION PR3U0) ,PL3( If) ,Pl3t If >
DIMENSION PR4U0),PL4(12),PU(10)
DIMENSION PR5(10) ,PL5< 10) ,PI5(10)
F 1 ? I L 1 ♦R 1)/2»
p2= !R2"^ I*L 1 + I. *11 + L2-■) /2 .
F3=(Gi+Ll)/2.
F4=( (Sa-Gj+U+i. ) + (L1 + L2) )/?.,
TTR=Fi*Ji+F2*J2+F3*J3+F4*J4 
if(AD.EQ.0.) goto 50 
psTD/TTR 
1 = 1
X a 1.

20 G=l,-P
nn=li
NNl=Ll-l,
N M = L 2 
M11=R 1
M2 lsNN-M11 + 1 
M15 = L1*G 1 + 1 ♦
M25 = NN”M15+ 1
CALL B IN (P ,M 1 1 ,M2 1 ,QR l 1 GU , QII )
CALL 8IN!P,Ml5,M2 5,tAR2,QL2.ai2)
DELT i = QR 1 
PHI1=QI1/DELT1 
T1=Q*G1*U2*P 
T4 = <P**2)*G i*8L2



T61=((Rl-l,)*9+(l,-(Ul-Rl*t.)»(U + PHll))*P)
T6 = (L i-R|* 1. ) *P*PHU*T61*DELT 1
$1 = 0.s 2=0. 63
OELT2=0.
T 2 1 = 0 ,
T3l=0.
T5ls0.
T71=0.
T 81 = 0.
T9i=0.
no ii j=i,k
AJsJ
M12 = Li-Gi + A0+l .
M22*NN-H J JM
M13=Ll-G1 + AO
M23=^N1-H13+1
M14 = R2-L l + Gl”AJ
h24 = Mm-M|4+ JM16 = L2-G2 + GJ'*AJ+1.
M26=NM-M16+1 
M17=L2-G2*Gl-AJ 
N27 = NH-,M 1? + 1
CALL BlN(p,fU2»M22»PRl(J),PLi{J)|Pli(jn 
CALL ?IN<p,wi3iM23»PR2<0)tpL2<J>»Pl2(J>)CALL 8lN?p,MH»H24tPR3(J),pL3(C)iPl31J)1 
CALL BIN<p,M16»H26iPR4(J),pU<J)*PM<J>>
CALL 8!f'MP»M17,N27,PR5(0),PL5(J)|Pl5(J)>
S=G2-G1+AC
Si=$l+S*PJ J{J)*PI3(J)
S2 = S2*PI2 <*PR3E J)
OELT2=OELT2+PIUJ)*PR3{J)
T21 = T2i + '°I 1 (0) * ( G 2 - G X + A J J *PL5 ( J)
T31STJ1 + PU (J) * ai-Gl + AJ) *PL4 ( J)
T5l = T5l + P| l?J)*PL4(J)
T71=T?l*S*pl1(J)*PJ3<J)
T8l = T6iJ-S»PI2 E J! *Pp EC)
T92=(L1-’Gi + AJ-1.)*Q-(Gi-AJ)*P 
T91=T91+T92*PI2(J)*PR3eJ)

U CONTINUEPHl2=<Si*Ll*S2-Ll*DELT2>/DELT2 
T2 = R*P*T2 l 
T3=(8**21+131 
T5*(P**2)*C2*T51 
T7=P*((Rl-l,)*a-G2*P)*T71 
T8=EP**2)*H*T8i 

• T9=L1*P*T91
T103(P**?)*PHI2*OELT2*(PHI2 + U-1. J 
Hi=Tl+T2*T3+T4+T5-T6-T7-T8-T9+T10 
AV=((P**2)*(«**2))/((0l + J2 + J3 + J-1)*Hl)
IF(X.E8.0,) GO TO 213
QN1=Qi*J3*G2*J4
0N2 = L l^R 1+ 1
9RK=Jl*DN2*P*PHlt+J2*P*PHl2*A0*a*DNl*P 
0ERI=8RK/(P*S)
DE = P + DERl* AV 
0IF=ABS< P-*PE)
IFCDIF.LT,0,000005) GOTO 15 
P-PE 
1 = 1*1 
GOTO 23 

15 P=PE 
X 3 0,
1 = 1 + 1



GO TO 20 
210 GOTO 100 
50 G=TND/TTR

P51,-H 
1 = 1
X = 1.

70 QM.-P- 
nn=li 
NNlsLl-t,
NM = 12
Hll=U-Gl+i,
l2l=NN-Mll+l 
Mi5=Ri
m25=NN-MJ5+1 
M16 = R i+ 1 t 
H2$=NN«H16*1
CALL Bimp.«H»H21.«Rl»aLli®U)
CALL 3IN^p,H15*M25*aR2,aL2?(3l2)
CALL BIN(p,Hl6.M26»«R3,ai3,a|3)
DLT1=RL1
Tl=<<3**2}*Rl*QlR2
51 isRIl/PLT1 
T3=p*Q*Rj*3R3
T61= tLl-Cl > ( 1 ,-G l + Sll) *P
T6 = 0LT1*P*G1*(SI 1 * T A 1)
S 1 = 0 .
52 = 0.
OLT2 = 0.
T 21 = 0,
T A 1 = 0,T5i=0,
T71=0,
T8 1 = 0,
T91=0.
DO 13 J=J,K 
A 0= J
M 1 2 = L i**G 1 ♦ A J+ 1»
H22 = NN-*M 12 + 1 
M13 = Ll-»Gl+AJ 
M23=MN1-H13+1 
Hl4=L2-’G2 + Gl-AJ+l,
M24=NM^M14+1 
M17=R2-L1+G1-AJ 
H27=NH-H12+1 
M18 = R2-L StG1-AJ+1.
H28=Nh-M18+1
CALL BIN(P,M12»H22,HRl(J),pLl(J),Pll(jn 
CALL BIN(p»Ml3»H2 3,PR2(J),PL2IJ>iPl2<jn 
CALL B!N<p,Nl4>M24,PR3{J),PL3<J5»Pl3<J>> 
CALL BIN(P»M17*M27,PR4(J>,PL4(J) ,PI 4{J)) 
CALL 0IN(p,Mie»K2e,PR5(J),PL5<JJ»PI5<J> > 
S= (G2*G 1 + AJ)
S1=S1*S*PI1(J>*PI3(J)
S2=S2*PI2{J!*PL3{J)
0LT2 = DLT2*PU I J) *PL2 <J)
T2l=T2l+Pl 1 (0)* P R 4(0)
TAisT4l*Pn(J)*IR2-Ll+Gl-AJ)*PR5(J)
T51=T5I+P11SJ)*!G1-AJS»PR4(J)
T72=f (Rl'-l. ! *Q-G2*P ! *5 
T7l = T7t + T72*P!HJ>*PI3(J) 
t81=T61+S*PI2(J>*PI3!J}
T92s((Ll-Gl + AJ-lt)»iQ-(Gl-AJ)*P) 
T9l=T91+T92*PI2!J)*PL3(J)

13 CONTINUE



o 
o 

o 
o 

o 
o

SI2= < S1-U*S2 + L1*DL, T2)/Dl,T2
T2® (C|**2 I *R2*T2 1
T4 = P*!3*T4l
T5*IP**2)*T51
T7 = P*T7 1
T8-Ul*(P**2S*T8i 
T9 = L 1*P*T 91
T10=(p* + 2)*OLT2*SI2*(SI2-Htl. ) 
H2=T1*T2+T3+T4+T5*T6+T7+T8"T9+Tt0 
AV = ! (P**2) * (9**2 > ! / < i Jl + s)2 + J3 + s14 1 *H2)
1F IX - eft - 8,> SO TO 1H0
0N4=J1*RJ+J2*R2
0N5sJ3*P*C1*SIi
0N6=J4*P*SI2
BRK = 0N4*9*-P*RND-DN5-0N6
DERI=BRK/(P*R)
PE=P+0£R?*AV
OIF=A8S(P^PE>
!F {OIF.LT,g,000005) GOTO 60 
P = PE 
1 = 1+1 
GOTO 70 

60 P=PE 
X = 0,
1 = 1 + 1 
GO TO 70 

100 RETURN
END j
SUBROUTINE BIN(X,NM>NT,p,pp,p!ND)

C PROGRAM for calcu individual AND C'JMULATIV
C PROBABILITY of BINOMIAL DISTRIBUTION
34 DIMENSION AAI301)

DOUBLE PRECISION A AtRN , AANQT,R«
NN = NT + MM* l 
RN = NN
AANQTs ( 1, -»X ) * * R N 
A A ( l) = (RN*X*AANOT)/(l.-X)
DO 25 K=2,NN 
RK = K

25 AA(K)5(X*(RN-RK+l.)*AA(K*l))/(RK*Ilt*X))
P " 0
DO 4 I=MM,NN 

4 ° = P + AA <IJ
PP=\.-.P 
H=MM-1
IF(M.ES.0) GO TO 6 
PJND = AA <M)
GO TO 7

6 PIND=AAN0T
7 CONTINUE
C p GIVPS PROB FROM MM TO N

PP GIVES pROB FROM 0 TO M
PINO GIVES PROB AT h 
MM =M +1
NT=NUMBER OF TERMS in SUM FROM M+l TO N 
N'T=N-MM+1 = N-M
MM+NT s BINOMIAL INDEX N +1 
RETURN 
END


