CHAPTER IT

THE MAXTMUM LIKELIHOOD ESTIMATION OF THE

FRACTION DEFECTLVE UNDER CURTATLED MULTIPLE

TWO CLASS ATTRIBUTES SAMPLING PLAN

2.1 In this chapter we define curtailled multiple sampling
plan by attributes. & particular cese of a curtalled multiple
sampling plan, namely, the curtailed double sampling plan is
studied extensively under two different situations, Situation-A
and Situation-B. Situation-A takes into consideration the
reporting of complete information of the records of sampling
inspection whereas Situation-B occurs when censored
information of Type~I on inspection records, as defined by
Gupta {17] is reported. The maximum likelihood estimator
(MLE) of the fraction defective and the asymptotic variance
of the MLE are given under both the situations, Situation-A
and Situation~B. In Situation-B tge MLE is not available in
the explicit form. Hence in the Appendix of this chapter we
have given a SUBROUTINE which will evaluate the MLE by an
iterative method. The SUBROUTINE also evaluates the

asymptotic variance of the MLE.
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2.2 Curtailed Multiple Sampling Plan :

2.2.1 In the multiple sampling plan (MSP) by attributes

a sequence of k samples of size n, (i=1,2,...,k) is'taken from
a lot of size N. The design of the sampling plan specifies 2k
numbers a; and T, (i=1,2,...,k). If the accumulated number

of defectives, di’ is equal to or less than 2, the lot is
accepted. If di is egual 1o or greater than L the lot is
rejected. If di falls between a; and Ty the decision of
acceptance or rejection of the lot is differed until the next
sample of size ni¥& is inspected. The constants 8y and Ty

known as acceptance and reject;on nunmebers, are predetermined

numbers satisfying the following conditions
(i) 0La, <8, <... <8, <8 ,
(ii) Py ET, £ eee 21 ,
(iii) a;+1<r, 1 =1,2,...,k-1,

(iv) a+1 =1y,
i R

(v) 2; < §~ ny 1= 1,2,000y &,
J=1

k
; <
(vi) r, £ > n, -
i=1

The condition (iv) ensures that not more than k samples are
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required for inspection. It also implies that only 2k-1

numbers are to be specified.

2e2.2 If the inspection has no other purpose than to
determine which inepeedien lots to accept and which to reject,
it would be obvious to stop the inspection as soon as the
decision of acceptance or rejection is reached. This leads

to the curtailment in the inspection. Two forms of the
curtailed inspection can be distinguished. The sampling plan
which considers the curtailment in the inspection arising due
to observing enough defectives to reject a lot is termed

here as a semi-curtailed sampling'plan, following the
terminology of the Statistical Research Group [44]. Similarly
the sampling plan which considers the curtailment in the
inspection arising due %o obsgrving elther enough defectives
to reject a lot or emough nondefectives to accept a lot is

called a fully-curtailed sampling plen.

2.2.3 Statement of a Fully-Curtailed MSP :

Consider an atitributes sampling plan in Whi}h individual
units randomly selected from a lot of size N are inspected

one at a time till one of the following 2k events ococurs :
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( xi) Ty defectives are observed and the number of units

i
inspected is greater than L n and less than or equal to

i j=1 471
n.,
=17
( B;) g; nondefectives are observed and the number of
i
units inspected is greater than 7:x%_4 and less thean or
; $=1

i
equal to % n

=

for i=1,2,...,k
Here n, is assigned a value zero.

Then, the decision rule is to reject the lot 1f one of
the k evenis of the set ®; oceurs and to accept the lot if

one of the k events of the set P, occurs.

The reletions between the consants given in the above

statement and those of the uncurtailed MSP are

i
. =1, =T, . = . =8, .
0¥y T45T50 84 ;E1n3 i

2.% (Curtailed Double Sampling Plan :

2.%.1 A double sampling plan (DSP) is a particular case
of MSP for k=2 givem in Section 2.2.1. The design of the DSP
specifies four numbers a; and ry (i=1,2.). The relation
a2+1=r2 ensures that not more than twe samples are required
to inspect. In the usual text books [31,[11], [13] and other

literature [8] , in the definition of DSP, the common practice

is to take Ty =To=T and hence a2+1=r. Due to this practice
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the design of the sampling plan specifies only two numbers

a, and 5. We call this latter sampling plan,. usual DSP (UDSP).

2.3.2 Statement of Fully-Curtailed Sampling Plan :

Statement of a fully-curtailed DSP can be easily obtained
from the statement of the fully~curtailed MSP, given in
Section 2.2.3, by considering k=2. The four events < ,«5,f1,
and ﬁ2 of fully-curtailed DSP are designated here as

Ei(i=1,2,3,4) and are as given below :

(E1> r, defectives are observed and the number of units

inspected is less than or equal to n,,

(Ez) r, defectives are observed and the number of units

2
inspected is greater than n, but less than or equal to n,+1n,,
(EB) &, nondefectives are observed and the number of

units inspected is less than or equal to N,

(E4) ) nondefectives are observed and the number of
units inspected is greater than n, but less than or equal o

n1 +n2 .

The decision rule is then to rejeect the 1ot if one of the
events E1 and E2 occurs and to accept the lot if ome of the

events E3 and E4 occurs. The constants ryyTyy 8y and g, are
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the predetermined numbers such that

n,-g,+1 <1y < r, £ n.tn, eee(2:301)
0<gy < &, c..(2.3.2)
gy £ 1y oo (243.3)
R cea(2.304)

It may be noted that the constants of a fully-curtailed DSP
are related to the constants of the corresponding uncurtailed

DSP of Section 2.3.1 as given below 3
e B R i LR Rk R
817048y, B, N, tN,-8, eee(2.3.5)

It is then clear that the events E, and E; of a fully-

3
-curtailed DSP lead respectively to rejection and acceptance
of a 1ot on the basis of enough information of the defectives
and nondefectives observed during the inspection of the

first sample. Similarly the events E2 and E4 lead to
rejection and acceptance of a lot respectively on the basis
of enough information of the accumulated total of defectives

and nondefectives observed during the inspection of the

second sample.



33

2.%.3 A Remark on Statement of [12].

Statement of a fully-curtailed DSP is also given by
Girschick, Mosteller and Savage [12]. This statement is
somewnat confusing. For ready reference we reproduce the

same here 3

"A sample of size ny is drawn and items are inspected
until (i) r, (1< T, % nq) defectives are found, or (ii)
n1~aﬁ1 (a2 0) nondefectives are found or (iii) the sample
is exhausted with neither of these events ocourring. If
case (iii) arises, a second sample of size n, is drawn and
inspection proceeds until a grand total of rz(rf&rzf_nﬁn‘g)
defectives are found or n1+n2—r2+1 nondefectives are found.
In this scheme we cail Ty and T, rejection numbers and a

an acceptance number".

Following remarks will reveal the confusion involved

in the above statement :

(i) They aught to have called a-1 as an accepbance number.
(ii) 2=0 is meaningless, for a=0 implies finding n,+1
\ nondefectives in inspection of n, items.
(i11) Non-existence of a condition of the type ny-g+1<r,

as given by (2.%.1) allows in their plan to have
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a=r, . Then for instance, a = 1, = 3 and ny = 6

will not gllow us to take a second sample at all.

2.4 TPFully-Curtailed DSP under Situation—-A ¢

As stated earlier, Situation-A takes into consideration
the reporting of complete information of the records of
sampling inspection. Now in case of fully-curtailed DSP the
complete information of the sampling inspection means the
in formation on (i) the number of units inspected (or the
number of defectives found) when the inspection is stopped
by finding sufficient numbér of nondefectives and (ii) the
number of units inspected (or the number of nondefectives
observed) when the inspection is stopped by finding sufficient
number of defectives. A lot is accepted when (i) occurs and
is rejected when (ii) occur. In the succeeding sections of
this section we study fully-curtailed DSP in detail
(particularly its probability function, the meximum likelihood
estimate of the fraction defective, asymptotic variance of
the maximum likelihood estimate etc.) under this situation.

At the end of this section the results of our study are

generalized to fully-curtailed MSP.



2.4.1 Probability Punction

Let the process average proportion of defeetives be p
and fér sufficlently large lots it can be comsidered as the
probapility of selecting a defective in & single trial.
Furthermore, let the probability p remain constant from trial
to trial and the trials be stochasticelly independent. This
applies to the type B situation of Dodge and Romig [10],

hence, the lot size N does not subsequently appear.

Let ¥ denote the number of units inspected when the
inspection 1is stopped due to the occurrence of the event
E; (1=1,2,3,4). Let A, (i=1,2,3,4) be the set of possible

values attained by Y. Then

1= {r1,r1+1,...,n1}}

.
i

5 {rz—r1+n1+1, Ty=T 10,42, +eoy D40},

» N
!

3 {&¢; g1, +ee 1},
Further define a random varisble T as follows

T =1 if Ei occurs, i=1,2,3,4.

Then the joint probability function of the randem variables

Y and T can be expressed. as
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P (Y=y, 17=1i) ={fi (y;p) yed;, 1=1,2,3,4

0 el sewhere veo(244.1)
where
_ r, y-r
£, (ysp) = () 11) p g e(2.4.2)
BT
b
1 n y-n, -1 r, y-r
1 1 2 2
; = . s e 0 2' -
£,(y3p) uZ% ( g -1 by~ ? P°aq (2.4.3)
-8, &
) = (T 1 8
£5(ysp) = ( g1—1? P a cee(2.4.4)
£, (y3p) ;1 (I e B (2.4.5)
'p = Lo p q . e el o
4 vi u=1 g1~u 37:"3‘*'“‘“1

and g = 1-p, u=d1~a1, b1=g1+r1-n1—1, b2=g1+r2—n1-1.
While calculating the various terms of the summation

involved in f,(y;p) and f4(y;p), (g) is regarded as zero

whenever x exceeds n or whenever x is negative.

The probakility function of the number of units
inspected, Y, which is the marginal proﬁability function of

(2.4.1) can be expressed as
) 4
P (¥=y) = _Z1fi(y;p) e (244.6)
1:

Similarly the probability of occurrence of the events
Ej(1 =1,2,3,4) is given by ;,-i( i=1,2,3,4 )



where

= 2 f£;{ysp) T 1=1,2,3,4 ceo(2.4.7)
YeA, T .
Then the probability that a lot is rejected is

Tr;i + “-2 -u-(2-408)

and that it is accepted is

Tr3+'n‘Ar e (244.9)

2+4.2 The Maximum Likelihood Estimate @

In thnis section we derive the maximum likelihood
estimate (MLE) of the fraction defective, p, when m lots are
inspected in accordance with the fully-curtailed DSP. Suppose
for the inspection of every lot, the information about the
number of units inspected and about the faet that the event
E; has occurred is supplied. This information could be

concisely expressed by the following pairs.

(yij,T=i) 3= 1,200 |
i=1,2,3,4 e..(2.4.10)
4
where yijEAi’ i =1,2,..., m, for fixed i amnd > m; = m.

i=1
The m pairs given by (2.4.10) cen be considered as a
random sample of size m from a bivariate distribution whose

probability function is given by (2.4.71). The likelihood
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function, L, based on this sample can be expressed as

m
= 1oy, .
i 1; s (yla,p>
m m
1 T Ya:=T 2 r, YT
= (const.) T (p an ow (p? oW 2
3= j=1
i1} m
3 Yeim8q & 4 Y,:~8, &
To(p gy wo (ph T2 P
J=1 J=1 veo(2.4.11)

where we use (2.4.2) through (2.4.5) to obtain (2.4.11)

On taking logarithms of (2.4.11), differentiating
partially witﬁ respect to p, equating the partial derivative

to zero, and solving for p we obtain the MLE of p, ﬁ, as

S = .%%%% o (2.04.12)

where (TD) = Total number of defectives observed

m, m,
m T mT, o+ Y (y3j -g)+ ¥ (y4j—g2)

1

3=1 3=1
..(2.4.13)
(1) = Total number of units inspected
m m m
1 2 4
= + .
551 13 551 Vo3 7 2: I35 7 ;Z T4
Lo (2.4.14)

This feature was @lso observed by Phatak and Bhatt [40]

when the maximum likelihood estimators of the fraction
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defective under semi-curtailed and fully-curtailed single

sampling plans were obtained.

244 .3 The Asymptotic Variance of the MLE @

Differentiating partially the logarithm of the likelihood

function, L, given by (2.4.11) twice it is found that

2
'aloggls = $P (m) + _32_ (Tv) oo (2.4.15)
9p ) q

Noting thet

(i) ® (TD) = p E (V)
= pm (ASN)
(1ii) The expression for ASN is
r g
= . 1 .
Am¢~§~£MB(q,1HH,pﬂ + E—B(%—&,IHH,M
b
1 b +1-1%
5 ,
+ b (n,-g, + t3 <
t§1 (1’11 g1 ’ Il,],P) [ D
g2—g1+t
.%yg(b2+1-t;n2+1,p)} * Dt —— {B(bg—t;n2+1,p)}]
oct(2'4- 016)
' r
where b(x3n,p) = ( 2 ) p* ¢®® and B(r;n,p)= L blxsn,p).

X
X=0

The detall about ASN is given in CGhapter IV of the thesis.

(1ii) The asymptotic variance of MLE of p is given by

v (B) = - !

2
E('B lO% L )
?2p
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In case~I, when inspection is terminated, inspector
reports the information on (i) acceptance or rejection of
a lot and (ii) the number of defectives found. Information
on either ﬁumber of nondefectives found or number of units

inspected is not reported.

In case-IT, when inspection terminates, inspector reports
the information on (i) acceptance or rejection of a lot and
(ii) the number of nondefectives found. Information on either
number of defectives found or number of units inspected is

not reported.

In the succeeding sections of 2.5 we study the various
aspects (such as the MLE of the fraction defective, asymptotic
variance of the MLE etc.) of fully-curtailed DSP under both
the cases of Situation-B. The cases given above are mutually
exclusive. Furthermore, it is observed that the evaluation
of the MLE in Situation-B is not as simple as that in
Situation-A. To get the MLE in both the cases of Situation-B
we have to follow dn iterative procedure. We use the method
of scoring for parameters given on page 49 of the Advanced
Theory of Statistics vol.2 [29]. A SUBROUTINE is given for
both the cases to evaluate the MLE by this method and the

asymptotic variance of the MLE. Numerical examples sre worked
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R
out, using this SU@QUT$INE, on BC 1030 computer at Operation

Research Group, Baroda.

2.5.1 Probability Function under Case-1 .

Let V be the number of defectives reported by the
inspector along with the information about the acceptance or
rejection of a lot. Recall the events Ei(i=1,2,3,4) defined
in Section 2.4.1. These four events are modified to suit the

Case-1 of Situation~-B and are given below :

(F1) T defectives are observed and it is reported that
the lot 1s rejected,

(Fz)‘r2 defectives gsre observed and it is reported that
the 1ot is rejected,

(F3) V (02v <n, -g1) defectives are observed and it is
reported that fbe lot is accepted,

(F4) v (:n1 -g+1 &V < n1+n2—g2) defectives are observed

and it is reported that the lot is rejected.

Tiet Bi(i=1,2,3,4) be the set of possible values attained by

V. Then
By ={r}
By = {15}
B3 = {0,1,‘.-n1~g1}

= {n1~g1+1,...n1+n2—g2}
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Marther define a random variable .-I as follows 3
I =11if F; occurs i=1,2,3,4.

Then the joint probability function of the random variables

V and I cean be expressed as

P(V=v, I=1) = g, (vsp) veB,, i=1,2,3,4
= 0 elsewhere oo (2.541)
where
r, y-r
g, (vip) = Z' (y1 ) p ! e (2.5.2)
y 1 1
n,+n y=£
—1 T 2
g, (v3p) = s (g I Coylu ) ® "0
u=1 1 y=r2~r1+n1+1
e (2.5.3)
Vg =1 g e (2.5.4)
g3(VsP? = (’8'1,,1 ) p q
v+g2—n7-1 v &>
g, (v3p) -ua ( gru) (g lgpud) P oo ” eu(2:5.5)

and b1 and b2 are defined in Bection 2.4.1.

It may be noted that while calculating different terms ( i
is regarded as zero whenever x exceeds n or whenever x is

negative.,

2.5.2 The Maximum Likelihood Estimator under Case~I

Let m be the number of lots which are inspected
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according to the fully-curtailed DSP under Case-I. Let the
event Fi(iz1,2,3,4) has occurred mi(i=1,2,3,4) times. For
the inspection of every lot, the information about the number
of defectives observed and the occurrence of the event B‘i

has supblied. This information could be expressed by the

following pairs

(vij,i) 3=1,2, 000 ,my,
i=1,2,3%,4. e (2.5.6)
4
where vijeBi, i=1,2,...,m; for fixed i and iz=1 m, =m.

Considering these m pairs as a random sample of size m from
a bivariate distribution with probability function given by
(2.5.1), the likelihood function, L, based on this sample can

be expressed as

m,
4 i
S 331 8 (Vi3 p?
n m
1 _ r, y-r 1
= (const.){ )2 (‘1’,11) p | q 1]
y=T, 1
b n, +n
[21 ( n, ) 1Z 2 ( y—n1~1) pr2 qy—rz] m,
=1 BTV yerrieng4t - %278
m m
3 V. . g 4 v, . g
w (g v (p%q? e i(2.5.7)

i=1 J=1



Taking logarithm of (2.5.7), differentiating partially with
respect to p, and equating the partial derivative to zero we

get the likelihood equetion as given below : =
m

. m
m1(n1—r1+1) p ¢1 + mgpﬁ2 + (1-p) ( ;i? v33+ j=1v4j)

”(g1m3+g2m4)P =0

V..
V. + v, .
b= g=1 23 g=1 M)
23 24
(g1m3+g2m4) + §¥1v33 +5§1 v4j)~m1(n1-r1+1)¢1—m2ﬁ2
0--(20508)
where
ﬁ1 = b(r1-1;n1,p)/A1,
1 <
¢2='7;5 [3;1 (gp-81+w)b(ny g tuing,p) bry=-(ny-g;+u)

b
1 :
-13n,,0)+n0, §£1 b(n,-g,+us13n3,2) Blr,-(n,-g,+u);sn,,p)
-n, A
mAy]

]

A, = B(rysn,,p),
A -— B‘] ) {,
2 %31 b(n1—g1+u;n1,p) B(rz—(n1—g1+u); n2,p),

n -
and b (x3n,p) = ( X ) pr F,

r
B (r3n,p) = Y b (x3n,p),
- =0

§

n
2 b(xsn,p).
x=r ~

B’(I;H,P)



2.5.3 Asymptotic Variance of the NLE :

Differentiating peartially the logarithm of the likelihood
funetion, L, given by (2.5.7) twice it is found that
32 10 1 _ M (myryr e £

- (r,-1)g + p{1-(n,-r,+1)(1+8 )1]
392 p2 q2 [ 1 { 1 =1 1 ]

n,.p 1 ,
+ ;%EZ-{ §=1(g2~g1+u)'{841r1—1) q-g,p) *n,0B}}

b
1 -
+n, 5;132 { (n,-g,+u-1) a-(g;-u)p} -pﬁg—p ﬁz(n1-1)]

m

m
-1 [42 , 2 ]
p2q2{q ( 3?..1 V337 jZ=1 Vyy)t P (gqmyrepny ) |

where ‘
B, = b(n -g,+usn,,p) b(r,-(hy-g+u)-13n,,0)/A,,

[

B = b(nq-g1+u-1;nﬂ—1,p) b(rz—(nq-g1+u)-1;nz,p)/hz,

B, =b(n,-g,+u-1;n.-1,p) B'(r,-(n;-g+u)sn,,p)/A,.
Noting that

i) E(m1) = m%' (r1;n1,p)

: ] -
ii? E(mz):m §=1b(n1—g1+u;n1,p) B'(rz-(n1-g1+u);n2,p)

1i1) E(mg)= mB(nT—g1;n¢,P?

b
1
iv) E(my) = m z 1b(n1-g1+u;n1yp) B(n,-g,+g,-u3n0,,p)
. =
73 ug,p .
v) B( L VBj) = = B(n1—-g?—-1;n1,p)

=1 %
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m b,‘

4
vi) E ( <[_-v‘ﬁr.) =m L b(n1—g1+u;n1,p)
j:.: J u=1

{ p(g,=8,Tu)B(ny-g,+gy—u-13510,,P)
q

+ (na"’g»l’*‘u) B(n2-g2+g1~u;n2,p)}

and
(vii) the asymptotic variance of the MLE of p 1s given by

A 1
v (p) = o- P ]
E( Logl/ 2p°)
one has
2 2
V()= %—?—- e..(2.5.9)
where

Hy = P a g B(ny-g;iny,p)
b
TPq 7:1 (8,-g+u) b(ny-g+usng,p) Blny-(gy-gy+u~1)3n,,0)
u.‘:

b

1
2
+ q 21 (ny-gq+u) b(n1—g1+u;n1,p> B(nz—(gz-g1+u);n2,p)

2
+ p° g, B(n,~-g,3n.,p)
1 178451
b
2 1

+ v, 1b(n1”g1+u;n‘t’p) B(ny-(gy=gy+0)iny, P)
u=

-(n1-r1+1) P ;251 [ (r1-1) q + p{1-(n1—r1+'¥ )(1-:-;251 )5]
,‘b,(r'l;n:l’p) b1
-p {(r,-1)a-g, P} z1(g2-g1+u) b (n,-g,+usn,,p)

v u=

.‘:)(1*2—(111 -, +u)~1 55 p)

cont...
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b
1 .
—p2n1 Z (gy-g +u)b(ng-gy+u-13n.-1,p)b(r,~(n)~g,+u)
u=1
' -1 ;nzyp)
b
1
-1, P uZ_Z__1 {(n1-g1+u~1) q-(g, —u?p} b(n,~g,+u-130,-1,p)

.B' (r,=(n,-g;+Wn,,p)
+ 0B, B, { Byt (ny-1 )}

2.5 .4 Proﬁability Function under Case-11:

Let W be the number of nondefectives reported ty the
inspector along with the information of acceptance or rejection
of a lot. Under this case the four events, given in Sectien

2.4.1, are modified as given below :

(G ) W(0£W £n —r ) nondefectives are observed and it
is reported that the lot is rejected.
(Gz)\d(n1—r1+1éﬂN < n1+n2—r2) nondefectives are observed
» and it is reported that the lot 1s rejected.
(G3) g, nondefectives are observed and it is reported

that the lot is accepted.

(¢

4) g, nondefectives are observed and it is reported

that the lot is accepted.

Let Di(i=1;2,3,4) be the set of possible values attained by

W when event Gi OCCUTS.
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Then

o=
i

1 {O,1,...,n1~r1}

D, = fn ~r +1,n,-T, 42, o0 o,y tn,-T,
D3 = §g1g
Dy = 18]

Further, define a random variable I=1 if Gi ocecurs i=1,2,%,4.
Then the joint probability function of the random variable W

and T cen be given as :

P(W=w,I=1)

= hi(va) wE Di’ i=1,2,3,4
= 0 elsewhere ee.(2.5.10)
where
WA, -1 r
. . 1 1w
by (w,p? = ( r, -1 ) a (25
b
1 n WY =1, =1 T
- 1 2 1 2 W
h,(w;p) = L - © ) P “q ... (2.5.12)
2 u=1 B b,-u
n
1 y-g, &
. -1
by (wip) = L ( 7)o Ty (2 5.13)
= g .
¥y=84 1
b n,+n
1 n 1.72 y=1, -1 Y-8, 8
b, (wsp)= 2 (, )X (g _g1+u__1 p ‘g °
u=1 1 y=g2-g1+n1+1 2 =1

. o (205 014)
and b1 and b2 are as defined in Section 2.4.1. It may be
noted that while caloulating different terms ( I}i ) is

regarded as zero whenever x eXxceeds n or Xx is negative.



2.5.5 The MLE under Case-II :

Let m be the number of lots which are inspected
according to the fully-curtailed DSP under Case-II. Let the
event G; (i=1,2,3%,4) has occurred mi(i:1,2,3,4) times. For
the inspection of every lot, the information on the number
of nondéfectives observed and the occurrence of the event
Gi has supplied. This information could be expressed by the

following pairs

(’wij’i) j:1’2"'.’mi’
i=1,2,3,4 e (245.15)
4
where W, € Dy j=1,2,+..,m; for fixed i and ;E1mi=m.

Considering these m pairs as a random sample of size m from
a bivariate distribution with probability function given by
(2.5.10), the likelihood function, L, based on this sample

can be expressed as

4 m
L= " T n(w.;p)
i=1 j=t *+ 1
: m
m 2 r .
1 r 23]
= (const.) T (p 1 a 1y T (p“q )
. j=1
=1
n m
1 - y-g, & 3
[jz. (¥1)p a 1]
y=g; ©1
by n nyth, y-n, -1 y-g8, &, m
.[g; (T v (T RA é] 4
a=1 gq—u gz—g1+u—1 =

V=8 ,—gq 1, 1
2= ..-(2.5.16)



Taking the logarithm of (2.5.16), differentiating partiselly

/\I ol

with respect to p, and equating the partial derlvatlve to‘ ?':i\b

L2
zero we get the likelihood equatlon as gliven below &

!

>,
e

n
2
m1r1fm2r2~9(m1f1+m ry) = Bl ?i 1W13+ ;E1w23) ’ 5:;.;‘
“mLg Py "I = O ‘.\E?L&&@LC;
e m1r1 + m,T,
(m1 Ty+m,T 2)-&*(32? W13+ ;é o )+m3g1\h Y2
. ¢0(2‘5 '17)
where
\\/1 = b(n ’81;n1’p /51’
o R (e
te© 5 52 X (g,-gy+u) b(nj-g,+usng,p) bny=(gymgy*tu)sn,, D)
o,
-n, u; b(n,-g,+u-150,-1,0) Bln,~(g,-g,+u)5n,,p)+n; 65
§, = B(n,-g,35n,,P)
b
5 .
§,= z b(n1-g1+u-;n1s?} B(n,~(g,~g,+u);3n,,D0)

and b(x;n,p), B(r;n,p), B'(rin,p) are as defined in

Section 2.5.2.



2.5 .6 Asymptotic Variance of the MEE under Case-IT :

Differentiating partially the logarithm of the

likelihood function, L, given by (2.5.16) twice it is found

that m, mz'
2 207 w,. +L° w,..
2% 1oglL, _ 4 (myry+m,7,) X ( j=12’g i=1 2]
»p° p2q° P q
m.g.p
- 21 - -
*;‘2'(;7 [\y,!{(lﬁ giJ)a + ol gp“ﬁ)ﬂ
m,p b )
1
S [ I (gy-g+u) Ly { (r,=1)a-g,0+0 ¥,
Pa u=1
by
-n, u£1{—pL{(gz-g1+u)+ﬁ2((n1—g1+u-1)q—(g1-u)p+p'w2)}
P Y, |
whe re

Et
1

1 = blny-g +usny, p) bluy-(gy,-g,+u)sn,, 0)/5,,

o
Y
H

b(ny-gy+u-135n,-1,p) blny~(g,~g,+u)s0,,2)/6,,
L2 = b(nj-g1+u—1 ;n1'11p) B(nz"(gz'g’l'*'u);nz,p)/‘éz'

Noting +that

i

(1) B(my) = m B'(xy5n0,,p)

b1
(ii) E(mz) =m 2
u=

1b(n1~g.,+u;n1,p) B! (r,-(n,-g,+u);n,,p)

(1i1) E(mg)= mB(n;-g;3n,,5)



b
1
iv) E(m4) =m UE; b(n,-g,+u;n,,p) B(n,~(g,~g;+ulsn,sp)
Y;_’I mr,q
— 1 .
m b )
_ 2 1 (r,-(ny-g,+u)la
vi) E(‘j=1wzj>= m uZ; b(n,-g,+u;n,,p) ( 5

B' (r,=(ny=g;+u)+130,, p)+ (g, -u)B' (r,=(n,~g,+u) sn,,D) |
and ‘

vii) the asymptotic variance of the MLE of p is given by

v(p) = - LI
E(¥1ogl/ 3p°)
one has
2
v (D) = p%q /mi, , .. .(2.5.18)
where b
1

2 2
Hy, = q°r, B'(r1;n1,p)+q r, 5;-1 b(n1~g1+u;n1,p)

.B'(rz-(n1;g1+u);n2P)
+ par, B (r1+1 sn, ,p)
b

1
+pq 21 (re—(m1 -g@) )1{)(3{11 =g, «i—u;n1 sP)B' (rz—
u=
(n,-g,+u)+135m,,p)

°
2 -

+p 21(gT-u)b(n1—g1+u;n1,p)B‘(rz—(nQ-g1+u);n2,p)
u=

+ §9081 {wq (=g )a + (T-g;+ W )p) }

cont. ..



o,

u= -
b b,
+ n1p2 21 (g2°g1+u) SzL;~n1p Ei}(n1~g1+u—1)qﬂ(g1—u)p]
u=1 ~

+ p252_\4’2{‘¥2 "(Il,] "'1)} .

2.5.7 Evaluation of the MLE and its Asymptotic Variance :

We observe that the expressions (2.5.8) and (2.5.17)
are not in the explicit forms. Hence the actual evaluation of
the MLE is not as simple as it is under the Situation-A. It
is required to use an iterative procedure for the aétual
evaluation of the MLE. We have used an ‘iterative procedure
which is known as "The Method of Scoring for Parameters" due
to Fisher (1925) explained in the usual text books such as [29] .

According to this method the expression for the MLE, P, is

D=t + (3-%-%@ ) (VBT Ve (2.5.19)

.
where t = initial value of D and v(P) is the asymptotic

variance at % = t. The method is as given below :
"Find (?logl/ > p) and v(p) for initid value of %, and
hence find P using (2.5.19). Initizl value of t is the first .

: : A . A
approximation of p, denote it by P, (the procedure for the



s ]
oh

determination of the initial value is further exXplained in

the next Section 2.5.8). If |p - b) is negligible stop

the iteration and the MLE of p is @. If the absolute difference
is not negligible take t = D , where D is the new approximation
of the WLE. Using this new value of t, find ( 2logLl/% p),v(D),
and hence obtain ﬁ from (2.5.19). Compare 3 obtained at the
second iteration with that of first iteration. If the difference
is negligible we stop iteration amd take this last @ as the
MLE. If the difference is'large repeat the iterative procedure
$ill the ditfference between the two consecutive approximations
of ﬁ is negligible. Once this is achleved, the MLE is the
value of ﬁ obtained at the final iteration. Using this value

of ﬁ one gets the estimmte of the asymptotic variance. The

method converges rapidly for large m [29]."

In the Appendix of this chapter we have given a
SUBROUTINE, written in progremming language FPCORTRAN IV, to
evaluate the MLE and the asymptotic variance using the
method given above for both the cases discussed in Sections
2.5.1 through 2.5.6. Some important points about the

SUBROUTINE are given below :

(1) SUBROUTINE is called by the main program through the
name AMLE.



(2) The input parameters of the SUBROUTINE AMLE are

explained below 3

i

i) T4

ii) T2 =

il

111) R

iv) R2 =

v) G4 =

vi) g2 =

viii) TND=

x) J2 =

size of the first sample.

size of the second sample.

number of defectives required for the rejection
of a 1ot on the basis of first sample.
accumulated total of defectives required for

the rejection of a lot on the basis of second
sample.

number of nondefectives required for the
acceptance of a 1ot on the basis of first sample.
number of nondefectives required for the
acceptance of a lot on the basis of second sample.
Total number of defectives observed when m lots
have undergone the inspection under Case~I. It
18 regarded as zero under Case~II.

Total mumber of defectives observed when m lots
have undergone the inspection under Case-I1. It
is regarded as zero under Case-I.

Number of rejected lots when a 1ot is rejected
on the basis of first sample.

number of rejected lots when a lot is rejected

on the basis of second sample.
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xi) J% = number of accepted lots when a lot is accepted
on the basis of first sample.
xii) J4 = number of accepted lots when a lot is accepted
on the basis of second sample.
xiii) AD = number of defectives observed in the accepted

lots under Case—I.f(Assign a zero value to this
parameter under Case-II) .

xiv) RND= number of nondefectives observed in the rejected
lots under Case~-II. (Assign a zero value to this

parameter in Case-I)

(3) The output parameters of the SUBROUTINE AMLE are :
i) P = the MLE of p.

il

ii) AV = the asymptotic variance of the MLE.

N
the total number of iterations.

H

iii) I

(4) We have considered both the cases in the SUBROUTINE.
The value of AD will distipguish these two cases. When
AD#0 evaluation will be according to Cagé-~I. When

AD = 0, evaluation will be according to Case-II.

The main program is glso given sdlong with the

SUBROUTINE.



2.5.8 Numerical Example :

Two examples are worked out, one for each case, usirg
the SUBROUTINE given in the appendix. For this purpose we
have used BC 10%0 computer available at Uperations Research

Group, Baroda. We have considered the following fully curtailed
D8P
n, = 5, n2=10, r1=5, r2=5, g1=4, g2=11.
Using the model sampling method the above plam was
administered on 25 lots each with fraction defective equal
to 0.2. The results of the sampling inspection under Case~I

and Case-I1 are respectively given in Table 2.1 and Table 2.2.

Table 2.1 : Results of the Sampling Inspection under Case-I.

Lot  Number of defectives Lot Number of Deféctives
No. a.l r.l a.2 r.2 No. a.l r.] 8.2 r.2
1 - 3 - - 14 1 - - -
2 1 -~ - - 15 1 - - -
3 1 - - - 16 - - 4 -
4 0 - - -, 17 0 - - -
5 1 - - - 18 - 3 - -
6 - 3 - - 19 1 - - -
7 0 - - - 20 1 - - -
8 - - - 5 21 1 - - -
9 0 - - - 22 1 - - -
10 1 - - - 23 0 - - -
11 0 - ~ - 24 - - 2 -
12 0 - - - 25 - - 2 -
13 0 - - -




Table 2.2 3 Results of the Sampling Inspection Under Case-ITI.

Lot Number of Wondefectives Lot Number of Nondefectives

No. a.l el a.2 r.2 No. 2. r.] 2.2 T.2
1 - 1 - - 14 4 - - -
2 4 - - - 15 4 - - -
3 4 - - - 16 - - 11 -
4 4 - - - 17 4 - - -
5 4 - -~ - 18 - 0 - -
.6 - 1 - - 19 4 - - -
7 4 - - - 20 4 - - -
8 - - - 5 21 4 - - -
9 4 - - - 22 4 - - -
10 4 - - - 23 4 - - -
11 4 - - - 24 - - 1 -
12 4 - - - 25 - - 11 -
13 4 - - -
Note: a.1 = lot accepted on the basis of first sample.

a.2 = 1ot accepted on the basis of second sample.
r.1 = 1ot rejected on the basis of first sample.
r.2

lot rejected on the basis of second sample.

It 15 observed that mq =3, m2=1, m3=18, and m4=3. The
numeric values of the input parameters of the SUBROUTINE
obtained from the results of the sampling inspection and

given plan are as given below ¢

Il

L1=5 R{ =3 @1 =4 J@ =3 J% =18

Ll =10 R2 =5 G2=11 J2=1 Jh

i
W
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Values of TD, AD, TND and RND under different cases are
given in Table 2.3. In the same table values of the output

parameters are also given.

Table 2.%: Results.

P

T AD TND RND ) V(%) Ttera-
tion
Case-I 32 18 = -~ 0.21538216 0.00074%14 8
case-TI - - 112 7  0.22211182 0.00199202 12

It may be noted that the initial value ﬁo(or t) for the

first iteration can be given by the following expressions 3

case-T 50 = 7D/TU
~ _ . _ TND
Case-I1 P,= 1 i

where TU = Total number of units inspected. But information
on TU is not available under the Sitvation-B. Hence TU can
be approximated by‘averaging the possible number of units
inspected under events E; (i=1,2,3,4) of the Situation-A. -:.
Lety li be the average number of units inspectedlwhen
Ei(i=1,2,3,4) occurs, then the total number of units

inspected when m lots have undergone the inspection can be

4
approximated as T 1l.m..
=1+t
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m
2.5.9 Curtailed ¥SP under Situation-B
!

We have noted in Section 2.4.4 (Situation-A) that the
results of fully-curtailed DSP can be generalized to fully-
—curtailed MSP. Unlike this, it may be pointed out that the
results of fully curtailed DSP cannot be generalized to

fully-curtailed MSP in +this situation, namely, Situation-B.
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APPENDIX

PROGRAM FOR COMPUTATION OF HMLE OF FRACTION
DEF P BY ITERATIVE PRCCEDURE WHEN gEMSQRED L
SAMPLING OF TYPE T IS CONSIDERED UNDER FULLY (32
CURTAILED DOUBLE SAMPLING pPLAN=ASYMPTOTIC :
VAR OF THE MLE IS ALSO COMPUTED-FOR COMPUTA
TION OF MLE AND ITS ASY VAR SUBRoUTINE 1& GI
VEN-PROGRAM BY DKS-DPT OF STAT]STIQS
REALN{N2,NR1 NR2 NG NG2 ,NTD ,NTND
REALM),M2,M3,M4,NAD,NRND
READ(5,145)L
1805 FORMAT(1X,12)
0O 118 J =1,L
READ(535)N3 N2,NR1INR2,NG1yNG2,NTD
READ(5s5)NTND M1 yM2 M3, M4y NADINRND
5 FORHAT(IX’?FS!:) '
CaLL AMLE‘NI,N?)NRl;NR2,NG1!NCZ;NTD)NTND)Hi'M25M3)”41NA01NRN03
194V, 1) '
WRITE(6+16&) PV,
6 FORMAT{IXy9HMLE OF p=3F12,8:2X 6HASYVP=sF14.8,2Xy5HITER=,14)
119 CONTINUE

MAIN PROGRAM [S QVER
STOP
END
SUBROUTINE AMLE(L1,L23R1 4 R2:G146G2,TDTNDI14J2,33,34,AD3RND-P AV,
1 1) .

L1 IS THE SIZe OF FIRST SAMPLE, L2 IS THE SIZE OF SECOND SAMPLE.R1,R2,
G162 ARE THE PREDETERM{NED NUMBERS OF A FULLY-CURTAILED DS°, D IS
TOTAL NQMBER.OF DEFECTIVES AND TND IS TOTAL NUMBER OF NONDEFEQTIVES
OBSERVED IN M LOTS, OUT OF M LOTS J1L LOTS ARE REJECTED ON THE BASIS OF
FIRST SaMPLE,y J2 LOTS ARE REJEQTED ON THE DBASIS OF 2ND SAMPLES, J3 LOT
S ARE ACCEPTED ON THE BASIS oF FIRST SAMPLE, AND J4 LCcTS ARE ACCEPTED
ON THE BASIS QF 2ND SAMPLES, JsJ1+32+33+J4 . AD IS NUMBER JF DEFECTI~
VES OBSERVED [N ACCEPTE!D LQOTS UNDER CASE-I. RND S THE NUMBER NF NOND-
EFECTIVES OBSERVED IN REJECTED LOTS UNDER CASE II. P IS THE MLE AND AV
IS THE ASYMPTQTIC VARIANCE OF THE MLE, 1 1S THE ITERATIONS REQUIRED,

REAL L1:+42+31,32433.04

DIMENSION PRICIF)PLICLIE)yPIL (D)

DOIMENSTION PR2(13):PL2112) Pl (1)

DIMENSION PR3{12),PL311¢),PIZ(17)

DIMENSION PRA(18),PLA112),P14{15)

DIMENSION PRS5{12),PL5(12)yPIG(12)

Fiz(Li+R1) /2,

FRz(Ro=RisbLt+1.+L 1402V /2,

Fhz=(Gi+l iy /2,

Faz((G2-G1elt+1.0+(L1+L2)) /2,

TIR=F12J1aF2%J2+F X% J3+F4x)4

IF(AD.EQ.g.) GOTO 5¢

P=TD/TTR

1=1

X = 1,
28 Qzlu“p

NN=L §

NN’.:LI"'IQ

NM=(2 -

M11=R

M21zNN=M11+1

M15=L 1«G1+1,

M25=NN-M15+1

CALL BIN(P,MI1sM21,8R1,8L 1,411

CALL BIN(P yM15,M25,4R2,Q8L2,012)

DELT1=QR}

PHI1=Q11/DELT!

TI=G*G{*RL2x%P

T4=(P*x2) %G1 *8L2
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15

TEI={(R1=y, )%+ ({.=(L1-Ri+1,Ix {1, +PHIL1))=p)
TE2 (L ~Riwl.)*PxPH] 1 xTo1aDELT]
Si=a.

S 82=3.

DELT2=2.

T21=3,

T31=4d,

T51=¢,

T71=0.

Ta81=9,

To1=9,

DO 11 J=1,K

AJ=]

M12=L -6 +A0%1,

M22=NN-M11+1

MtS;leG;AAJ

M23=NN1-M13+1

Mi14=R2~L1+G1~AD

M24zNM=-ML4+}

M16=L2~G2+G¢{=Ad+1, -
M26=NM=M16+]

M172=L2-G2461~AJ

M2T7=NM-M17+

CALL BIN(PIMIZ2sM224yPRICTI)SPLLIIII»PIL (D))
CALL RIN(R MI3sM223,PR2(JpL2( I yPI2(30)
CALL BIN(P IMIA M24,PRI(J)4PL3(I),PI3(I))
CALL BIN(P,M16+sM26,PRE(J),pPLACI)yPL&(I))
CALL BIN(PR ) MLI7yM274PR5(J)PLE () 4PIS(I))
S=G2=G1+A)

S1=S1+S*P1{J*PI13 ()
S2=52+P12(J)*PR3(J}
DELT2=DELT2+PI1(J)%PR3({J)
T21sT21+PI1 (D) *(G2-C1+A0) *PL5E(Y)

TA2 =73 1+PI L) *(L1~G1+A0)%xPL 4 (D)
TEL=TS1+P 1L () xPLALI)

T743T71+S%PIL LIP3 (J)
TBI=TALI*SHPI2(I 1 *xP13())
TO2=(L1-G1+AJ~1.)%0-(C{-AJ) P
TO1=TO1+TO2%PI2())«PR3 ()

CONT INUE

PHIZ2=(Si*L 1#S2~L1%DELT21/DELT?2
T2=Q0+xp*T24

T3=(Q*x2)%T31

TE=(P**2)#L2%T5

TT=SP* ((R1«],)%8-G2*P) %771
T8=(Pxx?) | %781

TO=L1:PET QY
TIB=(Pex3 ) «PHIZ2*DELT2* (PHI2+*L1=1,)
HI=T1+T2473+T4+T5~T6~T7-T8~TO+T19

AV ((PR%Q )% (Q%k2) )/ ((J1+)2+03+74) =H1)
IF{X.EQ.92,) GO TO 219

DNizG1*J3eG2%74

ON2=L (~Ris

BRK=J1 %DM %P *PHI 1+ 32 %xPxPHI2+ADxQ=DN{ %P
DERI=BRK/ (P*R)

PE=P+DERT %AV

DIF=ABS{P-PE)

IF{(DIF.LY,5,.08280085) GOTO 15

pP=PE

I=1+1

GOTO 29

P=PE

X = 4,

I=1+1
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78

13

GO TO 24

GOT0 1040

Q=TND/TTR
P=1,~4

Hllle“Gl*ls

M21SNN=-Mit+1

Mi5=Ry

M25=NN=M{ 54+

M1E=R1+1,

M26=NNeMig+1

CALL BIN{(PM11)M21 8R1,8L1,8]11)
CALL BIN(P,MI5:M25,8R2,8L2,8}]2)
CALL BIN(P +M16sM26 3 4R3,8L3,8]3)
DLTiI=8L1

Ti=(Q%*2)%R1%QR?2

SI1=R11/0L71

T3=px3%xR{«GR3
TH1=(L1-G1 %@+ (1,-GL+S11)=p
TH=DLT1#PxG1*{ST{*T41)

Si1=2.

§2=3,

DLT2=9.

T21=¢,

T441=9.

T8i=¢g,

T71=9,

T81:=¢,

T91=4,

DO 13 J=1,K

AI=]

M12=L1~GleAT+1,

M22=NN=Mi2+1

MI3=L 1«Gl+A)

M23=NNi-M13+1

M14=L2-+G2+C1-AJ+1,

M24zNM=M14+1

M173R2=L1+4G1=-AJ

M27=NM=-Mi2+1

M18zR2=-L1+G1~AD+ 1.

MZBzNM-M18+1

CALL BINC(PIMI2:M22,PRLI(J)ZRPLECI)IWPTLLI))
CALL BINtP MIZyM22,PR2(J)PL2INvRPI2(0))
CALL BIN(P M1y M24,PRI(I)+PLI(IIZPIZLI))
CALL RINIPIMITaM27,PREA(I)«RLALI) 4PLA(3))
CALL BIN(P,MI8M28,PRE5(I}2LE(I31,P1IB{I))
S5(G2-Gi+pAd)

S1=S1+S*P11{J}*xPI12(J)
$2=52+PI2(J)*PL3{J)
DLT2=DLT24P] 1 (I 2PLE (D)
T21=T21+P11{J)*PR4{J)
T41=TA41+P 11 {JY*{R2=L1+Gi1=-AJ)*PR5 (D)
T51csTE1+P 1L () *{G1~-A0)«PR4 ()
T72={{R1«1,)*%Q~G2=P 1 x5
T24=T71+T72xP1 1L} %P 13 ()
TEISTAL*S»PI2(J) %P2 ()
TO2=(({Li=Gi1+AJ~1,)=68~{01=AJ)%P)
TOI=T9L+T92%xPI2(J¥%PL3())

CONTINUE

64
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SI2=(S1-L1*32+L1x0LT2) /DL T2
T2 (Q*x%2 ) «R2*T2}
TA=P»xQ*xTqy
TES=(PA*2)%T51
T7=pxT) 1
TB=L1x({Pxe2)%xT81
TO=L1%P*Tg
Tig=(p**2)1aDLT2%512%(512-L1+1.)
H2ETL+T24734T44TS8¢T6+T7+TB~TQ+T 18
AVS((px*Q )+ (B*%2)) /1 {J1+)2+)3+J4)%H2)
IF(X.EQ.%,) GO YO 1u¥
ON4=)1%R1402%R?2
ONS= 3P %S}
ONg=J4#P=5 |2
ORK=OMNA4*B-p#RND~DK5-0ONg
DERI=RRK/ (P=Q)
PETP+DER]I %AV
DIF=ABS(P-PE) :
IF(DIF.LT,.2.00000%) GOTO 6%
P=PE
=1+t
GOTQ 78
pP=pE
X = g,
1=+
GO T0 70
RETURN
END J
SUBROUTINE BIN(X, MM NT,P,pPP,PIND)
PROGRAM FOR CALCU INDIVIDUAL AND CUMULATIVE
PROBARILITY OF BINOMIAL DISTRISUTION
DIMENSION AA(391)
DOUBLE PRECISION AARN,AANQT,RK
NN=NT+MM=1{
RN=NN
AANOT=({1,4=X}*%RN
ARC1) = (RNeX*AANOT )/ (1.~X)
DO 25 K=2,NN
RK=K ‘
AAIK) S (X*{RN=RK+1.,)*AA(K=1) 1 /Z{RK®x{1,2X))
png
DO 4 1=MM,NN
PaP+AALL)
pPP=1,-p
HEMM~1
IF(M.EQ.®) GO TO ¢
PIND=AA (M)
GO 70 7
PIND=AANODT
CONTINUE
P GIVES PROB FROM M-1 TO N
PP GIVES PROB FRCM 0 TO M
2IND GIVES -PROB AT M
MM=M+
NT=NUMBER OF TERMS N SUM FROM #M+1 TO N
NT=N-MM+izN=-M
MM+NT = BINOMIAL INDEX N +{
RETURN
END



