
CHAPTER-2

A GENERAL CLASS OF POLYNOMIALS AND ITS PROPERTIES-I

2.1 INTRODUCTION

With a view to study certain properties of several polynomials, 

H.W. Gould [6], J.P. Singhal and Savita Kumari [1], Rekha Panda [1] 

and others proposed the unifications of polynomials under consideration 

and derived general generating functions, inverse series relations, 

differential recurrence relations etc. for the generalized polynomial 

constructed. Here, in this chapter, one of the extensions of the Jacobi

polynomial, denoted by 9£^j^{{a\{b) x] (1.1.18) which was introduced

by H.M. Srivastava and M.A. Pathan [1] is put into a general form using 

the notation Sn(l,m,a,/3;x) The explicit representation of this is defined

here by:

Sn(I,m,a,fi;x)
[nhn] (~\)mkakxk

0 T(1 + /3-na + lk)(n~-mk)\' (2.1.1)

where ak is a general sequence in k (not involving n); and for this

polynomial the integral representations, 0-form differential equation (for 

particular <ik) and inverse series relation will be derived.

The explicit representation (2.1.1) is considered for studying the

properties of the polynomials belonging to it. It is interesting to see that
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the polynomial (2.1.1) gives rise to the extensions of the polynomials of

Laguerre, Jacobi, and the biorthogonal polynomials Z%(x;k) and 

wjia,^\x;k), keN, which are as mentioned below.

fia) (v} - 
^n,m W -

(1 + a)n ( ~n)mj xJ

«i j=o (1 + a)- f
(2.1.2)

+ [”/”] <r'OmjQ + a + fi)j (\-x^J
1 njn n\ jz=Q (1 + ji - n) ■ j\

(2.1.3)

Z-n/n (& k):
(1 + a)nk [nlm] (~n)mj (x/k)kJ dj

I
7=0

ny______
(1+oV

where d=kk (2.1.4)

W,
(P-^h . {'+a+P)»

n m (cx>k) ~
«' /=o 0 + fi-n)^ / , c=m

(2.1.5)

In the first place, the integral form for (2.1.1) will be obtained in 

section 2.2 which will be subsequently used to further derive a 

transformation formula.

Section 2.3 deals with tf-form differential equation and the 

remaining five sections incorporate the inverse series relations. All 

these properties will be illustrated in section 2.9 for the polynomials 

belonging to the class {Sn(l,m,a,/3;x)}.
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2.2 INTEGRAL FORMS AND TRANSFORMATION FORMULA

In this section two integral forms of the polynomial (2.1.1) are 

derived. Later a transformation formula will be obtained.

First the polynomial Sn(l,m,a,P;x) will be expressed in

hypergeometric function form. For that replacing Sn(!,m,a,p,x) by

Sn(hm,a,p,x) gncj t^en ^QQgjHg a 1 £ P k one gets a
T(\ + p-na)n\ k ibx)k...ibq)ku

particular case [(a),(*) x] of Sn{l,m,<x,p,x).

Now

cf.e(a P) [{a (b) j
nj,m LV ' w J

[nhri\ (~1)wA:(a1)A; • iap)kT{\ + p-na) n\ xk

J0 (bx)k.. .{bq)k T{\+p-na+lk){n-mk)\ k\

Inhn] (°x)k

k=o (blh ’(bqh(l + fi~nahkk{

[n!m\ (a{)k~ (ap)k&{m-n)(cxk)
Jo rp^w

where c is constant. 

Thus,

[(a);(fe):^]= m+nF, n,l,m w J J m+P l+q
b^.. ,,b A(l;\ + p-na);

cx (2.2.1)

The hypergeometric function pFq[z\ has the following integral 

form (Rainville [1]):
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Fp q
r(^) 1 a, -1 b,-a,~ 1

I * 1 (1-0 1 1 iF 1p-i ^-1

a2’ ,a/

^2’ ’^9’
t//*.

(2.2.2)

Using the integral (2.2.2) one can write integral representation for

In fact,

^W).*]=m+^/+?
?r- ,a A(m;-n),

cx
bv....,bq,k(l,\+p-nay,

r 1+fi-na
.

rCfl^r _ -a,

1 ai-1
j t 1 (1-0
o

m+p-l l+q~\

a2,. ..,ap,A(m~n),

cx ,
k 2+fi-na fi-na+l'
9’ 7 7 ’

(2.2.3)

where m = 2,3,4,...

Another integral representation for Sn(l,m,a,fi;x) is obtained using 

the well know relation

= } tx~l (1 - O^-1 dt, Re(jc) > 0, ReOO > 0. (2.2.4)

r (x + y) o
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First replacing Sn{l,m,aJ,x) by SnP’mf^:x) and
T(1 + p-na)

Re(l + p-na)>0, Re(/£)>0, we have

_ O x T(\ + p~na)ak xk
Sn(l,m,a,p,x) = S ................—-----~-

k=0 F(1 + fi-na + lk)(n-mk)\

_[njni\ {-\)mk a k xk r(l + /3-na)F(lk) 
ik0 (n~mk)\T(lk) F(1 + p - na + Ik)

wherein

[»/m] (~\)mkok xk 1 fi-„a ,k-i 

k=0 («-mk)\Y{lk) o

J Sn (l, m; x) t^~na (1 - t)lkA dt,

0

dt.

Sn(l,m,x)
[n/m] {~\)mk<Jkxk 

£=0 T{lk){n-mk)\ '

Consider,

f t^+n+^ 1 (l-t)M 1 Sn(I,m,a,P,xt) dt 

0
[n4f] (-■>”%** } (a+«.*+iH
&=0 r(l +/?~mz+ /&)(«-/»£)! o

^[n/»i] (“1 )mkcrkxk T{X + n + k + \)V(iu)
lk0 Y{\ + p-na + lk){n-mk)\ Y{n + X + n + k + Y)

Since =1, one gets from (2.2.6),

J M+n+V>A {\ - t)flA Sn(l,m,a,P;xt)dt 
0

= { r(A+w+1H (1 ext e~xt Sn{l,m,a,p,xt)dt,

assuming

(2.2.5)

(2.2.6)

(2.2.7)
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Using (2.2.6) the left member which we denote by L, becomes

[n/m]
L = T(ji) I

{-\)mk ak xk T(X + n + k + \)

&=0 (n -mky F(1 + p -na + lk)Y{/i + X + n + k +1)
(2.2.8)

and the right member R is

r, 2 2 x ^ l (2+«+/fy+l)-l 1 a /i o \ ,u
R= E S T7 h 0-0 Sn(l,m,a,fi;xt)dt.

i=0 y=0 0

Now using (2.2.6), one obtains 

00 oo X*+J' r(//) [«/w] (~l)m* o^. xk T(X + n + k + i + j + l)

/=0 j=0 rl/1 ^ = 0 (»-WjA:)ir(l + ^-wa + /A:)r(//+2 + « + A: + i + J + l)

(2.2.9)

In view of (2.2.8) and (2.2.9), (2.2.7) yields the transformation in 

the form:

oo oo [ft/wi] (-l)mk<T T(X+n+k+i+j+l) x
III *
.0 y = 0 & = 0 *’ f(n~mky F(j+/3 ~na+lk)Y{/j. + X+n+k+i +j + l)

[n / m]
= X

(-l)1”*^ x^r(2+« + /c + l)

^ = 0 («-«*)ir(l + >?-/ia + tt)rO/+A+/H-A: + l) 

2.3 DIFFERENTIAL EQUATION (0-FORM)

(2.2.10)

Here the particular case a, =— of Sn(l,m,a,fi;x)f denoted by
K k\

T™{x) will be used to get the (9-form) differential equation.

It is known that (E.D. Rainville [1]), the 0-form differential 

equation satisfied by
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av ...ap;

y= pFq

is

[6 n (0 + b -l)-z n (0 + a.)]y = O, where 0 = z~ . (2.3.1)j=1 J i=1 1 *

Therefore, the differential equation satisfied by T™(x) will be:

m//i 1 + /3-na .... 2+8-na .. ,n fi-na + l .. ,n n./n -o + l.
[0(0 + —---------- 1)(0 +--------------- 1) ....(0 + -------------- 1) - cx(0----- )(0 +--------)

l l 1mm

(0 + n+m. 1)] w = Q . (2.3.2)
m

where

-o -o+l -o+ffi-1
3 3

mm m

\ + j0-na 2 + (3-na ft-na + I 
_ , - -

cx .

2.4 INVERSE SERIES RELATIONS

Amongst several general classes of polynomials (basic and ordinary) 

available in the literature such as

{fnix,y,r,m)}, {ffi(x,y,r,m\q}, .... ap',0v~0q',x)}and

{0€^i^[ax,....ap;Pl....pq-,x}'} studied by H.M.Srivastava [5], R.Panda [1],
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J.P.Singhal and Savita Kumari [1], B.I.Dave ([1]) etc., the extended 

Jacobi polynomial ap,px Pq,*]} is considered here with a

view to derive its inverse series relations. The explicit form of this

polynomial is

[nhn] ........ <“„)*

k=0 W-na + P)Jk(Px)k.{Pq)k'
(2.4.1)

Motivated by the study mentioned above, an effort is made here 

to find an inverse series of this polynomial. The investigation of inverse 

series relation of this polynomial resulted finally into the construction of 

a general inversion pair which is stated in the form of

Theorem-1.

If n is a non-negative integer / and m are positive integers (a and 

(3 are arbitrary parameters) then,

m=l”P - h)"-"V) (2.4.2)
k = 0 {n-mk)\T{\ + p+lk-na)

implies

g(*) = mn
Z

£ = 0

(P+ln-amn)T(P+In-ak) .... 
(mn-ky

(2.4.3)

provided that /< m. The proof of this is given in section 2.5.

While working on the question "whether the converse of 

theorem-1 exists ?" - it was found that the above inverse relation does 

not hold conversely unless the second series is modified and then 

tested. An attempt made in this direction led to the following theorem in
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which the pair of inverse series relation is such that each of the series 

relation implies the other.

Theorem-2.

If

[n/m]
G(ri) = £ a(n,k,m) F(k) (2.4.4)

k=0

and

F(n) = b(n, k, m) G(k) 
k-0

(2.4.5)

then

a(n, k, m) = 1
V(/J + mka-na+1) (n-rnky (2.4.6)

implies and is implied by

b{n,k,m)-={~ 1)
mn—k P T{fi + tnncc — koc)

(.mn-ky

and

(2.4.7)

t b(n,k,\)G(k) = Of when n^ms, seN. (2.4.8)
k=0

Theorem-2 is proved in section-2.7. The following theorem 

implied by theorem-2 is also useful.
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Theorem-3.

If

[n/m]
//(«)= Z c(n,k,m)v(k) 

&=0

and

v(n) = Z d(n,k,m) ju(k) 
k=0

then with 0 < a < 1, maelM, 

,n-mk
c(n,k,m) -

(-1 )# ft r(fi + na- mka)
(o-w/c)1

<=> d(n,k,m)~------------------------------------
T(P+ka-mna+l) {mn-k)\

(2.4.9)

(2.4.10)

(2.4.11)

(2.4.12)

and

nZ d(n,k,l) /.i(k} = 0 when n*ms. (2.4.13)
k=0

From this, it is possible to invert the Brafman polynomial. A few 

combinatorial identities are also occurring as the special cases. 

Section-2.8 contains the proof of this theorem.

2.5 PROOF OF THEOREM-1

In order to prove the theorem, let the right hand member of 

(2.4.3) be denoted by, say then
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»p (fi + ln-amn)T(j3 + ln-ak)

Now on making use of (2.4.2) one gets,

mn (/? + /« - am/?) T(J3 + In- ak) (- g(r)
A:=0 (m/?~/c)! r=0 F(1 + ft+ lr- ak) (k - mr)\

= [Mn] (_i)*-wr (/? + //?- amn) rQg + fa - aft) g(r)

/c=0 r=0 (m/7 - ky Y(\ + [J + Ir - ak) (k - mr)\

Using the double series relation:

mn [i!m\ n mn-mj
E E A(i,j)= E E A(i + mjJ) (2.5.1)

i=0 j=0 y'=0 i=0

it becomes

^ __ £ m/?-mr (~\)^(/]+ In-amn)r(jB+ In-ak-amr) g{r) 

r=0 Jfc=0 (»?« -mr-k)\ k\ F(1 + JJ + lr-ak- amr)

o-l
g(n) + (0 + In - amn) £ 

r=0
mn-mr

g(r) E (-
k=0

If mn-mr,\

UjJ + ln-ak- amr)
(,mn-mr)\ T(l + P + lr -ak-amr)

But

T{fi + In-ak-amr) 

r(l + P + lr-ak- amr)

ln-lr-\
n (J3-ak-amr + In~i) 

/=1

ln~lr-\
■ n say

which is a polynomial in k of degree (/n-/r-l) and /<m, therefore the 

inner series in k above is the (mn-mr)th difference of a polynomial in k
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of degree less than mn-mr, and hence it is zero. Thus, </> = g(n)which

completes the proof of theorem-1.

2.6 AN AUXILIARY INVERSE SERIES RELATION

For proving the theorems-2 and 3 the following inversion pair will 

be used.

u
n n_kPT(fi + na-ka)Vk

n - _£. (-D
k=0 (n-k) \

(2.6.1)

n U,
y — y k.n k=0 T(j3 + ka-na + \){n-k)\ (2.6.2)

Proof

First it will be proved that (2.6.1) => (2.6.2). If the right hand side 

of (2.6.2) is denoted by Tn that is 

n U.
f ~ y k n k=0T(j3 + ka-na + ])(n-k)['

Then using (2.6.1) one gets

T = Y T r(y6 + ka-ra)Vr
n k=0 r=0(k-r)\(n~k)\r(fi + ka-na + \)

In view of the relation

n k n n-j
£ £ A{KJ)= £ £ A(k + j,j) (2.6.3)

k=0 7=0 7=0 k=0

one further gets

43



n n-r■- i e —
r—0 k=0 r(/? + kcc + ra

(-I)* pY{p + ka)Vr

-na + X)(n ■k)\k\

Vn +
n-1 n-r
E E (-ir/?rG0 + *a)*v

r=0 jfc=0 T(/? + to + ra - na +1) (n - r - ky k\

Here

Tjfi + ka)
T(fl + ka + ra - na +1)

na-ra-1 / .... . ......
X c • kJ which is a polynomial in k of 

J= 0 i

degree ncr-ra-1

Thus,

n-1
Vn+ E

r=0

"yr (-l)kPVr na .1 k]
k=0 {n-r-k)\k\ fio °J

therefore, Tn=Vn as the inner series in k on the right hand side above is 

the (n-r)th difference of a polynomial in k of degree less than (n-r) 

(precisely a polynomial of degree na — ra — 1 ). Thus, (2.6.1) : => (2-6.2) 

which completes the first part of the proof. To prove: (2.6.2) implies 

(2.6.1), it is sufficient to show that the diagonal elements of the 

coefficient matrices in (2.6.1) and (2.6.2) are all non-zero. In fact if the 

diagonal elements are denoted by ann and bnn for (2.6.1) and (2.6.2) 

respectively then

ann = T(Z? +1) 5* 0 and bnn=---------nn nn +

whence (2.6.2) => (2.6.1). Thus, (2.6.1) «=> (2.6.2). This completes the 

proof of the auxiliary inversion pair.
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2.7 PROOF OF THEOREM-2

In order to prove the theorem, it will be first proved that (2.4.6) 

=> (2.4.7) and (2.4.8).

Put

t(n) _ W iyfin-k P F(P + mna -ka) G(k) 
k=0 (mn-k)l

Then in view of (2.4.4) and (2.4.6) t(n) becomes,

*(«)= £' {-\)mn~kP r(P+mrta~ka)mnI ' 
k=0

F{J)
(mn-k)\ r- 'q T{P+mja-ka + \){k~mjy

= nm [ktjn] (_ifin-k ^ r(^ + mna _ /r(y)

k~0 j=0 (mn-k)\(k-mjyr(P + mja-ka + l)

The double series identity (2.5.1) now leads us to,

, ) _ n mn~pV (-1^mn-mj-k p Y(p + mna - mja - ka) F(j) 

j=0 /c=0 {mn-mj-ky ttY{P-ka+ \)

n-l (-\)mn~mJ n p(,) mn-mj
= F(n)+ I -1-—7-------E (-j=0 (ot«-m7)I A=0

1) mn-mj

\

T(P + nma - mja - ka) 
r(/?-ta + l)

Here,

T(P+mna - mja-ka) 
T(p-ka+\) '

mna-mja-\
Z crkr=P(k), say 

r=0

which is a polynomial in k of degree mna - mja -l, and so,

«-l ( b p( mn-mj ,/(n) = F(n)+ S Ciij-------S (-1)*
y=0 {mn-mjf k=0

'"mn - /p
P(k).
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If 0<a^l and ma is an integer then the inner series in k is the 

(mn-mj)th difference of a polynomial in k of degree less than mn-mj,

and therefore t(n)=F(n)+0=F(n).

So the proof of (2.4.6) => (2.4.7) is complete. To prove that 

(2.4.6) also implies (2.4.8) put

*>(«) = l (2.7.1)&=0 (n-k)\

and substitute for G(k) using (2.4.4) and (2.4.6), then

, n I*£»], fiT(J3 + na-ka)F{j)
M S> T(0-t-mja-ka+l)(n~k)\(k-mjy'

Now using the double series relation,

n [k/m] [nhn] n—mj
E E A(kJ)= E E A(k + mj,j), k=0 ;=0 y=0 k=0

<t>{n) reduces to,

P UP + na-ka~ mja) F(j) 
m) j=0 lio F(P - ka + 1) (n ~ k - mj)\k\

(2.7.2)

[^»](-lf~mJpF(j) 1)/c (n - mf'

y=0 k=0 { k ,
r (P + na-ka- mja) 

F(/i - te + l)

As shown above, here also the ratio of the gamma functions in 

the inner series is a polynomial in k of degree {na-mja~\)<{n-mj), that

is

T{p + na-ka- mja) 
T(P~ka + l)

na-mja-1
X cr kr = P(ky, n^mj . 

r=0
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Therefore, the inner series in k above, being the (n-mj)th 

difference of a polynomial in k of degree na-mja-1, is zero. Thus, 

^(r) = 0, if m*mj, which completes the proof of the "only if" part.

To prove the converse part it is assumed that the relations (2.4.7) 

and (2.4.8) viz.

b(n,k,m) = {-\)mn~~k PE£±3?.cil. kcl) and E b(n,kJ)G(k) = 0, when n*ms,
(mn-k)\ k=0

s = 1,2,3,.... hold true.

Now in view of (2.7.1) and (2.4.8) one readily gets

0(n) = 0, n*sm s = 1,2,3,.... , (2.7.3)

and also by comparing (2.7.1) and (2.4.5) with (2.4.7), one finds

0(nm) = 0(mn) = F(n).

Thus, it follows that with (2.7.3),

<P(n) = (-i^mn-k /3T{p + mna-ka)y{k)
k=0 (mn-ky

implies

V(k) = _________k—Q T{p + mka-na + \){n-mk)\

completing the proof of the 'if part, and hence that of the theorem.

2.8 PROOF OF THEOREM-3

To prove the "only if" part, it will be first shown that (2.4.11) 

implies (2.4.12).
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Beginning just as in section-2.7, with the notation \i* (instead of t(n) 

there) one finds

* = [khn] ^k-mj ^ + ka^mja) v(y)
^ fc—Q jko r(/? + ka - mna + \)(k-mj)1 (mn-k)\

which by means of (2.5.1), reduces to

n pv(j) mn-mj ,
y=0 (mn-mj)' /(=0S (-O' mn-mj

k
T(P + ka)

T(P+ka + mja - mna+1)

y=0(««-wy)l £-0 l A .
T(P+ka)

T(P + ka + mja - mna +1)

But,

r (p + ka)
F(P + ka + mja - mna +1)

mna-mja-1
Z < 

/•=0
kr = P(k),( say)

is a polynomial in k of degree precisely mna-mja-1. Replacing the ratio 

of the gamma functions above by this polynomial P(k), the inner series 

in k becomes the (mn-mj)* difference of a polynomial in k of degree 

(mna-mja-\)<{mn-mj) as ma is an integer, and therefore the inner

series vanishes.

Thus, ju* = v(n). This completes the proof of (2.4.11) => (2.4.12). 

To complete the proof of the first part it suffices to show that 

(2.4.11) implies (2.4.13), when n/m is not an integer.

For this set,

B = 2 -----------^----------- . (2.8.1)n &=0 T(P+ ka-na + l)(n-k)\

On using (2.4.9) with (2.4.11) this becomes,
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n Ik Ini] (.Y)k~mj p r(/i + ka _ mja) v( J)
n kt0 fio r(fi + ka-na + \)(n-k)\(k-mjy

With an appeal to (2.7.2), this reduces to

B
[n/m\ p V(j) n^V

j=0 (n-mjy k=0s c-ir n-mj
k

r (P+ka)
T(f} + ka-na + mja +1)

Once again,

na-mia~l
— = L Csks = P(k) 

Y(fi + ka-na-¥mja + \) s=0
T (fi + ka)

a polynomial in k of degree na-mja-1 where na and ma are integers, 

0 < a < 1.

Therefore,

B
n

fi vU) n^nj 
fao (n~mjy k=o (-i)" n-mj

k P(k) = 0

And thus it is proved that (2.4.11) implies (2.4.13) which 

completes the proof of the first part.

To prove the 'if' part, it is to be shown that (2.4.12) and (2.4.13) 

together imply (2.4.11), wherein (2.4.9) and (2.4.10) are used.

First it is to be noted that in view of the inversion pair of 

section-2.6, the inverse relation of (2.8.1) (taking Bn = V(n) and 

//(«) = U(n))is given by

U(n)= £ 
*=0

(-lf-kj3T(fi + na-ka) 

(n-k)\
V(k). (2.8.2)
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Since it is assumed that (2.4.13) holds good, V(n)=0 if n*ms. If 

n = ms then from (2.4.12) it follows that V(mn) = V(nm) = v(«). Thus

the inversion pair (2.8.1) and (2.8.2) assumes the form;

v(n) . W U(k)

VW k=0 r(0 + ka-mna + \)(mn^k)\

implies

r,, , (-Xf-mk p T(P + na~ mka) v(k)

k=0 (n-mky

which with U(n)=n(n) proves the if part. And this completes the proof of 

theorem-3.

2.9 PARTICULAR CASES

As mentioned in section-2.1, the general class {Sn(l,m,a,p,x); 

n = 0,1,2,....} will be particularized to different polynomials such as the 

extended Jacobi polynomial x], the Brafman polynomial

5^[(a);(A) :x],the well known Laguerre and Jacobi polynomials, the

biorthogonal polynomials Z%(x;k) and W^^\x,k) Then the above

studied properties (in sections-2.2 to 2.8) will be illustrated in this 

section for these specialized polynomials.

In the first place, the polynomial Sn(l,m,a,P;x) will be 

particularized to the extended Jacobi polynomial 3€^]Q{(ay,{b) x]

(H.M.Srivastava &M.A.Pathan [1] ) by choosing a. —J- ,
k {bx)k.... {bq)hH
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denoting ma by / and replacing Sn(l,m,a,ft,x) 

Thus,

by

^ r \ hr, Xjv

v Vi-' \\

' > *A\V c V* i \2w V- ~ ° Jt

Sn(l,m,a,p,x\ ■'ell
r(l + /?-mz) «ix u;,.’

V .*A-
■■*/

^v/

n,I,m [(a),(b):x] =
[nhn\ (-i)mkT(\ + j3~na)n\ (a\)k • •(*ph^

ki0 r(l + £-iia+ /*)(«-»«*)! ....(^^*1 (2.9.1)

To obtain the Brafman polynomial, take

) i ............. * .(il n) f

= _L_£-------- / = o and replace Sn(l,m,a,fi,x) by(bih....^hkl
Sn(l,m,a,fl;x) 

T(1 + ft -na) n\

Then

B%[av. .ap-bx ... bq:x] =
{njjn\ {rn)mk (afo.....(ap)k xk
k=0 (bx)k.. ,(bq)k M

(2.9.2)

The Brafman polynomial with variable cx, where c is a constant, 

can also be obtained using another set of values for the parameters. 

This reducibility is of interest, for it will be useful in obtaining another 

integral form of the Brafman polynomial.

For that taking a = 0, replacing Sn(l,m,0, ft; x)by —and

choosing

<aphr~j
er, = -

(l+p'] f
l / )

k v
l + fi'

/ )k
k <*iV • -<V*ki

the polynomial Sn(l,m,0,fi;x) would reduce to

leN, (2.9.3)

Bff[av. .ap,A(l;l + fi);bv...bq :cx], c = l
l (2.9.4)
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Next, an extension of the biorthogonal polynomial Z®{x,k), keN,

denoted here by Z®m(x,k) is obtained from (2.1.1) by putting 1=0,

a . = 1
J .,fa+n (a+2^

v k J
fa+k' and replacing Sn(i,m,a,P;x) by

K K Jj

Sn(l,m ,a,P;x) 
r(l + p ~na) (1 + ff)

and x by
kn

f X
(2.9.5)

Thus,

Zn m 0&, k) ~' I
j=0

mj
v dj

('+a\ j'
where d = kk (2.9.6)

This polynomial can also be obtained from Sn(l,m,a,p,x) by taking

<x=0, /= k, keN, (2.9.7)

And making the same replacements for sn(l,m,a,p,x) and x, as above. 

When k=i, this polynomial gets reduced to an extended version of the 

Laguerre polynomial 6^\x) which is denoted here by L^}}(x), given by

, rJ(a) fv>t _ (1 + a)n ^4”^ n^mjx 

j=0 (1 + a)j j\
Ln,m (x)

n\
(2.9.8)

The other biorthogonal polynomial W^’^ix^k) admits an

extension from (2.1.1), which is denoted here by wj^\x;k),keN. In 

fact, a particular case wlfi^n,a\cx,k)is obtained as follows.
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Letting /=k, keN and replacing x by
(t±)

l 2 J and also replacing

Sn(I,m,a,P;x) by Sn((,m,a,p,x)
(1 + p - n)n T{\ + p- na)

one gets

Sn(t,m,a,p,x)= E 
7=0

[;nlm] F(1 + p - na) (1 + P - n)n a 7
T(l + p -na + kf) \ z J

(1+ /?-«)„ [«/w] (-")«/ Gj f 1 -^

nl j=0 (l + y9-«a)hi \ z j

Now taking a=l and then choosing a; = t one gets
J f

the extension in the form:

wh% n,a\cx;k) = (1 + P~n)n ('~n)mj(-l + a + ^hj 

n\ j=o (l + p-n)kj.p

cJ
(2.9.9)

A worth mentioning special case of this polynomial occurs if k=l. 

It is indeed an extended version of the Jacobi polynomial that bears

here the symbol P„®„’f\x). It is given by

p(P-n,a) 
rn,m O)

(l + fi-n)„ (~”W (l+a + P)j f 

n! y=0 (1 + P-n)j 71
- jc

V 2 y

\7
(2.9.10)

The other properties involving these polynomials will be illustrated 

as follows.
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(A) Special cases of integrals,

(B) Differential equation (0-form) for the particular polynomials.

(C) Polynomial special cases of the general inversion formulas,

(D) Combinatorial identities.

With this sequence, the first comes 

(A) Special Cases of Integrals.

The integral representations (2.2.3) and (2.2.5), in the light of 

the above mentioned specialized polynomials (2.9.1), (2.9.2), (2.9.4), 

(2.9.6), (2.9.8), (2.9.9), and (2.9.10) get reduced to the forms which 

are listed below.

For m=2, 3, 4,

l + P -na'' 

t Z j

m+p-\ Ft\-q~\ 2+P~na
A (m;-n),a^,.,.,a pi

0

(2.9.11)

which is essentially the integral given in (2.2.3)
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W^mn’a)(cx,k) = -
(l + fi-n)nT

f\ + fi-n'

\ + a + j3 | ( 1 + fi-n 1 +« + /?

l
\+a+/J ~(n+a)

]t k (1-0 k 
0

m+k~\Fk-\

2 + (2! + p k + GC-k-fi
_ , , - ;

2+j3~n k+fi-n
l-x)

\ j
dt

n,m rAT(a + fi)r(rn-a)

A(m,-n),
dt

The following are the specializations of (2.2.5).

1
U 
o

■ *1= ~na-\\- t)lk ~Xdt,

where

4=o t! r<«-+i)

In view of the substitutions mentioned for (2.9.2), one gets

1B™[av....,a ;bv.....b ■ x]= jA,n(t,m,x) t& n{\-t)ik dt,

(2.9.13)

(2.9.14)

(2.9.15)
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wherein

2 „ ^ndSa\h ^p)kV + P)tk(™)
n(,m,X) lk0 r(lk + l)(b})k..(bq)k k\ (2.9.16)

as before; whereas the choices given in (2.9.3) leads us to the integral 

form:

,,a b •*] = J’A (m,x) na *dt,
p’ 1’ q i nK J

in which

[n/m]
&n(m;x) = Z 

k=0

^mk^Ok-^ph *k
(2.9.17)

For the extension of the biorthogonal polynomial z%(x,k)r two

sets of values of parameters are already discussed in (2.9.5) and 

(2.9.7). The cases given in (2,9.5) would reduce the formula (2.2.5) to

Z%m(dx;k) = }v (nr,x) tfi na ldt, 

0

where

on(m;x)
\n!m\ {~n\njdJ

(a + l)kjj\

V
d = k*

and (2.9.7) leads us to:

Z%m{x,k)= )tn{k,m,x) t^~l(\-t)kjdt,

(2.9.18)

(2.9.19)

wherein
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<j>n(k,m;x) = Z
[n/ni] (~n)mj fx\kJ

x
\kjj=0 r(^ + l)yH

Taking k=l in (2.9.20) and (2.9.21), one immediately obtains the 

following two integrals

^ HCC dt>

0
(2.9.20)

in which

en(m,x)= Z
[n/m}(-n)}njxj

j=0 (a + l)ff

and

kin)ntx)-lrnM *PA (2.9.21)

[n/m](-n)mjxJ 
Yn{m,x)= £ —J—

j=o ro + i)y! 

respectively.

The integral representations for the biorthogona! polynomial 

wn^n,a\cX’k)and the Jacobi polynomial P^„n,a\x) are

wnfm n,a^ (CTk)=\i//n (k, m,x) tP n 1 (1 -1)^ dt, (2.9.22)

with
[n/m] (~«)m/ (l + a + fi).. xJ dj

i//n(k,m,x) = Z ------------------------- ----------, where d =n jt0 T(kj + \)fi

and
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(2.9.23)

where

(B) Differential equation (9-form) for the particular polynomials

The differential equation (0-form) in (2.3.2) which was derived for

a particular case T™(,x) of Sn(l,m,a,f;x) likewise for other specialized

polynomials, the differential equations may be obtained easily. All such 

particular differential equations are as given below.

[0ln(0+Mrl)-xmn(0+A)]9€f{h(ay,(b) X] = Q, (2.9.24)
y'~J J i—\ * fljljfn

where fij= ——~~—J- for j~ 1,2, J and j, for / = /+!,. J+q,

m

where nj=b .,j = \,2,-,qXx = -n + i for i = \,2,...,m and
m

for i = tn + l,m + 2, ,,,m + p.

j=l J i=l
(2.9.26)

where
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1 + a + j . . -n + iMi------:---- ,J = 1,2,-,& . 4 =-------- ,* = U,
J k m

[0(0 + a) -xf[(0 + X)] (x) = 0,
i=1 1 n>m

where X. =———, i = 1,2,. ,m.
1 m

[0(0 + a)-x(0-n)]Lflj(x) = 0.

ft («+//,-I)-*'
2=1 7 V

1-x

_
Wn^ + A )]r<4 n’a\cx;k) = 0, 
i=l

(2.9.27)

(2.9.28)

(2.9.29)

where //^ = -^-^—rfLLj - \t2,...,k, Xj 
k

■n + i 
m

i = 1,2,. and

4 =
a + f + i-m 

k
for i = m + l,m + 2, ,m + k.

[0(0 + ft-n)- (l-j^w+i
2 J jsi

rw+w,
(0-n,a)
rt,m (x) = 0, (2.9.30)

where X-, ■n + i
7: for i = 1,2,. ,,m and Xm+\ = \ + a + p .

[0(0 + yS-«)-f—1(0+ n)(0+ ! + <* + /?)] n>a\x) = 0, (2.9.31)
\ ^ j

(C) Polynomial special cases of the general inversion formulas

The explicit representation (2.1.1) when compared with (2.4.6) of 

theorem-2, one finds immediately its inverse series in view of (2.4.7) in 

the form

<T y,X =
(-1)* fi T(P +mna - ka) 

k=0 (mn-k)\
Sk(t,m,a,fi-,x), (2.9.32)

subject to the condition
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n
sk=0

(-1/ Y(P+na-ka) 
(n-k) l

Sk(l,m,a,0;x) = 0, rwns, seN.

From this or directly from theorem-2, the inverse series of the 

extended Jacobi polynomial, Brafman polynomial, extended

biorthogonal polynomial zf{fy(x;k) and (x;k), extended

Laguerre polynomial 4^(x), Pnfmn,a\x) are easily obtainable in the

forms

n\(bx)n. ..(bq)n nm (-l)kpr(/3 + ln-ka)
. .{ap)n cn kto kKmn-kWU3-ka + \) M k,£,m m,(b),x] (2.9.33)

subject to

n (-l)"-*pT(l3 + na-ka) 
tk0 b\ (n-k)\ T(fi -ka + 1) M (a,p)

k,£,m [(*);(&);*] = 0,

when n.^ms, seN.

■" = {b')n.........(b<,)n"' ”? Bm{ a .b b [X]
{ax)n.... {ap)n(mri)\k% *!(/?-to) kl\ p 1 ’q

xnk m+a)nkmn fi
(mn)\ y?0 k\ (1 + a)^ (fi-ka) Zj,nt (x;k)

(2.9.34)

(2.9.35)

fl-x')nk

\ 2 )

n\(-\)mnknk nm T(fi-ja + nk)Wjfm H,a\x;k)

(l+a + /1)nk y=o (mn)\(\ + fi - j)j T(1 + fi-ja)
(2.9.36)
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(2.9.37)
n\(\+a) mn (-1 )mn{-mn) (}

,n (x)
(mn)\ i=0 £1(1+a) Xp - ja) J,m

J

f I_xyi n\(-\)mn rm (~mn) j fiT(fi + n~ ja) P^m (*)

C1T) = (1 + a + fi)n Jo (mn)K 1 + fi- j). T(1 + fi - ja) (2.9.38)

(D) Combinatorial identities

Theorem-2 gives rise to a couple of inverse series relations 

studied by J. Riordan[2,p.44,46]:

ay
n f n: I L

k=OU
h ° ka*

and

*n
n (n + p 

k=o{k + p)
k=0

/'n + p^
k + p) a.

when a=0, m=l, (5=1.

The theorem also provides the inverse series of the compinatorial 

identities due to J. Riordan[2, p,71,72,74]

—n
2_
«!

_[«/?] Tlk

\nJ k=0 (n-2k)\kW‘

lnm(n'
an = Xn

k=0 \2kj J2k

and

_[«/2] n\ 

Pn ~ .2-.^0 (n~2k)\k\k\

in the forms:
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T~ln 2n {-\)k{2k)\2~k

li «i “ /c=0 (2n -ky Ai JfcTjfcT'

2n » r2ri'

KkJ

and

1 _ f (-1 )kfik«l«! .^(2h-&)!&! respectively when a=0, m=2 and p=l.


