CHAPTER-2

A GENERAL CLASS OF POLYNOMIALS AND ITS PROPERTIES-I

2.1 INTRODUCTION

With a view to study certain properties of several polynomials,
H.W. Gould [6], J.P. Singhal and Savita Kumari [1], Rekha Panda [1]
and others proposed the unifications of polynomials under consideration
and derived general generating functions, inverse series relations,
differential recurrence relations etc. for the generalized polynomial

constructed. Here, in this chapter, one of the extensions of the Jacobi

polynomial, denoted by %%ﬁ){(a),(b) x] (1.1.18) which was introduced

by H.M. Srivastava and M.A. Pathan [1] is put into a general form using

the notation S,(I,m,a,B,x) The explicit representation of this is defined
here by:

[n/m] (-l)mkak x*

S ]’ ’a’ ;' frl 7
nm,a, B x) k=0 T(1+ B —na +1k)(n—mk)!

(2.1.1)

where o, isa general sequence in k (not involving n); and for this

polynomial the integral representations, 6-form differential equation (for

particular o-k) and inverse series relation will be derived.
The explicit representation (2.1.1) is considered for studying the

properties of the polynomials belonging to it. It is interesting to see that

32



the polynomial (2.1.1) gives rise to the extensions of the polynomials of

Laguerre, Jacobi, and the biorthogonal polynomials ZZ%(x;k) and

W,ga’ﬂ)(x;k), k € N, which are as mentioned below.

e
L), (9 = L2 D 1151 > (2.1.2)
’ n o ()

P ()=

(1+ﬂ_n)n {n/zn?] (hn)m‘](lul'a‘*‘ﬂ)j (l.._x)‘] (2.1-3)

! =0 1+B-n); 2

U+a),, [n/m] (1) /)9 @/
T rag)

Zgy m(dx k) = ,  where d=k* (2.1.4)

n) . (+a+p),. of [12F v
(+8-n)y, {H/Zm] mj K 2
! - 1+8-n),. f
j=0 (a+p )/Cj J

W,g'ﬁf ) (ox, k) = , c=m™,

(2.1.5)

In the first place, the integral form for (2.1.1) will be obtained in
section 2.2 which will be subsequently used to further derive a
transformation formula.

Section 2.3 deals with ¢-form differential equation and the
remaining five sections incorporate the inverse series relations. All
these properties will be illustrated in section 2.9 for the polynomials

belonging to the class {S,(l,m,o,8;x) }.
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2.2 INTEGRAL FORMS AND TRANSFORMATION FORMULA
In this section two integral forms of the polynomial (2.1.1) are
derived. Later a transformation formula will be obtained.

First the polynomial S,(,ma.B,x) will be expressed in
hypergeometric function form. For that replacing S,(/,m,a,p,x) by

COMINCION

Snl:ma 5% gict and then choosing o, =

T+ f - naynl KT, B, RO 9% @
particular case 3¢ sqalf;; ) [(@),(8).x] of S, (I,m,e,p,x).
Now
_nmk _ k
90@) [ty 5 O Ok (o) TC e X
nlm k=0 (bl)k” .(bq)k [+ g -na+Ik)(n—mk)! kl
) (@) L@ Cm,
=5 By~ G T+ F=nay, K
(nfm]. @) (@), Alm=n) (ex)
" k=0 By B ATTF Fna)R
where c is constant.
Thus,
apseend , N(m;—n),
p
392“1;’? [@:®):11= e pF, exl. (2.2.1)

b1 . .,bq, A1+ B —na);

The hypergeometric function ,F,[z] has the following integral

form (Rainville [1]):
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a ... ,4,, a,, ,dp,
. 1 A CY a1, el 2 ”ﬁ{ 0
P q b b .'ﬁ «F(al)F(bl—al)(‘g (-1 p-1" g-1 b 5 - )
I’ 2 q7 27 3 q)
(2.2.2)

Using the integral (2.2.2) one can write integral representation for

3¢ %0 1(@), (1) 1.

In fact,

a,,. .a_, Am-n),
p(mn)

1
cx

bl"""bq’ A1+ B -na),

9 %) (@8- 31 = p Py

14+

j _.ET’L‘%-a] 1
1+f-no

”"1”{“”?“‘%)

r(lig:f’ff}

A g
0

an,. ...a_,A(m—n),

2 p
F,’ cx
‘m+p-1- I+g-1 ’
P 1 b b 24+ f—na p—na+l.
by 7 7 ;

(2.2.3)

where m = 2,3,4,...

Another integral representation for S,(/,m.a,f;x) is obtained using

the well know relation

T™ ) = } 1 (1- t)y‘1 dt, Re(x)>0, Re(y)>0. (2.2.4)
I'(x+y)
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Spl,ma, f,x)

and assuming
T(1+ 8 - na)

First replacing S,(,ma,B,x) by

Re(l+ f—na)>0, Re(lk) >0, we have

[n/m] (~1)"™k I(+p~-na)o, P

SpU,m.c, B,x) = k§0 I'(1+ B - na +Ik) (n— mk)!

Il GD™ o 5 11y g na) T
T k=0 (n—mk)T(k) T(+B-na+lk)

k k
_[n/m) )"y } Bne g plkt g

T K20 (n—mk)\T(k) §
1 _
= [ Sp,mx) P e a_plk1 g (2.2.5)
0
wherein

[n/m] (-1)y" &

Snlbmx)= 2 o —mi

Consider,

1 _ _
[ AL G il e oma, Bt de
0

k k
:["/’”] D"o k* 1 [Atntk+l)-1 (- t)/.l—-l dr
k=0 T(+B-na+Ik)(n—mi)t j
nim -1 mka xk
_[n/m] Do, F(A+n+k+D)I(u) (2.2.6)

T K20 T+ B-na+lk)(n—mk) T(ue+A+n+k+1)

Since ¢f ¢t =1, one gets from (2.2.6),

1 - =
0

1 _ _
:([) AAtnt) 1(1—:)‘“ 1t p=xt S, (Im,a, B;xt)dt . (2.2.7)
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Using (2.2.6) the left member which we denote by L, becomes

[n/m] (~)y" & S T(A 4t k)
k=0 (n—mk) T+ f—na + ) T(p+ A+n+k+1)

and the right member R is

0 o i+J 1 L _
R=y 3 X o Al pgilg (oma, pixndr.
i=0 j=0 ity 0

Now using (2.2.6), one obtains

40 Ty Inlmi] (-—l)mko'kxk C(A+n+k+i+ j+1)

o 8] [e 0]
R= .
i§O j§0 it j! k=0 (n=miT 0+ -na+l)T(u+A+n+k+i+j+1)

(2.2.9)

In view of (2.2.8) and (2.2.9), (2.2.7) yields the transformation in

the form:

mk S i+j+k
w o [n/m] (=D O”kr(ﬂ+n+k+i+j+1)x
r 0z

1=0 j=0k=0 [Hn-—mk) PA+p—na+Ik)N(u+A+n+k+i+ j+1)

[n/ m) (»1)'"kak KA +n+k+1)

i kéo (n—mi T+ B—na+IT(pu+A+n+k+1) (2.2.10)

2.3 DIFFERENTIAL EQUATION (6-FORM)

Here the particular case “k:% of Sy(l,m,a,pB;x), denoted by

T (x)will be used to get the (8-form) differential equation.

It is known that (E.D. Rainville [1]), the 6-form differential

equation satisfied by
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y=pfq z
bl"' bq
is
q d
[0 T1 @+b;~1)-z n ©+a)ly=0, where §=z— (2.3.1)
_ _ dz
j=1 i=1
Therefore, the differential equation satisfied by 77" (x) will be:
0O+ o+ 2 Pra 0 By e -y«
- m
@+ o0 (2.3.2)
n
where
[-n —n+l  —n+m-1 i
m > m 3ereen m ?
W =Ty )=mF) cx |
1+f-na 2+ f—-na B—na+l
i { > ] EARRAT] ] y |

2.4 INVERSE SERIES RELATIONS

Amongst several general classes of polynomials (basic and ordinary)

available in the literature such as {g5(x.r.9}{g5(.r.519)},
S yrmb (5 yrmlay, FOP)a B . pyxyand

nim

{é}é’(a ﬁ)[al, @ p; ... Bq:x]} studied by H.M.Srivastava [5], R.Panda [1],
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J.P.Singhal and Savita Kumari [1], B.I.Dave ([1]) etc., the extended
Jacobi polynomial {,%’Efflfq)[al, ap. By ,Bq,x]} is considered here with a
view to derive its inverse series relations. The explicit form of this
polynomial is

(@.B) ‘ v :{n/m] Cm), @) (ap)k
‘%nj,m [al,. ap’ﬂl ../5'q-x] k—z'::O k!(l-—na+ﬁ)lk (ﬁl)k _____ ('Bq)k .

(2.4.1)

Motivated by the study mentioned above, an effort is made here
to find an inverse series of this polynomial. The investigation of inverse
series relation of this polynomial resulted finally into the construction of
a general inversion pair which is stated in the form of
Theorem-1.

If nis a non-negative integer / and m are positive integers (g and

B are arbitrary parameters) then,

{(n/m)] (__I)n—mk g (k)

fm= kEO (n—mi\T(+ B +1k —na) (2:4.2)
implies
g(n)= '%n (B +In—amm)U(f +in—cak) 1) (2.4.3)

k=0 (mn—k)!
provided that /< m. The proof of this is given in section 2.5.
While working on the question “whether the converse of
theorem-1 exists ?” - it was found that the above inverse relation does
not hold conversely unless the second series is modified and then

tested. An attempt made in this direction led to the following theorem in
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which the pair of inverse series relation is such that each of the series
relation implies the other.

Theorem-2.

If
[n/m]

Gn)y= Y  a(nk,m)F(k) (2.4.4)
and

F(r)= I:%’:) b(n, k, m) G(k) (2.4.5)
then

_ 1

aln,k,m) = T(B +mka —na +1) (n—mk)! (2.4.6)
implies and is implied by

b(n, ke, m) = (1)K B L(f + mna - ka) (2.4.7)

(mn— k)

and

kﬁo b(nk1)G(k)=0,  when nzms, seN. (2.4.8)

Theorem~-2 is proved in section-2.7. The following theorem

implied by theorem-2 is also useful.
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Theorem-3.

If
n/m]
umy=_3 clnk,m)v(k) (2.4.9)
and
v(n) = n§1 d(n,k,m) u(k) (2.4.10)
k=0

then with 0 < a <1, maeN,

(1)K g (B + na — mhker)

o(n,k,m) = s (2.4.11)
®  dnkm)= F(,B+ka—mn1a+1) (mn—k)] (2:4.12)
and

éo d(n k) #(k)=0  when n=ms. (2.4.13)

From this, it is possible to invert the Brafman polynomial. A few
combinatorial identities are also occurring as the special cases.

Section-2.8 contains the proof of this theorem.

2.5 PROOF OF THEOREM-1

In order to prove the theorem, let the right hand member of

(2.4.3) be denoted by, say ¢, then

41



4= Z (f+In—amn)T(f +In—ak)

k=0 (mn k) /-

Now on making use of (2.4.2) one gets,

(B +In—cmn) T(S + In—ok) [kIm] (~DFM ()

$= Z (mn—-k)! r=0 T+ B +Ir—ak)(k—mr)

_ mn [k/m] (—l)kﬂmr(ﬂ + In—amn) T(ﬁ + In—-ak) g(r)
k=0 =0 (mn—kWT(1+ B +lr —ak) (k—mr)

Using the double series relation:

mn[i/m] mn—myj
Y T A )= Z Z A(i +mj, ) (2.5.1)
i=0 j=0 Jj=0

it becomes

4= g mu_mr (—l)k(,B +In—amn) U(B +In—ak —amr) g(r)
=0 k=0 (mn—mr~k k! T+ B +1Ir — ok —amr)

= g(n)+ (B +In—amn) z g(r) z "1 [”’”k ’"”)

[(p+ In—ak —amr)
(mn—mr) T(1+ B +Ir—ck —amr)’

But

[(B+In—ak—amr) _In-ir-1
i+ g +lr—ak—amr) i=1

(f —ak—amr+In—1i)

In—Ir-1 i
= H a; k* , say

which is a polynomial in k of degree (In-ir-1) and /<m, therefore the

inner series in k above is the (mn-mr)" difference of a polynomial in k
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of degree less than mn-mr, and hence it is zero. Thus, ¢ = g(n)which

completes the proof of theorem-~1.

2.6 AN AUXILIARY INVERSE SERIES RELATION

For proving the theorems-2 and 3 the following inversion pair will

be used.
n L BAT(B+na—ka)V
Un= 3 C" k T k (2.6.1)
=
n U,
= TG ka—na i ok (2.6.2)
Proof

First it will be proved that (2.6.1) = (2.6.2). If the right hand side

of (2.6.2) is denoted by T, that is

n Uk
Tn = 3 ’
E=0T(B+ka—-na+1)(n-k)!

Then using (2.6.1) one gets

,_nk 5T BT(B +ha ~ra) v,
n= 2 .
k=0 r=0k-r)(n-KIIT(B+ka—na+1)

In view of the relation
& uen- N awri) (2.6.3)
,J s + » ™ -
k=0 j=0 7=0 k=0 o

one further gets
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_p o 0k pT(B+ka)V,;
20 K20 T(B ko +ra—na +1) (n—r— k) k!

Ty

S ¥ prs+ka) v,
N 20 KoT(Brka+ra—na+ ) (n—r—k) k-

Here

| :
(B +ka) _na fa c¢. k’ which is a polynomial in k of
D(f+ka+ra—na+1) j=0 7

degree na—ra-1

Thus,

n-l1 n-r (_1)k BV, ne—ro—1 i
Tp=Vp+y 3 ——iL L7757 "¢k
U2 K0 (n-r-RlK =0 Y

therefore, To=V, as the inner series in k on the right hand side above is
the (n-r)™" difference of a polynomial in k of degree less than (n-r)
(precisely a polynomial of degree na—-ra—1). Thus, (2.6.1) = (2.6.2)
which completes the first part of the proof. To prove: (2.6.2) implies
(2.6.1), it is sufficient to show that the diagonal elements of the
cqefﬁcient matrices in (2.6.1) and (2.6.2) are all non-zero. In fact if the
diagonal elements are denoted by a,, and b, for (2.6.1) and (2.6.2)

respectively then

1

apn =T(B+1)#0 and bn =557

#0

whence (2.6.2) = (2.6.1). Thus, (2.6.1) & (2.6.2). This completes the

proof of the auxiliary inversion pair.
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2.7 PROOF OF THEOREM-2

In order to prove the theorem, it will be first proved that (2.4.6)
= (2.4.7) and (2.4.8).
Put

—k BT+ mna - ka) G(k)
(mn—k)

fny="3 (1"
k=0

Then in view of (2.4.4) and (2.4.6) t(n) becomes,

ymn—k B L(B+mna-ke) (k/m] F(j)
(mn—k)! 20 T(B+mja—ka+T) (k=ny)!

=3 (-1
k=0

_mn [k[m] (1™ g (5 + mna ~ kar) F(j)
k=0 j=0 (mn—k)(k—m)' T (B +mjc —ka +1)

The double series identity (2.5.1) now leads us to,

e B "™k 5 B 4 mna - mja - ka) F()
/=0 k=0 (mn—mj — kY K T(B - ka +1)

B n=l (~ymn—mj B F()ymn=ny — (mn—mj
_.F(n)+j>=30 T & (_l)c( . )

I'(f+mna—-mje—-ka)
T(B—ka+1)

Here,

[(B+mna—mja—ka) mMno-mje-1
= c, k' =Pk), sa
T(B—ka+1) R (%), say

which is a polynomial in k of degree mna-mja -1, and so,

1 ¢_ymn—mj . —mi o
H(n)=F(n)+ nzl ) BF(j) mnsz -1 k[mn ) mj

k).
j=0  (mn—mj) k=0 )P()
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If 0<a<1 and me is an integer then the inner series in k is the
(mn-mj)™ difference of a polynomial in k of deéree less than mn-mj,
and therefore t(n)=F(n)+0=F(n).

So the proof of (2.4.6) = (2.4.7) is complete. To prove that

(2.4.6) also implies (2.4.8) put

_prk _
b(m) = g DA T(B+na —ka)
k=0 (n—k)!

G(k) (2.7.1)

and substitute for G(k) using (2.4.4) and (2.4.6), then

[k/m] 1y BI(B+na—ka) F(j)

T(B+mja—ka+1)(n-k)(k—mj)"

n k/m
=73 3
k=0 j=0

Now using the double series relation,

o teoml [”/z”’] " kb (2.7.2)
k=0 ]:O (:f)“jzo k:O ( +n¥i>])! L

~#(m) reduces to,

#(n) = [ngn] - ("Dnﬂkﬂmj BB +na—-ka-mja) F(j)
j=0 k=0 T(B —ka +1) (n~k—mj)L k!

_ [ngn] (__l)n—mj B F(j) n—gy‘ 1 k [n —k mj) Iy ;t na—ka —mja) .
(B-ka+1)

J=0 (n—nmy)! k=0

As shown above, here also the ratio of the gamma functions in

the inner series is a polynomial in k of degree (na —mja ~1)< (n—mj), that
is

T(B +na -ka —mjg) ne-mje-l .
= k" =P(k), n+mj .
T(B—ka +1) 2 (k. 2 my
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Therefore, the inner series in k above, being the (n-mj*™

difference of a polynomial in k of degree na-mja-1, is zero. Thus,

¢(n)=0, if n=mj, which completes the proof of the “only if” part.

To prove the converse part it is assumed that the relations (2.4.7)

and (2.4.8) viz.

b(n k) = (ke FLBmna—ka) g &b 11y Giky=0, when nzms,
(mn—k)! k=0

s =1,2,3,... hold true.

Now in view of (2.7.1) and (2.4.8) one readily gets

¢p(n)=0, nzsms = 1,2,3,....., (2.7.3)
and also by comparing (2.7.1) and (2.4.5) with (2.4.7), one finds
¢(nm) = ¢(mn)= F(n).

Thus, it follows that with (2.7.3),

_mm o mn—k BT(B+mna —ka) y(k)
#(n)= k§0( D (mn— k)l

implies

_[n/m] p(k)
k)= k~§0 U(B +mka —na +1) (n—mk)!

completing the proof of the "if’ part, and hence that of the theorem.

2.8 PROOF OF THEOREM-3
To prove the “only if” part, it will be first shown that (2.4.11)

implies (2.4.12).
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Beginning just as in section-2.7, with the notation p" (instead of t(n)

there) one finds

« _mn [kim] (~1)k'mj,8 (B +ka—mja)v(j)
# T E Ho TWB+ka—mna+ 1) (k=m) (mn—F)!

which by means of (2.5.1), reduces to

x n o Bv)) mn—~mj - )k(mn m]) I'(B+ka)

o ]EO (mn—mj)! k*() LB +ka+mja—mna+1)

= v(n)+ "i’

B '””"”J e )k[mn mj} (B +ka) .
o (mn—mj)! § I(B+ka+mja—mna+1)

But,

- mno—mjo—1
Whrka) ™SV k= Py, (say)
U +ka+mja—mna+1) =0

is a polynomial in k of degree precisely mna~mja~—1. Replacing the ratio
of the gamma functions above by this polynomial P(k), the inner series
in k becomes the (mn-mj)" difference of a polynomial in k of degree
(mna - mja ~1)<(mn—-mj) as me is an integer, and therefore the inner
series vanishes.
Thus, x#* =v(n). This completes the proof of (2.4.11) = (2.4.12).
To complete the proof of the first part it suffices to show that

(2.4.11) implies (2.4.13), when n/m is not an integer.

For this set,

B p(k) (2.8.1)
n kS T(B+ka-na+) -k

On using (2.4.9) with (2.4.11) this becomes,
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n kiml 0k g8+ ka—mja) ()

5= 2, 20 T(B+ka=na+T)(n=k)l (k=mj) "

With an appeal to (2.7.2), this reduces to

3 _[n/ml gy n—-znli(__l)k n—myj [(f+ka)
n- 20 (n—m)' 1= k JT(B+ka-na+mja+1)’

Once again,

T(f8 +ka) ~ na*'g'a—-l
B +ka—na+mja+1) 5=0

Cg k%5 = P(k)
a polynomial in k of degree na-mja—-1 where na and ma are integers,
O<acx<l.

Therefore,

lml gy o i (n-mj i
Pn™ 0 (n—mjy kgo D [ L ]P(k)—o

And thus it is proved that (2.4.11) implies (2.4.13) which
completes the proof of the first part.

To prove the ‘if’ part, it is to be shown that (2.4.12) and (2.4.13)
together imply (2.4.11), wherein (2.4.9) and (2.4.10) are used.

First it is to be noted that in view of the inversion pair of

section-2.6, the inverse relation of (2.8.1) (taking B, =V(n)and
u(n)y=U(n))is given by

-k
Uny= & )" BT (B+na —ka)
k=0 (n=k)!

Vk). (2.8.2)
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Since it is assumed that (2.4.13) holds good, V(n)=0 if n¥ms. If

n = ms then from (2.4.12) it follows that V(mn) = V(nm) = v(n). Thus

the inversion pair (2.8.1) and (2.8.2) assumes the form:

wm= "3 v
k=0 T'(8 +ka - mna +1) (mn—k)
implies
Uty " 0" B TP + e mker) v(k)
k=0 (n—mk)!

which with U(n)=p(n) proves the if part. And this completes the proof of

N

theorem-3.

2.9 PARTICULAR CASES

As mentioned in section-2.1, the general class {S,(ma,p,x);
n=0,1,2,...} will be particularized to different polynomials such as the

extended Jacobi polynomial %gﬁ’ﬁ){(a),(b)'x], the Brafman polynomial

B™[(a);(b): x],the well known Laguerre and Jacobi polynomials, the

biorthogonal polynomials zZ(x;k) and W,ga’ﬂ)(x,k) Then the above

studied properties (in sections-2.2 to 2.8) will be illustrated in this
section for these specialized polynomials.
In the first place, the polynomial S,@mea,B;x) will be

particularized to the extended Jacobi polynomial c‘h?(a’ﬂ)[(a);(b)'x]

nlm

(H.M.Srivastava & M.A.Pathan [1] ) by choosing o, =




v
I

2

{ ARG e
AT .
Splma,B,xy =\ 5 UL

denoting ma by / and replacing S,(,ma,f,x) b Y N e B
g o y p g }’l( nt ﬂ x) y r(l‘f‘ﬂ_'na) ﬂt‘{‘u; :/": ;5\‘-,. ) :(.3?;4;
i NG
k
[nim] (_pymk - 1 (ay), . (ap), x
W(afﬁ)[(a),(b):x]= Z ( 1) r(l““ﬂ na) nl 1k Pk . (2.9.1)
nl,m k=0 T(1+B—na+ik)(n—mk) (b)), -{bg), K

To obtain the Brafman polynomial, take

[# 77 PN a .
o, _ @y apy , 1 =0 and replace S,(,ma,p,x) by Snlhma.p.x)
(b))~ Abg) K T(l+ B —na)n
Then
[n/m] (-n), @)y Lap), x*
B,’Q”[al,. apiby, .. by x]= n (2.9.2)

k=0 (b Abg)y ¥

The Brafman polynomial with variable cx, where c is a constant,
can also be obtained using another set of values for the parameters.
This reducibility is of interest, for it will be useful in obtaining another

integral form of the Brafman polynomial.

Sy (hm,0,B;x) and

’

For that taking a = 0, replacing S,(.m.0,3;,x)by

T(1+B)
choosing
1 2 {
(@) dap) k(“j]é) (lﬁ) .......... (-iﬁ)
KN Tk I Jk
(B - (bg)y ¥
the polynomial S, m,0,3;x) would reduce to
B,',"[al,. .ap,A(I;1+,B);b1, ...... bq ex], ¢ =1, (2.9.4)
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Next, an extension of the biorthogonal polynomial zZ(x,k), keN,
denoted here by Zf,im(x,k) is obtained from (2.1.1) by putting /=0,

1

oj:j;(ﬁﬂJ (9‘_*2:) (a+k} and replacing S,fimca,B.,x) by
e E ) - ;

Sn(ma, f;x) k

L bt and x by (3) . (2.9.5)
T+ 8 -na)(+a), k

Thus,

(+a),, nfm] (1), /0% al

——, where d = k*. (2.9.6)
Al j=0 (1+a),g. L

Zgy m(dx, k) =

This polynomial can also be obtained from S, (,ma,8,x) by taking

a=0, I=k, keN, o; =+ . (2.9.7)
J jl

And making the same replacements for S,(,m«,f,x) and x, as above.

When k=1, this polynomial gets reduced to an extended version of the

Laguerre polynomial L&,“)(x) which is denoted here by L,ffg,(x), given by

L) (x) = w[nlznzlw (2.9.8)

=P

The other biorthogonal polynomial W,ga’m(x;k)admits an

exterision from (2.1.1), which is denoted here by W,gff;,ﬂ )(x;k),k eN. In

fact, a particular case W,gf,,‘"’a)(cx,k)is obtained as follows.
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Nk
Letting /=k, keN and replacing x by [}—;-j , and also replacing

Sp(t,m,a, B,x)
Spma,B,x) b n , one gets
n(lm.a, f;x) by (+ B -n), T(L+ f—na) g

Sn(é,nl,a,ﬂ,x) =

[nfm] (-1)yy; T+ f=na) (4 f=m)p 0} 11\
= C(1+ B —no +k)n [ 2 ]

_(+B-nmp [nfzm] Ty O (Fx)kj
nl j=0 (1+,b’-na)lg. 2

Atkl+a+ p)

Now taking a=1 and then choosing oj= :
J

, one gets

the extension in the form:

B (cxs ) =

- J i
1+ =y Irfin) Oy e By € [1_};);9. (2.9.9)

! = 1 ~n),. J 2
n j=0 (1+p ”)kj J
A worth mentioning special case of this polynomial occurs if k=1.

It is indeed an extended version of the Jacobi polynomial that bears

here the symbol P(a,ﬁ)(x)_ It is given by

n,m

p{B1D) 3y (1+ B -n)y [n/zm] () A+a+ ,ﬁ) j (1 _ x)]
’ ! 20 A+ f-m; 2

(2.9.10)

The other properties involving these polynomials will be illustrated

as follows.
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(A) Special cases of integrals.
(B) Differential equation (6-form) for the particular polynomials.
(C) Polynomial special cases of the general inversion formulas.
(D) Combinatorial identities.

With this sequence, the first comes

(A) Special Cases of Integrals.

The integral representations (2.2.3) and (2.2.5), in the light of
the above mentioned specialized polynomials (2.9.1), (2.9.2), (2.9.4),

(2.9.6), (2.9.8), (2.9.9), and (2.9.10) get reduced to the forms which
are listed below.

For m=2, 3, 4, ...,

r{ﬂ_fﬁfﬁj
W(aaﬂ)[(a).(b).cx]: 4 .
¢ ’ -
n,¢,m I‘(aI)I"(H'B na "az)

W f—-na _ 4 -

_l[ta1“1~ (-0 7 A(m;—n),az,.‘.,ap;
0

m+p—1 Fﬁq_{%ﬁ;na ﬁ-i1€a+€,b1,m,bq;cx dt,

(2‘9.11)
which is essentially the integral given in (2.2.3),

) (b))
[(a)) T(b; - a,) '

Bg’[al,.. ap;bl ,...,bq 1 x]

a1 b-a-l A=), d,,....a )
1 - 1 2 P
11 a-0 et Fq*l{ b b dr, (2.9.12)
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(14 f-n) I(Hi J

l+a+p 1+4-n l+a+p '
"ir{ k H k k j

B (ox, ey =

1 ba+f 4 ~(nt+a) 4
Jr k g-n K
0

A(m;_“n)’2+a+ﬁ> ,k+a:+ﬁ‘ .
) F k k o——1 ldt
m+k-1" k-1 2+f-n  k+pB-n 2
k 2Tt 2 k > J

p(Bna) 1+p- n) r'd+p-n)
b, ()= I"(a+,6’)lf‘( n—)

}t‘”ﬂ"l (l—z)ﬁ g [A(m’_n)’lﬁx]dt.
0

™m0 2

The following are the specializations of (2.2.5).

36 %P (2. b): 51 = I,{t (e,mxyP —na =l _pth—=14

n,t,m
0

where

[n/m] (n)mk(al)k (ap)kx
k 0 (bi)k (b )k k! F(€k+1)

Hp(bmyx) =

In view of the substitutions mentioned for (2.9.2), one gets

1
B,’r[ai, .,ap;b ...... bq ‘x]= j'/'Ln(é,m,x) tﬂwn(l—t)ekdt,
0

(2.9.13)

(2.9.14)

(2.9.15)
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wherein

[/m] (-n), (@), (ap) 1+ )y (cx)®
=0 T(tk+1)by), (bg), H ’

Ap(l,m,x)= c=1¢t (2.9.16)

as before; whereas the choices given in (2.9.3) leads us to the integral

form:
1
~na -1
B,’;”[al, "ap;bl"' bq’x]:-(J;An(m,X) B —na dt,
in which
[n/m] (=n) k(al)k(ap)k xk
)= @ ' (2.9.17)

k=0 (bl)k (bq )k k!

For the extension of the biorthogonal polynomial Z7(x,k), two

sets of values of parameters are already discussed in (2.9.5) and
(2.9.7). The cases given in (2.9.5) would reduce the formula (2.2.5) to

1
28 (k)= fo_(mx) P 7", (2.9.18)
0

where

k
Uplmx)= 3  ——— k
" /0 (@)

k

2

[n/m] (1), d’ (x]lg

and (2.9.7) leads us to:

a ; f-1. K
Zamk)=[¢, (kmx) ¢~ (-7 di, (2.9.19)
0

wherein
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[n/m] (‘”)mj (x)kf
k

Py (k,m,x) = jéo RCESY]

Taking k=1 in (2.9.20) and (2.9.21), one immediately obtains the

following two integrals

@ p-na-1

1
nm (%)= J€ (m,x) 1 dt (2.9.20)
0

>

in which

Im)(-n), -x]
enlmry= 5
j=0 (¢+1) j J

and

1 ,
K@ =17, mx P/ a, (2.9.21)
0

[n/m](=n) mj xJ

T B TG

respectively.

The integral representations for the biorthogonal polynomial

W,gfn"”’“)(cx;k)and the Jacobi polynomial Pr(,f{"’“)(x) are

1 .

Wéfn""’“)(cx;k) = [w, (k,m,x) P lapWa, (2.9.22)
0

with

JaJ
[n/m] (1) (l+a+p),.x'd
Wplk,mx)= 3 W - 'lg , where d=#k¥
j=0 I'(kf + !

and
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1 .
Pﬁﬁ?"’“)(x) =[5, (m;x) Prlapda, (2.9.23)
0

where

[n/m] (1) (et B) 37
o T(G+D)

Op(m;x) =

(B) Differential equation (8-form) for the particular polynomials

The differential equation (8-form) in (2.3.2) which was derived for

a particular case TJ'(x) of Sy(l,m,a,B;x) likewise for other specialized

polynomials, the differential equations may be obtained easily. All such

particular differential equations are as given below.

I+q m+p
[HJ_HI(@w ;701 ©@+2,19 Py b) x1=0, (2.9.24)
= == -

where ‘uj ZW

7 for j=12, .1 and ,uj=bjm{, Jor j=l+1,. ,l+q,

—~A+1]
/"yi=

p Jor i=12,_..m and Z.l-zai_m, Jor i=m+im+2, . .m+p.

m+
O @+u,-D-x L @+A4)] B™a,.a b, b :x]=0, (2.9.25)
j:l J i=l i 1 P 1 q

—-N+

where Hj= bj.,j = 1,2,...,q,/1i = for i=12,..,m and

A=, Jor i=m+1l,m+2, . .m+p.
k
011 @+, D)~/ K [10+4)) 28 (s, k) =0, (2.9.26)
j= i=l ?
where
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o) g kA =2 il .
J k ' m
[0(6+a) - xifjl(e +4)] Lﬁf‘r)n (x)=0, (2.9.27)
where )L..—."'H‘i, i=12,. ,m.
! m
[0(6 + &) - X(6 - )] 1;(""‘31 (x)=0. (2.9.28)
k — Ve mek -
11 6ra wl)mb[l-z—{} ”ff[l(9+zi)] WET (cxs k) =0, (2.9.29)
Jj= j=
where Hj= ﬁ—kif—i/ 12,..k, A= n+i,i=1,2,..,m and
l;zW for i=m+1lm+2, m+k.
[0 +8-n)~ [ ]"ﬁ”l(a )] PA) ()= 0, (2.9.30)
-1
where 4; = 2" for i=12. .mand A, =1+a+ 8.
[0+ B—n)— [ ](0+n)(0+1+a+/)’)] PA=1D) (1 =, (2.9.31)

(C) Polynomial special cases of the general inversion formulas

The explicit representation (2.1.1) when compared with (2.4.6) of
theorem-2, one finds immediately its inverse series in view of (2.4.7) in

the form

n_me DK BT(B +mna - ka)

opx’t = o 0] Sy.m,a,B;x), (2.9.32)

subject to the condition
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a 1k (B +na—ka)

ey n=h)! S, (,m,a,f;x)=0, n=ms, seN.

From this or directly from theorem-2, the inverse series of the
extended Jacobi polynomial, Brafman polynomial, extended
biorthogonal  polynomial Z,ff‘,,),(x;k) and W,gjﬁ;" ") (x.k), extended

Laguerre polynomial Lg,ff,?,(x), P,(,;f,’){”’“)(x) are easily obtainable in the

forms

_MOPne - Cn mn -k BT(B+in-ka) gp(@.pB)

¥ @ (ap)y " =0 Hlmn—BYT(B—ka+1) = klom ). (b)x]~ (2.9-33)

subject to

n )" RBT(Brna—ka) @B e o
k=0 K(n-k)T(S—-ka+1) %k,é’,m[(a)’(b)vx]”‘Q

when ns#ms, seN.

A _
(a1 ) I (ap)n(mn)! k=0 k(B —ka)

m ) .
Bk [al,.. ’ap’bl’” ,bq x]

(2.9.34)

11 )" (—mn) . p
ik MOy 65 I 7@ (k) (2.9.35)
(mm)t  j=0 KI(1 +a)kj (f-ka) J.m

(2.9.36)

Lo\ ity g ) BTGB et mky W (k)
5 (4@t By, 0 (ml(+ A=), T+ ja)
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(1 D" (—mn) . B
o e, o S @ (2.9.37)
(mm)! =0 K (1+a)j(ﬁ - ja) J.m

[1_x]n oy G A = ja) PR )

- (2.9.38)
2 (ta+p), 20 (mi+p—)) T(+p~ja)

(D) Combinatorial identities

Theorem-2 gives rise to a couple of inverse series relations

studied by J. Riordan[2,p.44,46]:

nin n ~kln
a”:kgo(k]bk < b w"k

and

n(n+p n n—k(n+p
A= 2 b = b, = ~1 a,,
n kxo(lw p) k " kgo( ) [k+ p} k

when a=0, m=1, p=1.
The theorem also provides the inverse series of the compinatorial

identities due to J. Riordan{2, p.71,72,74]

e {3

2 () [m21 o2
k=0 (n-2k) KK

[n/Z] n
= (Zk} ook

and

Win

[n/2] nl
Pn = k§0 (n—2k) K k!

in the forms:
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272" an (-nk @2k
R k=0 Cn-kKkkiE’

2n Zn
_ 1k
bZn _kEO( D) (k]ak !
and

n [k
L_ 5 DA regpectively when a=0, m=2 and p=1.

nlnl = 2n—k)k
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