CHAPTER-4

UNIFICATION OF CERTAIN GENERALIZED POLYNOMIALS
AND THEIR PROPERTIES

4.1 INTRODUCTION

In 1983, 1. Gessel and D. Stanton [1] proved a g-inversion pair in

the form:
n gtk g KRB B

pmy= 3 LT Dk (4.1.1)
k=0 9]k

Lot

" (_1)n~kq(n—k)(n—k+1)/2+nk ( Aqn+(n—1)ﬂ)q—ﬁ)

ym)= %
k=0 (1..Aqk+kﬁ )—1

L (4.1.2)
[Q]n,_k

with a view to unify several other inverse series relations corresponding

to the cases ﬁzi,i, 0, 1, 1 and 2.
2°3 2

Here in this chapter, a study of the ordinary version of (4.1.1) will
be taken up in an extended form, whence a general polynomials set will
be defined. For this polynomials set the properties viz.

(i) Integral representations
(ii) Differential equation in 6-form, and
(iii) Inverse series relations
will be obtained in subsequent sections, which will be followed by the

particularizations of these properties for special classes of the
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polynomials. The fast section deals with the representation of this

general polynomial in a series of the polynomial §,,(¢,m,a, f;x)introduced

in Chapter-2.
Now consider an ordinary form of (4.1.1) which may be given by:

finy= 3 TA*nBrl)

k 4.1.3
o ek g(k), ( )

this can be put into an extended form:

/5]
F(n)=[nzs WG(@. (4.1.4)

From this, we define a class of polynomials {M(s,A,B;x), n=0,1,2,..} by

IS S T sk + np) i
M, (s, 4,5;x) = k§:30 (=0 v x .

(4.1.5)

It may be seen that this polynomial contains the following
extended versions of (known) polynomials when the parameters
involved therein are specialized suitably.

Extended Racah Polynomial

/ o —
R;vz(x(x+7+§+1),%’8)},’5):%25]( ngp(1+a+B+n)g (—x)(x+y+5+1)

k=0 HA+a) (1+7) 1+ B+,

(4.1.6)

Extended Wilson’s Polynomial

/s1(— b d -1 .
P’f("’z)=(a+b)n(a+c)n(a+d)n[nzsl( n)gla+b+ctd+n )sk(a+lx)k‘
k=0 kl(a+b), (a+c),

(a—ix)g

. 4.1.7
(a+a’)k ( )
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These two polynomials include the following ones.

Extended Hahn Polynomial

. IS ey g (L4 e+ B+ m) g (=x)y
O ) = s ey

n=01...,N (4.1.8)

Extended Jacobi Polynomial

PP (x) = {nE/]S] (mg(+a+f+ngl+a), (1 ~ x)k . (4.1.9)

K=0 Ko(1+a)y 2

Extended Legendre Polynomial

Pi(x)=
A TAT &)

(/5] (n+ sk)! (x—l)k- (4.1.10)

Extended Bessel Polynomial

/ k
Rw=
k=0 (n—sk) Kk 2

(4.1.11)

Extended Laguerre Polynomial

k
[n/s] (=n) ¥
Lgfs) ®=0+a), n§ ’ sk

o T asa (i+a)k’ (4.1.12)

The integral representations of the polynomial Mu(s,A,B;x) are

derived in the following section.
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4.2 INTEGRAL FORMS AND TRANSFORMATION FORMULA

In this section, two integral forms of the polynomial (4.1.5) are
derived using two fundamental integrals- (i) the beta integral and (ii)
integral representation of generalized hypergeometric function Fy(z).

These integrals are:

1
LOTG) _ 121029 gz, Re(x) >0, Re(y)>0 (4.2.1)
I'x+y) 0
and
i, dp, (b 1l g -1 b, ~a, ~1
PFCI{[} bp. 7}2 (bl) jel a-pt 1,
1>' -3 q: F(al)r( 1*611)0
aza“:\ap;
cp1Fy_ zt |dt. (4.2.2)

A simple transformation formula is also derived by making use of the
formula (4.2.1).
Now for deriving the integral representation of the polynomial

Ma(s,A,B;x), replace this polynomial by My(s,A,B;x) I'(2A+np), then

S ey a4 np + sk I
M5, 4.5 ) = k§0 (n—sk)ITQRA+np) i ¥ (4.2.3)

_ [’%S] D%y 3% T nB+ s (4-sk)
k=0 (n—sk)IT(A4-sk) C(2A+np)

sk k
_nfsl 0"y }1A+nﬂ+sk—l(1_t)/1«sk-ldt
k=0 (n—sk)IT(A-sk)

»

where Re (A-sk)>0, Re (A+nB+sk)>0.
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Thus, one obtains

A+nf-1

M, (s, 4, ;)= }fn(s,A,x) t a-n41 g, (4.2.4)
0

in which

[n/s] (____I)Sk l//k xk t sk
£, (s, 4,%)= k>=:0 (n,.sk)gr(Awsk)[l——tJ

The derivation of next integral representation of Mg(s,A,B;Xx)

requires the hypergeometric function form of it. For that, let us take

1
V/k—k!(a)k’

where ‘a’ is a complex parameter. With this choice of y, let us denote

the polynomial Mq(s,A,B;x) by Fa(x), then after a little simplification one

gets
nl/s}(-n A+n
oy LI A
k=0 (a)k kl
= F[A(S;‘")’A(S"A’L"ﬁ );cx}, (4.2.5)
s 1 a,
in which c=s%, is a constant.
In the light of (4.2.2), it is not difficult to obtain
Fy(x) = Ha) }té%ﬁ*la z)a*&gﬁ"l
n - - .
F(A—{-nﬂ] r(a__A+n,6’) 0
Ry Ay
i 1+A+nf  s+A+nf-1
A(s— s 5
'ZS—IFO (5;-n), s s .ctledt, (4.2.6)
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wherein s=2,3,4,..., Re(A+nﬁJ>O, Re(a— A+nﬂ)>0.
S 5
It is interesting to note that the consideration of the polynomial
Mn(s,A,B;X) in the integrand of the integral similar to (4.2.1), leads us

to a series transformation formula with the aid of the evident fact

e*.e™=1. The procedure is as described below.

1
Consider [ 1-n*"1 M, (s, 4, 8,x0) di
0

-t [n/s] 1)k T4+ np + sk)

k xk tk dt
Ic=0 (n—sk)!

1
=§ t/l‘f“n(l ¢
0

sk k
s CDTIArnf 4 sk, x }t(l+n+k+1) PRV

k=0 (n—sk)!

k k
M["g‘](“l)s D(A+nf+s0V " 1) 4 py ke D)
T K=o (n— sk)! T(u+A+n+k+1)

(4.2.7)

In view of the identity e'.e=1, the left member of (4.2.7) can be

written as:

1
A+n+1)~ (I—-t)#“an(s,A,ﬁ;xt)dt:jt(l+n+1)-l(l~t)ﬂ_l-

0

jt

X o= Xt M (s, 4,:x1) dt. (4.2.8)

But

T/ 1 B
,.__,_..(___1_)._“(’“””““’*}*”1)“1 1-pH 1A/In(s,A,ﬂ,xt)dt

e ¢]
Z -

0
z
0=
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And further, on making an appeal to (4.2.7)

1 .
| t()H"n'H)”l(l -t~ Lextem M(M’,l(s,A,ﬁ,xz.‘)a't
0

xi+jF(,u) [n/s] (~1)Sk+]y/k K

o M p=g (n-sk)

o0
= X

i

o0
X
0j=

[A+np+sk)yT(A+n+k+i+j+1)
' C(u+A+n+k+i+j+1) '

(4.2.9)

Thus, combining (4.2.7), (4.2.8) and (4.2.9) one arrives at

o @ (/DT y F T e npr kT n kv 4 )
;Eogo 2o A=k T+ A+ntktits+])

[n/s] (~1)%% t,ukxk T(A+nB+sk)T(A+n+k+1)
=2 (n—sT(u+ A+n+k+1)

(4.2.10)

which is the series transformation formula.
4.3 DIFFERENTIAL EQUATION(6-form)

To drive the differential equation (8-form) satisfied by the
polynomial Ma(s,A,B;X), it is required to express it in the generalized
hypergeometric function form.

In the defining relation (4.1.5), first replace Ma(s,A,B;x) by

My (s, 4, B, x)I (A +np)
nl

then it takes the form:

[n/s] k .
Mn(s,A,,B;x)=k§O (~n)sk(A+nﬁ)Sk W x°. (4.3.1)
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Now selecting v L in (4.3.1), and then denoting this special

case by the symbol Gns(x), one obtains the hypegeometric function

form of Gns(x) as:

1] 5] () g (4 18) g 5"

Gn,s(x)= =0 [

= | SRS (4.3.2)
where
A(s;-n) is an array of s parameters: _Tn,‘n:l,....,‘nzs_l,and c=s% is
a constant.

As mentioned in section-2.3, the 0-form differential equation satisfied

by
a a
17 ES p:
y=pk, oz
p q[bl’ ..... ,bq’ }
is
q p d
O @+b,-D)-z[1(@+a;)|y=0, where 6 =z—. (4.3.3)
j:l J i=1 4 dz

Therefore, the differential equation satisfied by Gns(x) is:

2s
lﬁ—cx 1 (9+ai)} Gps(x)=0, (4.3.4)
i=1
in which a; =" 21, s and o =AFMEEISTL g =gy,
S A
s+2,.....,28
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4.4 INVERSE SERIES RELATIONS

The inverse series relation of the polynomial My(s,A,B;x) defined
by (4.1.5) will be obtained in this section by means of a general pair of
inverse series relations which is proved here in the form of

Theorem-7. Fors=1, 2, 3,......, if

[n/s]
F(n)= Y a(n,k,s)Gk) (4.4.1)
and
SH
G(n) = kgo b(n, k,s)F (k) (4.4.2)
then
sk
a(n,k,s)= (D)7 T(A+ sk +nf) (4.4.3)
(n — sk)!
if and only if
k
b(n ke 5) = — D (A+k+B) (4.4.4)
T(A+sn+kf+1)(sn—k)!
and
S bk )F(k)=0, if n+s,seN. (4.4.5)
k=0

This theorem is proved in section-4.6. This proof uses an
inversion pair which will be proved in section 4.5. It is interesting to
note that many special cases arise when the parameters are

specialized, some of which are known results (polynomials and
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combinatorial identities) and some are seemingly new ones. These
special cases are discussed in section-4.8.
Another inverse series relation implied by theorem-7 is

Theorem~8. If snp-srB-1<sn-sr, where s=1, 2, 3,....., r=0, 1, 2

n, and if
[m/s]
f(n)= § c(n,k,s) g(k), (4.4.6)
Sn
g(n) = kg() d(nk,s) f(k) (4.4.7)
then
(=) A sk + skB)
A = T At s kB + 1) (4.4.8)
implies and, is implied by
_T(A+k+snp)
d(nk,s)= w(sn Y (4.4.9)
and
kgg(n,k,l)f(k) =0, if n+s,jeN. (4.4.10)

This theorem will be proved in section-4.7. However, this theorem

does not contain any noteworthy special cases.

4.5 AUXILIARY RESULT
Lemma-1.

If MB-jp-1<M-j, where M=sn-sr, s=0, 1, 2, ..... , n,r=0,1,2, ... ,
n, j=0, 1, 2, ..... , M then
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(A+sr+srB+kB+k) Ut (4.5.1)

oy = 5 k(M )
o k JT(A+M+sr+srB+kB+1)

if and only if
M k(M
UMy= Y (-1 . T(A+srf+MpB+sr+ kT k). (4.5.2)
Proof In order to prove that (4.5.1)=(4.5.2), let us consider
M)= 3 (-1 i T(A+srf+ MB+sr+k) Tk

Now using (4.5.1), one arrives at
(A+sr+srf+ jB+ NU(A+srf+ MpB+sr+k)

M)\ (k
k / I(A+k+sr+srf+8+1)

U@j)-

k
bOM) =Y T(-Dk

k=0 j=0

Now applying the double series relation

M.“
Z ZA(kJ)»Z Z Atk + 1, ),

k=0,=0 J=0 k=0

one further gets

ki

#(M) = z " ( J( +T’)(A+sr+srﬂ+jﬂw)-
J=0 k=0 k+j

FC(A+MB+srf+sr+k+ ) UG)

T(A+srf+sr+ jf+j+k+1) /

(A+sr+sr,B+M[)’+M)I"(A+M,B+sr/3+sr+M)U(M)

I'(A+srf+sr+ MB+M+1)
M Yk+j (A+sr+sr,b’+j,8+;)T(A+M/3’+sr,8+sr+k+j)U( )
T(A+srB+sr+ B+ +k+1) /

M-1M—j

+Z Z(~

J=0 k=0 k+jN J
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M-1 M-
=U(M)+ Z Zj( D ( +J(kjj)(f4+m +srf+ jB+ )

A+ MB+srf+sr+k+ )
T(A+srB+sr+ jB+ j+k+1)

4oy

M _
= U(M)+ z (M) (A+sr+srB+ B+ ) UG) Zj(-l)k(M "’].

=0 \J k=0 k
T(A+sr+srf+MB+k+j)

. , . (4.5.3)
T A+sr+srf+jf+k+7+1)

L(A+sr+srf+MB+k+))
T(A+sr+srf+jB+k++1)

Here the ratio

is in fact, a polynomial in k
of degree Mp-jp-1, therefore from (4.5.3) one gets,

M-1(M
HMY=U(M)+ zo(j](A+sr+srﬂ+jﬂ+j).
J::

M- M- j\ Mp—jp-1
U 3 (-1>"[ JJ S ek
k=0 k i=0

)" difference of a

Because the inner series in k is the (M-j
polynomial in k of degree precisely Mp-jp-1, where MB-jp-i<M-j,
therefore, $(M)=U(M). This proves that (4.5.1)=>(4.5.2).

In order to prove the converse part it is sufficient to show that the
diagonal elements of the coefficient matrices of (4.5.1) and (4.5.2) are
non zero.

Let the diagonal elements of (4.5.1) and (4.5.2) be denoted by

twm and umm respectively. Then it is clear that

M

‘MM " T(Arsr+srBr MBI 0

120



and
- M
Uppg = DT T(A+sr+srf+ MB+ M) #0.

Therefore, the inverse is unique and thus, (4.5.2)=>(4.5.1) which

completes the proof of the lemma.

4.6 PROOF OF THEOREM-7
It will be first proved that (4.4.3)=(4.4.4).

Let the right hand side of (4.4.2) be denoted by t,, then in view of

(4.4.4)

sk (A+k+kB)  F(k)
Iy = S(-1

k=0 = (sn—kIT(A+sn+kB+1)

Now using (4.4.1), t, becomes

g WSCOR T (s k kB e+ k)
k=0 2o (n—k)k—s)T(A+sn+ kB +1)

G(r).

Since,

sn [k/s] SH—SF
> ¥ Alk,r)= Z Z Ak + sr,r),
k=0 r=0

n Sn=SE (DX (A k+sr+ kB + srB) T(A+5r+ kB + srB) G(r)
h=% %

r=0 k=0 (sn—sr—k)KT(A+sn+ kB +srf+1)

eSS DR (A+k+ 54 kB + 57B) T(A+ 57+ KB + 5TB)G(r)
r=0 g =0 (sn—sr—IWKIT(A+sn+ kB +srf+1)

Denoting n-r by N one obtains,
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. —G(n)+nil G(n) S Z w1 (SN](A+k+k,B+sr+srﬂ)I‘(A+sr+k/3+srp’)
r=0 (M)l =9 k [(A+sn+kB+srf+1)

(4.6.1)
On comparing (4.6.1) with Lemma-1, it is clear that the inner
series in k above, is nothing but (4.5.1) with the choice
Uky=T(A+sr+srB+kf).
Taking
T<">=[Z]: Lof k=0
0, if £+0

in (4.5.2), one gets
vany= S M reas sep s mp v sr il °
= = B srf3 Sr r
=T(4+sr+srf+ MP).
Hence, with T(k)= (2), the choice Uk)=T(4d+sr+srf+kB) is

restored.

Therefore, the sum of the inner series in k in (4.6.1) is

Z( N k(SNY(A+k+ kB +sr+ srB) T(A+ sr + kS + s7f5) T(SN):LO]
T(A+sn+kB+srf+1) - sN)’

But since r=0, 1, 2,....., n-1, therefore sN=s(n-r) =0, and hence
the sum is zero. Thus, from (4.6.1), t,=G(n).

This proves that (4.4.3)=(4.4.4).
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Now to show that (4.4.3)=(4.4.5), let us denote the left hand

side of (4.4.5) by vy, then in the light of (4.4.1)

_ o Y (At k4 kB T(A+ 5+ kB)
Yn= %0 B0 T(A+nt KB+ -k —g)!

G(J)
Now using the double series

% {k}/’:s]A ‘o [n}/:s] n;jA .
? = + '3 ] 2
o 2o (,,)) o o (k+3.))

and denoting n-sj by N, y, takes the form

[n/s) N (-)*(4+ 558+ 57+ kB+ )T (A+ 58+ +kB)
J=0 k=0 (N-RKHT(A+N+gB+s+kf+1)

Vn= G0

/
[”ES]G(J) 2(-1) [ ](A+S]ﬁ+‘y+kﬁ+k)r(/1+sjﬂ+s]’*‘kﬂ)' (4.6.2)
== ['(A+sB+si+ N+kf+1)

Now in Lemma-1, if M(=sn-sr) is replaced by N(=n-sj) then it can be

written as:
_ N k(N (A+gB+y+kprk)
T(N)“/gé % [k]r(A+gﬁ+sj+N+kﬂ+1)U(k) (4.6.3)
&
U(N) = kg é——l)k @f } T(A+ NB + 5B+ + k)T (k). (4.6.4)

In (4.6.2) above, if one replaces I'(A+sjB+sj+kp) by U(k), then it

coincides with (4.6.3) whose inverse series is (4.6.4) by lemma-1.
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Here choosing

0, if k#0
T(k)___(ojz , i k#

k) 1, if k=0,
in (4.6.4),

N [N 0
UWN)= (-1 T(A+ N +si8+57+k)
k=0 k k
=T(4+sjf +s1+ Np).
0
Thus the choice for U(k) is restored with T(k)= (k) . Hence from

(4.6.2), one now arrives at

V= >
J=0

[n/s] G()) (M)
NI

_["’Sl_a_n(OJ
_JEO NN

=0, if N=0, thatisn=sj, j=1, 2,

This proves that (4.4.3)=(4.4.5), completing the proof of the first part.
For proving the converse part, it will be shown that (4.4.4) and
(4.4.5) together imply (4.4.3).

Suppose (4.4.4) and (4.4.5) hold true.

Consider

k
§n= g D" (A+k+ EB)F (k) , (4.6.5)
k=0 (m—INT(A+n+kB+1) 7
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then in view of (4.4.5)
G, =0 if nzsj, jeN, and (4.6.6)
Ggn =G(n). (4.6.7)

Further, (4.6.5) implies that

k
F(n) = g (-D*T(4+k+np) z
k=0 (n—k)!

. (4.6.8)

but G, =0 as shown in (4.6.6) hence in view of (4.6.7), one gets

(A+k+EkBYF(k)
(sn—kNT(A+sn+ kB +1)

Sn k
Gmy= % (-1

k=0
e

sk T(A+ sk +np) G

n
F = -1
= E Ty Ok

n I'(4+sk+np)
skzO( ) (n — sk)!

(k).

This shows that (4.4.4)=(4.4.3) subject to (4.4.5), which completes the

proof of theorem-7.

4.7 PROOF OF THEOREM-8
With a view to prové that (4.4.8)=(4.4.9), let the right member
of (4.4.7) be denoted by h,, then

_ %1 I'(4A+k+snf)

h
k=0 (sn—-k)

S k),

which in the light of (4.4.6) becomes
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- ko] ~)F S (At sr+ 5rBYT(A+ ke + 5nf)
k=0,=0 (k—=sr(sn—KNT(A+k+srf+1)

g(r).

Now applying the double series relation

sn [k/s]
> Y Alkr)= Z ZA(k+sr ry,
k=0 r=0

it takes the form

Sn_sr k (A+sr+srB)T(A+k+sr+snf)

h, = ZO kZO =D Ki(sn—sr—I)T(A+k+sr+srfi+1)

g(n).

Putting n-r=N, this can be rewritten as

n-1 SN -k ‘
h = g(n)+ z 3 (=D (A +sr+s7B)T(A+sNB+srf +sr+k)
r=0 k=0 k' (sN ~ k) T(A+srf+sr+k+1)

g(r)

V(A +sr+srB)g(r) sN
(sN)! IcZO( Y

[SN) ['(A+sNB + srf + s+ k)

=8lm+ z:() k) T(A+srB+sr+k+1)

(4.7.1)

Here the ratio of the gamma functions is infact,

F(A+srﬂ+sr+k+sNﬁ)__SNE’é”lC i
T(A+srf+sr+k+1) = '

hence from (4.7.1),

h, =gn)+ Z

(A+sr+srﬂ)g(r) 5 ( )k(sN)SNﬂ“lc o
r=0 (sN)! k=

>

=g(m+ Z x ¢ 2D

V(d+sr+sr8)g(r) sNE~-1  sN { j
r=0 N i=0 'k=0 \F

The inner series in k here is zero as it is the (sN)™ difference of a

polynomial in k of degree less than sN, precisely of degree sNB-1.
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Therefore, hp,=g(n). Thus (4.4.8)=(4.4.9).

Now to prove that (4.4.8) also implies (4.4.10), consider the left
hand side of (4.4.10) and denote it by 8,, then

o - L IU+k+np)

k
" k=0 (n—k) 7®

o TRIS) R =S (g sr v srB) T(A+ K+ snf)g(r)
K20 .2y k-sOln-RIT(A+k+seB+l)

Now using the double series relation,

n [k/s] {n/s} n-— sr
Y Y Alkr)y= Y Y Alk+srr),
k=0 r=0 r=0 k=0

6, becomes

) ,_[néS] n=sr (1% 4+ s+ 508) T(A -+ k + 57+ nfB)g(r)
20 42 M—sr—EIT(A+k+sr+srf+1)

Taking n-sr=N, one gets

P _[ni/:S](A+sr+sr,6')g(r) Iz\:’ Y N\ T(A4+k+sr+nB)
no5 N! k=0 k)T(A+k+sr+srf+1)

Here

[(A+k+sr+nB) _Nﬁ_i
D(A+k+sr+srf+l) - jZo 7

thus

P :[nE/JS](A+sr+srﬂ)g(r) NE-1 N _ (N] Kk’ =0,
n r=0 N!
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as the inner series in k is the N™ difference of a polynomial in k of

degree NB-1, where NB-1<N, which proves that (4.4.8)=(4.4.10),

completing the proof of the first part.

In proving the converse part it is assumed that (4.4.9) and

(4.4.10) hold true. Denoting the left hand side of (4.4.10) by g,,, one

gets

_ & T(A+k+np)
gn—kgo—*‘——(n_k)! S (k).

But as (4.4.10) holds

gn=0 1 n=g,jeN,
and also, because (4.4.9) holds true
&sn = &(n).
Also,

(4.7.2) implies that

)Rk kp)
T o oA e k1)

gk).

In view of (4.7.3) and (4.7.4), (4.7.5) and (4.7.2) give

_ SN T(A+k+snf)
o = e k
Zon =g = 2 = =SB

=

(A + sk + skf)
(n—sk)\T(A+n+skf+1)°

n
- ~1 n—sk
S(n) skZ:O( )

(4.7.2)

(4.7.3)

(4.7.4)

(4.7.5)

with this, the proof of the converse part is completed and hence the

proof of the theorem.
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4.8 PARTICULAR CASES
As mentioned in the introduction of this chapter, the special cases

of the general class of polynomials M, (s,4,8;x)(given in (4.1.5)) and

those of the properties discussed in sections 4.2 to 4.7 will be taken up
in this section.
First, the extended versions of the various known polynomials

occurring as the special cases of the general polynomial M(s, 4,5;x)

will be illustrated.

The polynomial

[n/s](_1\Sk

My(s, 4, fix)= 5 D) LA+ sk+nf) x* (4.8.1)
k=0 (n—sk)! k

is reconsidered in a slightly modified form (given in (4.3.1)):
[n/s] k

Mn(S,A,ﬂ;x)=k§0 ("‘”)sk (A+n/3)sk Vi X - (4.8.2)

This form will be used to obtain various extended polynomials as
follows:

First the Racah polynomial in an extended form denoted by
Ry(x(x+y +8+1),a,8,7,8), may be obtained from (4.8.2) by setting p=1,

) x+y+a+1)y
+a) (B+E+Dp+p)g

and then choosing A=1+a+B, x=1 and yy, = M

Thus

/sl (=n)g (1 +a+ B+n) g (~x)p (x+7 + 5 +1);
S . = B 3 :
Rn(l(x+7+5+1)aa:ﬁa}/:5)‘kEO kl(1+a)k(l+7)k(ﬂ+5+1)k )

(4.8.3)
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Next, if B=1, x=1, and A=a+b+c+d-1 then by selecting

(a+ix)k(a——ix)k
szk!(a+b)k(a+6)k(a+d)k one gets from (4.8.2) an extended form of

the Wilson’s polynomial denoted here by P,:f(xz).

Thus one finds

Pg(x2)(a+b)n(a+c)n(a+d)n :[n>éS](“n)sk(a+b+c+d+n—1)sk(a+ix)k(a-1x)k

k=0 k(a+b)(a+c)(a+d)y,

or

3 (x2)= 1 [n/5](-n) g (a+b+c+d+n-1) gy (a+mx)(a-x),

" arb),lare)avd), 2o K(a+b)p(a+o) atd)y -
(4.8.4)

An extended form of Hahn polynomial *Q, ((x,e,,N) can now be

obtained by setting B=1, A=l1+a+p, and x=1 and then

I )
kT 0 ay -y,

, where n=0,1,2,...,, N.

With this one gets

i ~ [7/5)(—n) g 1+ a+ B+n) g (—x),
On,s(se.f.N)= ,EO K{+a)(-N)y

, where n=0,1,2,...,N.

(4.8.5)
An extension of the well known Jocobi polynomial denoted here by

P,Ef’;ﬂ)(x), is obvious. In fact, from (4.8.2) by taking p=1 and, then

1—-x

5 ), we get

A=1+0+B, and replacing x by (

1
Y= v ay,

/5] (- 1 k
(i+a) P(aaﬂ)(x)z{nzzs] ( n)sk( +a+'8+n)sk(1”x)
n o ns k=0 K(l+a), {2
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or

PP (x) =

1 [fs] Gmygeas fon) g 1—1)"_ (4.8.6)

(+a), 120 H(+a), \ 2
The Legendre polynomial, in an extended form, carrying the

notation PB;(x)can be obtained by choosing A=p=1, y;=-——and

replacing x by (}-—;—i)

Hence,

Pi(x)= % (4.8.7)

koo kK (2

[n/s1(-n) 4 (n “)Sk(kx)k

The Bessel Polynomial Y,(x)(Riordan [1], p. 77) is also occurring

as a special case of (4.8.2). An extension of ¥,(x), denoted by Y,:f(x)is
obtained, when A=p=1, y, :»}%and when X is replaced by (:25}

Thus,

[n/s] (~=n) ,(n+D _ Nk
Soon L k k X
Y, (x)_ki:o S pr S (-—-—-2) . (4.8.8)

And lastly with p=0 and Wk:k!(1+a;k(A)k' (4.8.2) yields an
) S

extended version of the Laguerre polynomial denoted here by ngv) (x):

k

(@) sl Cmg 7

Ins@Aradn= 2" 4 (+a),
or
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1) L sl (myg S

o (x)= (1 +a)n k=0 k! (1+a’)k | (4-8.9)

The above polynomials (4.8.3) to (4.8.9) are extensions in the
sense that when s=1, all of them reduce to the original known
polynomials.

Now the particularizations of the properties which are discussed in
sections 4.2 to 4.7 will be taken up as follows.

(A) Special Cases of Integrals.
(B) Special Cases of 8-form differential equation.
(C) Special Cases of inverse series relations.
(C-1) Ordinary extended forms of inversion pairs of Gessel and
Stanton.

(C-2) Pairs of inverse series relations of extended forms of

polynomials.

(C-3) Combinatorial identities.

(A) Special Cases of Integrals

The integral forms of the aforementioned polynomials in view of

the integral (4.2.4) are listed below.

1
Rp((x+7 +5+ s, 8,7,8) = [ Pk et B ke, (6, p,y,6,x)d1, (4.8.10)
0

where
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n (- (3 ity +8+1),
5,x) =
fn(a’ﬂ’% ’x) kEOnir(1+a+ﬂ_k)(l+a)k (l+?/)k ('B+§+1)k k!

and Re(l+a+B-k)>0, Re(l+a+p+n+k)>0.

1
Pn (x2) — g)ta+b+c+d+n+k-—2 (1___t)a+’b+c+d"‘k”'2 ln (a,b, c, d,JC)dt, (4-8-11)
wherein

k, .. _
Apla,b,c,d;x) = § (-1 (a+zx)k (a_lx)k |
k20 (n— )} Kl T(a+b+ord—k—D)@+b), (@+c) @+dy

and Re(a+b+c+d-k-1)>0, Re(a+b+c+d+n+k-1)>0.

1
On(x,0, B, N) = [18T Pk @+ Bk, (@, g3yt (4.8.12)
0
in which
k
(-
Onle, Bi3) = 3 CO

k=0 (n—k! k! m+a+ﬂ-k)r(1+a+,5+n)(1+a)k(—N)k’

and Re(1+o+B-k)>0, Re(l+a+p+n+k)>0.
1

Pr(la,,B)(x) _ Itoz—i-,3+n+k(1 _ t)a+,8—k 9y (@, B3}, (4.8.13)
0

with

. k
n &) (1>
Sn(a,ﬂ,X)—kZ:O -k K T +a+ f-k)(I+a), \ 2 ) ’

and Re(l+oa+p-k)>0, Re(l+a+p+n+k)>0.
In the second integral (4.2.6) the parameter s is a natural
number greater than 1. Because of this, the integral forms of the

extended versions of the polynomials are derived from (4.2.6).
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In the beginning the integral forms of an extension of the Jacobi

polynomial denoted here by P,g’ﬂ )(x) and an extension of the Legendre

polynomial denoted here by P, ¢(x) are derived from (4.2.6) by setting

B=1 and replacing x by 1;-{

In particular, for P,gg’ﬂ)(x) putting a=1+a and A=1+4+a+pB, one

gets from the general integral (4.2.6),

1+a+p+n o l+a+f+n

1

[d+a) ] jt S 1-1) s

T{l+a+ﬂ+n]T[l+a—l+a+ﬁ+n

A h)

P,g?g’ﬂ ) (x)=
0

2+a+pf+n s+a+p+n
A(—n, s), A p ,
s i

< » fc(l——x)
-25-1%0 3 ) lat, (4.8.14)

where s=2,3,4,...,, Re(1+a)>0.

The integral forms of the extended Racah, Wilson and Hahn
polynomials are obtained separately in the light of the integral (4.2.2)
by taking =1, x=1 in (4.8.2). Because of their peculiar explicit forms,
it is not straight forward to obtain their integrals directly from (4.2.6).

With the values B=1 and x=1 the polynomial (4.8.2) reduces to

[n/s]
My(s, AL = ZO (—-n)sk (A+n)sk vy - (4.8.15)

Setting A=1+0+p and choosing
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~ (X)) (x+y+5+1D)
Ve (v a) A+ (B o+ 1y

in (4.8.15), one gets the hypergeometric function form of the

extended Racah polynomial

Ry(x(x+y+8+1)a,B,7.6)=

A(s;—n), A(s;1+ @+ B+n)~x,x+y +8 +1;
c

2s+2F3
I+al+y, B+0+1;

where c=s%°.

Now using the integral (4.2.2) for a pFq(x), one gets from above:

I'i+a)

RS Glx+y +5+1)a, B.y.6)=
I“[l+a+ﬁ+nJF(l+a— 1+a+ﬁ+n}

s A

1+a+ﬁ+n“1 a~1+a+/3+n
je 7 1-9) s
0
A(S;ﬂl1),2+a:ﬁ+n, ...... a+ﬂ:n+s,—«x,x+y+5+l; t
c
254152 4 (4.8.16)
I+, 8+5+1;

(a+ix),(a—ix)y
ki(a+b)(a +.c)k(a+d)k

The substitutions A=a+b+c+d-1 and y, =

in (4.8.15) yields

1
(a+b)n(a+c)n(a+ d)n )

Pi(x%)=

A(s;—n), A(s;a+b+c+d+n-1),a—ix,a+ix,
c

'ZS+2F3 ¥
atba+tc,a+d,
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where as above c=s%,
This in view of the integral (4.2.2) gives
PS(:2)= [(a+b)

(@+b) (a+c) (a+d) r(a+b+c+d+n~1)r(a+b~a+b+c+a’+n-—l)
n n n < S

a+b+c+d+n-1 a+b+c+d+n-1
_—1 ath———— ]
ft ¥ (-5 §
0
. a+b+c+d+n  a+b+c+d+nt+s-2 . .
A(s;—n), - ,aA—Ix,a+ix,
F 5 ct dt
25+1° 2 »
a+c,a+d,
(4.8.17)

where c=s%.

The integral form of the extended Hahn polynomial can be

obtained when A=1+a+f and vy = i (—f)l(‘ T n=0,1,2,...,N.
Hl+ao KV )

With these substitutions, (4.8.15) reduces to

A(s;—n), A(s;l+a + B +n),—x;
c

Qn,S(x;a"B’N)=2S+1 F2

1+a,— N,

whose integral form is
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Q B.N)=
“",S(xaﬂ ) I+a+p+n l+a+f+n
r —— 1 -
s s
i l+a+ﬂ+n_l aml+a+ﬂ+n
it ¥ (-5 §
0
A(S;_n)’2+a+ﬂ+nw’a+ﬂ+n+s;x,
F s s @t (4.8.18)
2S 1 N . L ] -

(B) Special Cases of 6-form differential equation

The polynorhial My(s,4,8,x) reduces to various known
polynomials as shown in the beginning of this section, when the
parameters involved are particularized suitably. In view of these
particular values of the parameters, the differential equation (4.3.3)
derived earlier gives the differential equations for the specialized
polynomials, which are listed below.
[6(9+a)(0+y)(6+,3+§)~(9—n)(¢9+I+a+ﬁ+n)(9——x)(0+x+;/+5+l)]

Ry(x(x+y+6+),a,B8,7,8)=(. (4.8.19)

[f@+a+b-1Y0+a+c—-1)@+a+d-1)

—(@-n)@+a+b+ct+d+n-1\0+a—ix)(0+a+ix)]P,(x2)=0. (4.8.20)

[0 +a)@-N-D—(@-n) @ +1+a+f+n)0-0, (x.a,8,N)=(. (4.8.21)
1-x (@.B)

{9(6 +a)- (T}(ﬁ -n)O+l+a+f+ n)}Pn x)={(. (4.8.22)
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0% - (-1-:2—’-‘-}(9 —n) (@ +n- 1)]19” (x)=0. (4.8.23)

:%;—(9~n)(6+n+1)] ¥ (9=0. (4.8.24)
and
[6(6 + @) - x(0 -\ () =0. (4.8.25)

(C) Special Cases of Inverse Series Relation

The special cases of the general inversion pair proved in theorem-
7 can be classified as follows.
(C-1) Ordinary extended forms of inversion pairs of Gessel and Stanton.
(C-2) Pairs of inverse series relations of extended forms of polynomials.
(C-3) Combinatorial identities.

(C-1)0Ordinary extended forms of inversion pairs of Gessel and Stanton

It is interesting to see that the various g-inversion pairs taken up
by Gessel and Stanton [1] when considered in ordinary form, that
means in the limiting case g—1, admit extensions through theorem-7.

The pairs that are obtained from theorem-7 by taking p=1, %, -J,
-%, and 2 are as stated below.

(1)p=1

[n/s] T(4+sk+n)
An = N —
k=0 (n—sk)!

<~
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B, = Sf (_l)sn——k (4+2k)

Ag
k=0 (sn—k}T(A+sn+k+1)
and
n -k A+2k . ..
3 (-pf Ay =0,if nzsj, j=0,1,2,...
A (n—\T(A+n+k+1) ¥ S
(2) B=1/2

[n/s]
4y = T(A+sk+n/2) B
k=0 (n — sk)!

<

(A+3k/2)

sn ~

(sn—k)!F(A+sn+§+l)

and

§ pn-k (A”m)k 4, =0.if nsj, j=0,1,2,...
k=0 (n~k)!F(A+n+§+l)

(3) p=-1/2

[n/s] —
4, = I'(A+sk-n/2) B
k=0 (n—~ skt

L=

(A+k12)

sn _
B, = §0(~1)s" k A

(sn—k)!l"(A+sn——12£+1)

and

k
(A+5)

n n—k . R,
2 D 4 =0,if n#sj, j=0,1,2,...
k=

(n~k)!I“(A+n~§+l)
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(4) p=-1/3

_[n/s) T4+ sk—ni3)

Ap= 2 B
" k=0 (n—sk)! k
&
Sn
5, = L -k (A+k2k/3) 4
k=0 D(A+ s+ sn— )
and
n
3 (-yrk (A+2k/3) 4 = 0,if nesj, §=0,1,2,...

(n-—k)!l“(A+n—~§+l)

(5) =2

[n/s] _
4 = [(A+sk=2n)
k=0 (n—sk)!

foed

B, = ‘%’ (__})sn—k (4 +3k)

Ay
k=0 (sn~K)NT(A+sn+2k+1)

and

(A+3k)
(n—kNTr(A+n+2k+1)

n n—k . -
kgo(ml) Ay, =0,if nzsj, j=0,1,2,...

(C-2)Pairs of inverse series relations of extended forms of polynomials

This set of special cases contains some well known polynomials in
their further extended form, which are occurring as particular cases of

theorem-7.

140



As shown in the starting of this section, the first series in

theorem-7, namely (4.4.1) vields the polynomial

sl ras skenpy g
Mn(S:AnB:x)“ kéo (n— sk0) Wk X,

when G(k) is taken as Ve ¥ and F(n) is then denoted by M,,(s,4,5;x).

In order to extract the polynomial special cases of this
polynomial, its elegent form is obtained, given‘ by (4.8.2), by replacing

M (s, 4, f;0)U(A +nf)

nl

Mn(S,A,ﬁ,X) by

Making corresponding

replacements in (4.4.2) it yields the inverse series of M, (s, 4,4,x)after

some simplifications in the form:

. Dk A+k+EB) M, (5, 4, ;%)

ﬁ 4.8.26
&0 IR, -

Yy *

It is already shown that the extensions of the Racah, Wilson,
Hahn, Jacobi, Legendre, Bessel and Laguerre polymomials are special

instances of the general class of polynomials { M, (s,4,8.x), n=0,1,2,..}

with the help of (4.8.2), while sta;'ting this section of particular cases.
There the respective specializations are also mentioned. Using the same
set of particular values of the parameters in (4.8.26) one immediately
gets the inverse series relations of the respective polynomials. In the

following these pairs of inverse series relations are enlisted.
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Inversion pair of extended Racah Polynomial

RyS,(x(x+y +0 + 1),a,ﬁ,y,5)

sl Emyg (4 at B+n)g (<x)p (x+y +8 +1)
k=0 (I+a)p (A +7)p(B+5+1)y

“ (4.8.27)
(X (x+y + 8+ Dy =+ (1+7)p(B+5+1)y

g D*+a+p+26)

R S+1 7.8
k=0 (sn—-kKk\(d+a+ B +k) k(x(’c’”’+ + ),O—',ﬁ Vs )

sn+l

Inversion pair of extended Wilson polynomial

PS(x%) = (a+b)ya+c)p(atd),
[n/s] (—n)sk(a+b+c+d+n—1)sk(a+ix)k(a——ix)k
=0 (a+b)k(a+c)k(a+d)k k!

PN (4.8.28)
(a+1x)u(a—~ix)y,
(a+b)yla+c)p(a+d)yn

¥ (~Df(a+b+c+d+2k-1)
k=0 ki(sn—k)!(a+b+c+d+k~I)Sn+1 (a+b)k(a+c)k(a+d)k

s,.2
Pk(l )

Inversion pair of extended Hahn Polynomial

‘ [nls)(-m) g (t+a+ B+m)g (—x),
Qn,s(x’a’ﬁ’N) - kég k’(l +a')k (—N)k

= > (4.8.29)

o CDFQra+pr2m) 9 (ma BN

X =) N Y —— e et B+ 1)

sn+l1
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Inversion pair of extended form of Jacobi Polynomial

PF’(lf‘S"ﬂ)(x) - (] +a)n [Zés] ("‘n)sk(l +a +ﬂ +n)sk (1 _x)k

H(l+a), L 2
<
(_15_:5)" —n(+a)y, 3 D' (raprb p(@h)
2 k=0 Ki(sn—k)l (1+a+B+k) . (1+a), K-S

Inversion pair of extended Legendre Polynomial

S —
Fa@)= 2 w2

[n/s] (—n)Sk (n+ I)Sk (1 _ x)k

k
(_1___—_{)":”! ) 2k +1)

pS
2 k=0 G-k (kv D), *)

Inversion pair of extended Bessel Polynomial

Yy (x)=

1 (D (:}_)"
k=0 ! \ 2

(i)” _, 2 ek

vs
! . (x)
2 k=0 (sn—k) k! (k+ Dent

:(4.8.30)

(x)

(4.8.31)

(4.8.32)
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Inversion pair of extended Laquerre Polynomial

k
(@), . [n/s] (—n)skx
Ly s (x)=(+a)y, er::O Htar (1+a)k
s (4.8.33)
R R

(+a) 2o (+a),

(C-3) Combinatorial Identities

Besides yielding extended forms of polynomials together with
their inverse series relations and the extensions to the ordinary forms of
the inversion pairs due to Gessel and Stanton, theorem-7 also
possesses the potential to give rise to some seemingly new
combinatorial identities. Some known combinatorial identities are also
contained in the theorem & some of them are inverted through it.

The combinatorial Identity (J. Riodan[1], p. 57)

n{2
= 3 (n_f'kj bk ()

=0
and its inverse are special cases of theorem-7. The above identity in an

equivalent form with its inverse is given by

xzn _ no (2n)ibyy (x)
k=0 (n+ k) (n-k)

== (4.8.34)

bzn(JC) _ n (_l)n—~k(k+1) x2k
2n)! k=0 (n+ k) (n+1) (2k)!

In fact taking s=1 in the theorem, one gets
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4 [(A+k+np)

T(n)= R(k
(n) o ek (k)

< (4.8.35)

(A+k+ kLT (K)
T(A+n+kB+)(n-k)’

n
R — __1 n—k
(n) kzo( )

Putting A=1 and =0 in this pair, it becomes

R T(d+k)
= sk

R(k)

Cn ()" R
R = ey

by (%)

Now choosing R(k)= one obtains from the first series
(n+ kYKl

2n
above T(n):x2 % Thus the first series of (4.8.34) is obtained. Its
nj

inverse follows with the same choices from the second series in the
above pair.
Consider now the pair of inverse series relations which is of the

simpler Legendre Class [J. Riordan 1, p. 68] namely,

n(n+p+k
= b
n kzo( n—k J k

_n o nvk 2n+p) [ 2n+p
weEem )
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or equivalently

n o (n+p+k) by
o (p 20—k

PN (4.8.36)

poo & CV ek prom)
"“k:o (n+p+k+Dl(n—-k)! k-

b
When B=1, A=p+1, and Rk)= k then from the first series
(p+2k)

of (4.8.35) one gets T(n)=ay; V\;hich gives the first series of the pair
(4.8.36). With these substitutions the inverse series follows from the
second series of (4.8.35). Thus the pair (4.8.36) can be obtained.

The second pair in the Table 2.5 (Simpler Legendre Class) of J.

Riordan[1], (p. 68) also occurs as a special case.

For obtaining this, put B=1, A=p then the pair (4.8.35) reduces to

T(n) = g I'(p+n+k)

R(k
k=0 (n-k) ®©

(p+2k) T(k)
T(p+n+k+1)n—k)}

Rmy= 3 (1" F
k=0
Here

(p+2k) T(k)
T(p+n+kXn—k)l’

Rmy= ¥ (- k
k=0
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k
-7 b
Now setting T(k) =£~—1~£l;k— and replacing R(n) by (-1)" R(n), one arrives

at

ay _ g bk
2n+p)  k=0(p+n+k)(n-k)

with R(n)x——af—h—, which is known [J. Riordan].
(2n+ p)!

Using the same substitutions in the second series in (4.8.35) the

inverse is obtained, thus one arrives at the inversion pair:

-3 D™ * @+ 2mn+p k-1l 3

by
k=0 (p+2k)t(n-k)!
PN (4.8.37)
no (p+2n) by
ap

T o+ p+ )N (n-k)

The inverse pair in J. Riordan[1, p. 79] is:

n_ B(n+k) 2k Nk
D mkEO( 2’(]("?)( D

A==

2n _ g 2n _ 2n
n nk:() n—k n—k-1
or equivalently,

k
I NG
D “;50 (n—k) K K

& (4.8.38)

1.4 (2k+1)
nnl o+ k+Di(n-k)
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7

This pair is easily obtained from (4.8.35) by setting A=p=1 and

k
choosing R(k):%l);!_' Then one gets from the first series of (4.8.35),

T(n)=(-1)", and thus the first identity of the above pair is obtained. The
inverse series is obtained similarly.

The combinatorial identity in J. Riordan[1, p. 38] is:

ntl ml(n=1) (n+k)
) )

or

Lol 2 nel el
A i T (4.8.39)

Taking =1, A=2 in (4.8.35), it takes the form:

T(n) = %’l: (n+k+1)

R(k
k=0 (n-k) :

n-k 2Ak+1) T(k)
(n+k+2)(n—-k)

n
R(m)= % (-1)
k=0

On replacing n by n-1, this pair becomes

#  nl o (mi k) #
=iy @
= (4.8.40)
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Wk+1) T (k)
(n+k+Di(n—k-1

Rm="5 k-1
k=0

On comparing the series in (4.8.39) with the first series in (4.8.40)

. o * (=™ * oo m+l 2
suggests the particularizations R (m)--————, ' and T (m)=(-1) me.
mm

The inverse series identity for (4.8.39) is thus obtained from the

second series in (4.8.40) which is given by

-1 2
1 2kxDET (4.8.41)
nnl k=0 (n+k+D)(n-k-1)!

Another identity (3. Riordan [1, p.83])

el -1 (mek)
) o

or equivalently

ol ke
“h "'kz::o(n-—k—ns(kn)!kz

(4.8.42)

is also contained in the pair (4.8.35) for =1 and A=2.
Once again following the process, one gets with =1, A=2 and

with n is replaced by n-1 in (4.8.35), the particular pair

x  n=l(n+k) R (k)
rm= oD

— n—k—1 *
R ()= nzl ) 2(k+1) T (k)
k=0 (n+k+Di(n—-k-1)

14
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which is in (4.8.42).

(-1yF

Choosing R (k)=
00sing (k) WG+ D]

in the first series above (that is, in
(4.8.40)) suggests that,
T () =(-F*.

Hence, one finds the inverse series of (4.8.42) in the form

1" BRSO VP I(23)
An+ D! k=0(n+k+Dln—~k-1)1"

There is one more series identity whose inverse is also
constructed through the theorem.

It is (J. Riordan[1, p.841)

n{ 2n 1
T =k§1(n—«kj k

When this series is compared with the second series in (4.8.35) it

suggests the substitutions A=2, p=1, and further,

(~ 1)"1
(2m)!

(«1)”1‘{’*1

R (m)= .
m 2Am +1)2

S T (m)

Thus the above identity in its equivalent form, together with its
inverse (from the theorem) reads as:
_ nil @2n)!
k=0(m+k+Dlm—k-DIk+1)
= (4.8.43)

! ml DR g
2An+1)2 k=0 (n—k—1I2k)!

fn
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Apart from the above series identities there is one more na

=2n 2n) 2n _nk[2a+1) (2k 1
anf()- Eof (2] (i

that is

k
I ()" 26! (4.8.44)

22 pinl k=02 - k)\(k+ 1) K k12K

Setting s=2, =0 and A=1, theorem-7 takes the form:

QK)GK)
F= o

&

20 F ke )R
k20 @n+DI@2n k)

G(n)

and

n—k
3 ED7 G DFW) 6 i naom, m=0, 1, 2, ... .

k=0 (n+Dl(n—k)

Here choose

(2£) then Gy, =

F(k)= .
(k+1)(k+ 1)k k1 2K 22k

Thus the inverse of (4.8.44) follows in the form:

() . (4.8.45)
(n+ D)+t 2"  f=0 (n ~2k)! 22k by
with
n - @2y .
2 =0if n2m, m=0, 1, 2......

k=0 (1 + 1) (n — k)l (ke + 1) K el 2%
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4.9 INTERRELATION OF S, (¢,m,a, B;x) AND M, (s,4,B;x)

In this section, one of the polynomials S,(¢,m,a, B;x) and
My (s,4,H,x) is expressed in a series of the other using the inverse
series relation proved earlier.

The inverse series relations of these two polynomials are given by

(Chapter-2)

 [n/m] "o, x*
Syllm,a, B,x)= ’EO I"(I+/3——na+€:‘) (n—mr)!

(4.9.1)

if and only if

n )" FTB+tn-ra)

Tn* =0 (n—mr)!

n

S,(,ma,f;x), (4.9.2)

and

/ k
M (5, o)) DT T tskent)

pA s Yy (4.9.3)

if and only if

o= g (¥ (4+k+kH)
h k= T(A+sn+kH +1)(sn—k)!

Mk(s,A, H,x). (4.9.4)

For instance, from (4.9.4)

p_ L& (D A+ jH)

Y Ty, 2o TW+sr+ JHAT)(sr - )

Mj(s,A,H;x) .

Now using the expansion of x" given in (4.9.4) in the explicit form

(4.9.1), one gets
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/ _pmr
Sn(&m,a,/f;x):{nim] )" or )
r=0 I'(1+pB~-na+tr) (n—mr)! y,

£ (D) (444 jH)
'j=0 F(4+sr+ jH +1) (sr—)!

Mj(s,A,H;x)

im) sr D™ (4 jH)O
) J:O(n-mr)!(sr~j)![‘(1+ﬂ_.na+gr),/,r

M (s,4,H;x)
J (4.9.5)

T(A+sr+ jH+1)
Thus, S, (¢,m,a, 5,x) is expressed in a series of M,,(s,4,H,x).
In a similar manner using (4.9.2) in (4.9.3), one can express

My (s, A, H;x)in a series of S, ({,m,a, #;x) as follows.

[n/s](_1\sk
M (s, AH;x)=" % -bH F(A+sk+nH)_ka_.
k=0 (n—sk)! o

L(g+tk-ray S,(¢,ma,p,x)
(mk — r)! '

mk r
DN V2
r=0
Thus,

My (s, A4, H;x)=["§"] mle (1) + 5% B T4+ s+ nH) T(B+ th-ra)
k=0 r=0 (n— skl (mk - r)!

14
.—-—I§—S,.(é,m,a,ﬂ;x). (4.9.6)
%k

A particular case of (4.9.5) may be illustrated by putting H=1,

1

s=1, A=1+a+p, Vi ST
k

, with this the polynomial M, (s,4,H;x)

153



yields the Jacobi polynomial pi(za"b))(x)a:i) , and on substituting
n

k
() - ap) e

d . Sn(i,m,a,ﬂ;x)
o= (bl)k .... (bq)k T and replacing S,(/,m,a,B;x) by

L, one
r'{d+pg-na)n

gets S,(Lm,a,f;x)=3 Ef‘l’f’) [(a),(®);x]. Hence from (4.9.5), the expansion

formula

_nr+k _
P,§“=ﬂ) o - n ”ﬁk( )R BT(+a+ B +n+k)T(B+mka ra)(bl)k..(bq)k-

k=0 r=0 (n-sk)l(mk-r)i(l+a), T(+B-ra)r ck (a), (a

Pk
. Jﬂ’gj‘lﬁ) (@04,  (4.9.7)

@) Lap)y

On the other hand, taking o, = and replacing the

S, (m.a,f;%)

olynomial S, (/ x)y by 2L

, it reduces to the extended
Jacobi polynomial Jﬁ’f?“;'f?) [(a),(b);x] and putting H=1, s=1, A=1,
v, :78175 in (4.9.3), one gets the Legendre polynomial

— 1:
Pn(2x+1)=2F1[ i ”"}.

[

Hence the expansion formuia (4.9.6) yields

. D™+ 2j+)r lgl(ai)r nl P, (2x+1)
i=]

/
I Eeaifq) [(@);(b); x]= L Zm] >
i r=0 j=0

q . )
(n—m)l(r—j) Il (bj)r TQ+pB-na+Ir)T(r+j+r)
j=1
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