	List of contents	
Chapter 1	Review of Literature and Introduction	
	Introduction	1
1.1	Rhizobium : The Wonder Microbe	1
1.1.1	General Taxonomy	2
1.1.2	Host Specificity and Nodulation	2
1.1.3	Rhizobium as nitrogen-fixer	6
1.1.4	Plant Growth Promoting Rhizobzcteria (PGPR)	8
1.1.4.1	Rhizobium as PGPR for non-legumes.	9
1.1.5	Effect of P on nodulation	10
1.1.6	Phosphorus deficiency and Nitrogen fixation	12
1.1.7	Rhizobium- PSM co-inoculation	12
1.1.8	Phosphate solubilization by <i>Rhizobium</i> spp.	20
1.1.9	Phosphorus in agriculture	21
1.2	Glucose metabolism in Various Organisms.	27
1.2.1	Glucose catabolic pathways in pseudomonads	27

1.2.2	Glucose Metabolism in Bacillus subtilis	29
1.2.3	Glucose Metabolism in Rhizobium	29
1.2.4	Direct oxidative pathway.	31
1.2.4.1	Gluconic and 2-ketogluconic acid secretion.	31
1.2.4.2	Importance of Pyrroloquinoline quinone in abiotic stress.	33
1.2.5	Rationale of Study	38
Chapter 2	Materials and Methods	
2.1	Bacterial strains / Plasmids	43
2.1.1	pUCPM18	47
2.1.2	pBBR1MCS-2	47
2.2	Media and Culture conditions	47
2.2.1	M9 minimal medium	48
2.2.2	TrisCl buffered medium	49
2.2.3	Pikovskaya's (PVK) Agar	49
2.2.4	Murashige-Skoog's Medium	49
2.2.5	YEMA medium for Rhizobium strains	50

2.3	Molecular biology tools and techniques	50
2.3.1	Isolation of plasmid and genomic DNA	50
2.3.1.1	Plasmid DNA isolation from <i>E. coli</i> and <i>Rhizobium</i> strains.	50
2.3.1.2	Genomic DNA from <i>Rhizobium</i> strains.	50
2.3.2	Transformation of plasmid DNA	51
2.3.2.1	Transformation of plasmid DNA in <i>E. coli</i>	51
2.3.2.2	Electroporation of plasmid DNA in <i>Rhizobium</i> strains.	51
2.3.3	Agarose gel electrophoresis	51
2.3.4	Restriction enzyme digestion analysis	52
2.3.5	Gel elution and purification	52
2.3.6	Ligation	52
2.3.7	Polymerase Chain Reaction (PCR)	53
2.3.8	Genomic Integration	54
2.4	P-solubilization phenotype	54
2.5	Physiological experiments	55

,

2.5.1	Inoculum preparation	55
2.5.2	Growth characteristics and pH profile	55
2.6	Estimation of Plant growth promoting factors	55
2.6.1	Culture conditions for EPS production and quantification	55
2.6.2	Biofilm assay	56
2.6.3	Indole acetic acid (IAA) production and estimation	56
2.7	PQQ determination	57
2.8	Analytical techniques	57
2.9	Enzyme assays	59
2.9.1	Preparation of cells and cell free extracts	59
2.9.2	Enzyme Assay Protocols	60
2.9.2.1	GDH (1.1.99.17) assay	60
2.9.2.2	Gluconate dehydrogenase assay (GADH) (1.1.99.3)	61
2.10	Pot experiments - Interaction with (Mung bean).	61
2.10.1	Plant Inoculation Experiments:	62
2.10.2	Acetylene Reduction Assay (ARA): Measuring Nitrogenase Activity	62
2.10.3	. Chlorophyll Content:	62
2.10.4.1	Antioxidant Enzymes / ROS scavenging enzyme activity:	62

2.10.4.2	Estimation of Water Soluble Protein Content	65
Chapter 3	Determining the MPS ability of <i>Rhizobium</i> strains by	
	incorporating pqqE gene and Acinetobacter calcoaceticus pqq	
	gene cluster	
3.1	Introduction:	66
3.1.1	Rational of study	68
3.2	EXPERIMENTAL DESIGN	69
3.2.1	Bacterial strains used in this study	69
3.2.2	Development of <i>B. japonicum</i> , <i>M. loti</i> and <i>S. fredii</i> strains harboring	71
	<i>E. herbicola pqq E</i> gene (pJNK1) and <i>A. calcoaceticus pqq</i> gene	
	cluster (pJNK5)	
3.2.3	Growth and MPS phenotype of transformant strains of <i>Rhizobium</i>	71
3.2.4	Effect of heterologous E. herbicola pqq E gene (pJNK1) and A.	72
	calcoaceticus pqq gene cluster (pJNK5) overexpression on the	
	physiology and glucose metabolism.	
3.3	Results:	72
3.3.1	Heterologous overexpression of <i>E. herbicola pqq E</i> gene (pJNK1)	72
	and A. calcoaceticus pqq gene cluster (pJNK5) in Rhizobium	
	strains	
3.3.2	Effect of overexpression of <i>E. herbicola pqqE</i> and <i>A. calcoaceticus</i>	73
	pqq gene cluster (pJNK5) on GDH activity in B. japonicum, M. loti	

	and S. fredii NGR 234	
3.3.3	Growth and MPS ability of <i>Rhizobium</i> transformant of <i>pqq E</i> and <i>pqq</i>	75
	cluster genes.	
3.3.3	Effect of E. herbicola pqq E gene (pJNK1) and A. calcoaceticus pqq	77
	gene cluster (pJNK5) overexpression on growth pattern and pH	
	profile in presence of 50mM glucose concentration.	
3.3.4	Physiological effects of A. calcoaceticus pgg gene cluster	79
3.3.5	P solubilization and organic acid secretion in 100mM Tris-Cl Buffer	81
	pH 8 and 50mM Glucose containing Rock Phosphate 1mg/ml	
3.3.6	Effect of <i>E. herbicola pag E</i> gene (pJNK1) and <i>A. calcoaceticus pag</i>	82
	gene cluster (pJNK5) overexpression on POO secretion in <i>Rhizobium</i>	
	transformants	
3.3.7	Effect of A. calcoaceticus pqq gene cluster (pJNK5) overexpression	85
	on Biofilm, EPS and IAA secretion in <i>Rhizobium</i> transformants	
3.3.8	Discussion	85
Chapter 4:	Determining the MPS ability of <i>Rhizobium</i> strains containing	
	A. calcoaceticus pqq cluster and P. putida gad operon	
4.1	Introduction	90
4.2	EXPERIMENTAL DESIGN	91
4.2.1	Bacterial strains used in this study	92
4.2.2	Development of B. japonicum, M. loti and S. fredii strains harboring	92
	A. calcoaceticus pqq gene cluster and P. putida gad operon (pJNK6).	
4.2.3	Growth and MPS phenotype of pJNK6 transformant strains of	92

	Rhizobium	
4.2.3	Growth and MPS phenotype of pJNK6 transformant strains of <i>Rhizobium</i>	92
4.3	Results	93
4.3.1	Heterologous overexpression of A. calcoaceticus pqq gene clusterandP. putida gad operon (pJNK6) in Rhizobium strains.	93
4.3.2	Effect of heterologous overexpression of <i>A. calcoaceticus pqq</i> gene cluster and <i>P. putida gad</i> operon (pJNK6) in <i>Rhizobium</i> strains on GADH and GDH activity in <i>B. japonicum</i> , <i>M. loti and S. fredii</i> NGR 234	93
4.3.3	Growth and MPS ability of <i>Rhizobium</i> transformants of <i>A</i> . <i>calcoaceticus pqq</i> gene cluster and <i>P. putida gad</i> operon (pJNK6)	94
4.3.4:	Effect of <i>A. calcoaceticus pqq</i> gene cluster and <i>P. putida gad</i> operon (pJNK6) overexpression on growth pattern pH profile and physiological effects in presence of 50mM glucose concentration	96
4.3.5	P solubilization and organic acid secretion in 100mM Tris-Cl Buffer pH 8 and 50mM Glucose containing Rock Phosphate 1mg/ml.	99
4.3.6	Effect of <i>A. calcoaceticus pqq</i> gene cluster and <i>P. putida gad</i> operon (pJNK6) overexpression on Biofilm, EPS and IAA secretion in <i>Rhizobium</i> transformants.	102
4.3.7	Discussion	104
Chapter 5	Genomic integration of A. calcoaceticus pqq cluster and P. putida gad operon with vgb, egfp in B. japonicum M. loti and S.fredii	

Chapter 6	Genomic integration of A. calcoaceticus pqq cluster and P. putida	
	DISCUSSION	
5.4	DISCUSSION	123
	containing rock phosphate	
5.3.6	P solubilization and organic acid by <i>B. japonicum</i> , <i>M. loti</i> and <i>S.</i>	120
526	pH 8 and 50 mM glucose containing rock phosphate	120
5.3.5	Physiological effect of genomic integration on 50 mM Tris-Cl buffer	119
	containing rock phosphate	
5.3.4	Growth pattern and pH profile of <i>B. japonicum</i> , <i>M. loti</i> and <i>S. fredii</i>	117
	containing rock phosphate	
	integrant on 50 mM Tris-Cl buffer pH 8 and 50 mM glucose	
5.3.3	Growth and MPS ability of <i>B. japonicum, M. loti</i> and <i>S. fredii</i>	115
	integrants.	
5.3.2	GDH and GADH activity of <i>B. japonicum</i> , <i>M. loti</i> and <i>S. fredii</i>	114
5.5.1	fredii	112
531	Construction of Genome integrants of <i>B</i> ignoricum <i>M</i> loti and <i>S</i>	112
5.3	Results.	112
5.2.2	Cloning of pqq- gad operon in integration vector.	111
5.2.1	Bacterial strains used in this study	111
5.2	Experimental design	111
5.1		100

6.1	Introduction	125
6.1.2	Rationale of the Study	128
6.2	Experimental design	128
6.2.1	Bacterial strains used in this study	128
6.2.2	Plant Inoculation Experiments	128
6.2.3	Greenhouse experiment	129
6.2.4	Growth parameter assessment	129
6.2.5	Biochemical characterization	129
6.2.6	PQQ determination	129
6.2.7	Isolation of bacteria from rhizospheric soil and nodules.	130
6.2.8	Statistical analysis	130
6.3	RESULTS	130
6.3.1	Effect of <i>S. fredii</i> NGR234 genomic integrant, <i>Sf</i> intPgv, on bacteria of rhizospheric soil and bacteroids of mung bean nodules.	130
6.3.2	Effect of <i>S. fredii</i> NGR234 genomic integrant, <i>Sf</i> intPgv on nitrogenase activity available soil P. N. and K. content	132
5.3.3	Effect of <i>S. fredii</i> NGR234 genomic integrant, <i>Sf</i> intPgv on N P K	133

· · ·

	content in plant and pods	
6.3.4	Growth parameters	134
0.3.1		
6.3.4.1.	Effect of S. fredii NGR234 genomic integrant, Sf intPgv on growth	134
	parameters of mung bean plant.	
6.3.4.2	Effect of S. fredii NGR234 genomic integrant, Sf intPgv on Pod	136
	formation.	
6.3.5.	Effect of <i>S. fredii</i> NGR234 genomic integrant, <i>Sf</i> intPgv on PQQ	140
	secretion	
6.3.6.	Effect of S. fredii NGR234 genomic integrant, Sf intPgv antoxidant	140
	enzyme activities.	
6.3.7	Discussion	142
ny – Andria ang kanang kan	Summary	146
	LIST OF FIGURES	
Chapter 1	Review of Literature and Introduction	Chapter 1
Fig. 1.1	Flavonoid, Nod factors and signal molecules exchange during nodule	4
	development.	
Fig. 1.2:	EPS, phytohormones, endo-duplication, differentiation and	4
	development of functional nodules.	
Fig. 1.3:	Development of determinate and indeterminate root nodules	5
Fig. 1.4:	Nitrogenase enzyme mechanism.	6
Fig. 1.5:	The different N_2 -fixing organisms and symbioses found in agricultural and	7
	terrestrial natural ecosystems	

Fig 1 6:	Properties of associative/endophytic bacteria for plant growth	9
112.1.0.	improvement	
Fig.1.7:	Schematic diagram of soil phosphorus mobilization and	20
	immobilization by bacteria	
Fig. 1.8:	Simplified cycle of phosphorus in agriculture	22
Fig. 1.9:	P dynamics in the soil/rhizosphere-plant continuum	23
Fig. 1.10:	Pathways and enzymes involved in organic acid biosynthesis by	24
	rhizobacteria	
Fig. 1.11:	Mechanisms of P-solubilization by phosphate solubilizing bacteria	27
Fig. 1.12	Carbohydrate metabolism in pseudomonads	28
Fig. 1.13:	Glucose Metabolism in Bacillus subtilis	29
Fig. 1.14	Pathways of glucose and fructose catabolism available to R. trifolii	30
	strain 7000	
Fig. 1.15:	Outline of Possible pathways of Carbohydrate metabolism in <i>R</i> .	31
	meliloti	
Fig. 1.16:	Direct oxidative pathway in <i>Pseudomonads</i>	33
Fig. 1.17:	Structure of PQQ (Rucker et al., 2009).	34
Fig. 1.18:	PQQ as a redox cycling agent	34
Fig. 1.19:	PQQ biosynthesis pathway	36
Fig. 1.20 :	Comparison of <i>pqq</i> gene clusters	36
Fig. 1.21:	Structures of Pqq genes	37
Chapter 2	Materials and Methods	
Fig. 2.1:	Restriction maps of the plasmids used in this study	46
Chapter 3		
Fig. 3.1:	Restriction endonuclease digestion pattern for Rhizobium	72
	transformants containing pJNK1	
Fig. 3.2:	Restriction endonuclease digestion pattern for Rhizobium	73
	transformants containing pJNK5	
T: 0.0	GDH activity of <i>Rhizobium</i> transformants containing <i>pag</i> gene	74
Fig 3.3:	San additing of ramaconum dramatorination sourcements pold Barro	· · · · · ·

	cluster (A) B. japonicum, (B) M. loti (C)S. fredii NGR 234	
Fig 3.4:	MPS phenotype of B. japonicum, M. loti and S.fredii strains	76
	harboring pJNK5 plasmid.	
Fig. 3.5:	Effect of pqq gene cluster overexpression on extracellular pH (\Box , Δ ,	79
	$\bigtriangledown, \Diamond$) and growth profile	
Fig 3.6:	Effect of pqq gene cluster overexpression on extracellular pH (\Box , Δ ,	82
	•) and growth profile	
Fig.3.7:	Phosphate released by Rhizobium transformants containing pqq gene	81
	cluster (A) B. japonicum (B) M. loti and (C) S. fredii.	
Fig. 3.8:	PQQ secreted by Rhizobium transformants containing pqq gene	83
	cluster (A) B. japonicum (B) M. loti and (C) S. fredii	
Chapter 4:	Determining the MPS ability of Rhizobium strains containing A. calcoaceticus pqq cluster and P. putida gad operon	
Fig. 4.1:	Restriction endonuclease digestion pattern for Rhizobium	93
	transformants containing pJNK6	
Fig 4.2:	GDH and GADH activity of <i>Rhizobium</i> transformants containing pqq	94
	gene cluster (A) B. japonicum, (B) M. loti (C) S. fredii NGR 234.	
Fig. 4.3:	MPS phenotype of B. japonicum, M. loti and S. fredii strains	95
	harboring pJNK6 plasmid.	
Fig. 4.4 :	Effect of pqq gene cluster and gad operon overexpression on	98
	extracellular pH (\Box , Δ , \circ) and growth profile	
Fig.4.5:	Phosphate released by <i>Rhizobium</i> transformants containing pqq gene	100
	cluster and gad operon (A) B. japonicum (B) M. loti and (C) S. fredii.	
Fig 4.6	PQQ secreted by Rhizobiumt ransformants containing pqq gene cluster and gad operon	102
Fig. 5.1:	Strategy used for cloning of <i>pqq-gad</i> gene cluster in pGRG36	112
	containing vhb, egfp resulted in pJIPgv.	
Fig. 5.2:	PCR amplification of <i>pqq</i> , <i>gad</i> with constitutive <i>lac</i> promoter	113

Fig.5.3:	Restriction enzyme digestion pattern of pJIPgv plasmid containing	113
	pqq gene cluster and gad operon under lac promoter	
Fig. 5.4:	Confirmation of Genome integrants by PCR amplification of pqq and	114
	gad from B. japonicum, M. loti and S. fredii integrants	
Fig. 5.5:	GDH and GADH activity of Rhizobium integrants of pqq gene cluster	115
	and gad operon, vgb gene	
Fig. 5.6:	MPS phenotype of B. japonicum M. loti and S. fredii integrants	116
Fig. 5.7:	Extracellular pH (\Box , Δ ,) and growth profile on glucose 50 mM, Tris-	118
	Cl 50 mM rock phosphate medium	
Fig. 5.8:	P Solubilization by Rhizobium integrants	120
Fig. 5.9:	PQQ secreted by Rhizobium integrants	122
Fig. 6.1:	Effect of S. fredii NGR234 genomic integrant, Sf intPgv, on bacteria	131
	of rhizospheric soil and bacteroids of nodules	
Fig. 6.2:	Effect of S. fredii NGR234 genomic integrant, Sf intPgv on	132
	nitrogenase activity of mung bean at 45 Days after sowing	
Fig. 6.3:	Effect of S. fredii genomic integrant on shoot length and root length	135
	of mung bean at 20 Days after sowing.	
Fig 6 4:	Effect of <i>S</i> fredii genomic integrant on shoot length and root length	135
- Broth	of mung hean at 45 Days after sowing	
	of many obait at to Days atter so thing.	
Fig. 6.5:	Effect of S. fredii NGR 234 genomic integrant on chlorophyll content	135
	of mung bean at 45 Days after sowing	
Fig. 6.6:	Effect of <i>S. fredii</i> NGR234 genomic integrant, <i>Sf</i> intPgv on enzyme	141
	activities of mung bean at 45 Days after sowing.	
·	List of Tables	
Chapter 1	Review of Literature and Introduction	

Chapter 4	Determining the MPS ability of Rhizobium strains containing	
	(pJNK5), <i>Ml</i> (pJNK5) and <i>Sf</i> (pJNK5) transformants in TRP medium	
Table 3.6	Biofilm, Exopolysaccharide and Indole acetic acid production by Bj	85
Table 3.5	Variation of PQQ secretion in bacteria.	84
	M. loti and S. fredii pqq transformants grown on TRP medium	
Table 3.4	Organic acid Secretion and Organic acid yield from of <i>B. japonicum</i> ,	82
	loti and S. fredii pqq transformants	
Table 3.3	Physiological variables and metabolic data from of B. japonicum, M.	80
	and S. fredii transformants	, <i>e</i>
Table 3.2	P solubilization index on Pikovskyas agar of <i>B. japonicum</i> . <i>M. loti</i>	77
Table 3.1	Bacterial strains used in this study	70
	Rhizobium strains integrants	
Table 2.4:	Physical and chemical properties of experimental soil used for	62
Table 2.3:	PCR conditions used in the present study.	53
Table 2.2:	Recommended doses of antibiotics used in this study	48
	List of plasmus used in the present study.	T T
Table 2.1.	List of plasmids used in the present study	44
Table 1.5:	Functions of pqq genes	35
14010 1.4	2009)	20
Table 1.4	bacteria Organic acids produced by phosphate solubilizing fungi (Zaidi et al	26
Table 1.3:	Organic acids involved in P-solubilization and produced by PS	25
Table 1.2:	Ten years of studies on legume co-inoculation	14
Table 1.1:	Cross-inoculation group and <i>Rhizobium</i> -legume association	3

	A. calcoaceticus pqq cluster and P. putida gad operon	
Table 4.1	Bacterial strains used in this study	91
Table 4.2	P solubilization index on Pikovskyas agar of B. japonicum, M. loti	96
	and S. fredii transformants.	
Table 4.3	Physiological variables and metabolic data from of <i>B. japonicum</i> , <i>M.</i>	99
	loti and S. fredii pqq transformants grown on TRP medium	
Table 4.4	Organic acid Secretion and Organic acid yield from of B. japonicum	101
	, <i>M. loti</i> and <i>S. fredii</i> pqq transformants	
Table 4.5	Biofilm, EPS and IAA production by Bj (pJNK6), Ml (pJNK6) and	103
	Sf (pJNK6) transformants in TRP medium	
Table 4.6	Senetic modifications for enhanced MPS by bacteria	106
Table 5.1	Bacterial strains used in this study	111
Table 5.2	P solubilization index on Pikovskyas agar of <i>B japonicum M loti</i>	117
	and S. fredii integrants	
Table 5.3	Physiological variables and metabolic data of B. japonicum, M. loti	119
	and S. fredii integrants grown on 50 mM Tris-Cl buffer pH 8 and 50	
	mM glucose containing rock phosphate.	
Table 5.4	Organic acid secretion and organic acid yield of B. japonicum, M. loti	121
	and <i>S. fredii pqq</i> integrant grown on TRP medium	
Table 6.1	Bacterial strains used in this study.	128
Table 6.2	Effect of S. fredii NGR234 genomic integrant, Sf intPgv in the	132
	rhizospheric soil and in nodules from 45 days old mung bean plants.	
Table 6.3	Effect of S. fredii NGR234 genomic integrant, Sf intPgv, on the N, P	133
	and K content of rhizospheric soil from mung bean plants of 45 days	

	old.	
Table 6.4	Effect of <i>S. fredii</i> NGR234 genomic integrant, <i>Sf</i> intPgv, on total plant N, P, K and protein content of 45 days old mung bean plants.	133
Table 6.5	Effect of <i>S. fredii</i> NGR234 genomic integrant, <i>Sf</i> intPgv , on N, P, K and protein content of pods from 45 days old mung bean plants.	134
Table 6.6	Effect of <i>S. fredii</i> NGR234 genomic integrant, <i>Sf</i> intPgv , on growth parameters of mung bean at 20 Days after sowing.	137
Table 6.7	Effect of <i>S. fredii</i> NGR234 genomic integrant, <i>Sf</i> intPgv on growth parameters of mung bean at 45 Days after sowing	138
Table 6.8	Effect of <i>S. fredii</i> NGR 234 genomic integrant on growth parameters of mung bean at 45 Days after sowing (contd.)	140
Table 6.9	Effect of <i>S. fredii</i> NGR234 genomic integrant, <i>Sf</i> intPgv, on PQQ secretion from leaves and nodule of 45 days old mung bean plants.	140

• •