

TABLE OF CONTENTS

	Genetic modification of Herbaspirillumseropedicae Z67 for	1 Provident
	the development of mineral phosphate solubilization (MPS)	
	to enhance nitrogen fixation ability.	
Chapters	Title	Page No.
Chapter 1	Review of Literature and Introduction	 (a) (a) (b) (b) (b) (b) (b) (b) (b) (b) (b) (b
1.1	Introduction	1
1.2	Global Phosphate Status.	1
1.3	Status of phosphorus in soil.	5
1.3.1	Alkaline Vertisol.	6
1.3.2	Acidic Alfisols.	6
1.4	Phosphorous availability to plants.	7
1.5	Need for biofertilizers in plant phosphate nutrition	9
1.6	Phosphate Solubilizing Microorganisms.	9
1.7	Mechanism of mineral phosphate solubilization.	11
1.7.1	Acidification.	11
1.7.2	Chelation.	12
1.7.3	H ⁺ excretion.	13
1.8	Necessity of genetic modifications for P solubilization.	16
1.8.1	Status of genetic modifications for developing P solubilizing	18
	ability.	
1.8.2	Direct oxidative pathway.	22
1.8.3	Gluconic and 2-ketogluconic acid secretion.	22
1.8.4	Importance of pyrroloquinolinequinone in abiotic stress.	24
1.9	Citric acid secretion in microorganisms	31
1.9.1	Citrate synthase	31
1.9.2	Citrate transporter	38
1.10	Potassium solubilization.	41
1.11	Herbaspirillumseropedicae Z67	42

Chapters	HUC	I age IV
1.11.1	General metabolism	45
1.11.2	Nitrogen metabolism of <i>H. seropedicae</i> Z67.	46
1.11.3	Nif gene regulation.	46
1.11.4	Post-transcriptional control of nitrogenase in H. seropedicae	47
1.11.5	Post-translational control of nitrogenase in <i>H. seropedicae</i> .	48
1.12	Rational of study.	50
1.13	Objectives of the present study.	53
Chapter 2	Materials and Methods	
2	Materials and Methods	54
2.1	Bacterial strains / Plasmids	54
2.2	Media and Culture conditions	60
2.2.1	Bushnell-Haas (BH) medium	61
2.2.2	Koser's Citrate medium	62
2.2.3	M9 minimal medium	62
2.2.4	HEPES buffered medium	62
2.2.5	Pikovskaya's (PVK) Agar	63
2.2.6	Murashige-Skoog's Medium	63
2.2.7	JNFb medium for <i>H. seropedicae</i> Z67	63
2.3	Molecular biology tools and techniques	64
2.3.1	Isolation of plasmid and genomic DNA	64
2.3.1.1	Plasmid DNA isolation from E. coli and H. seropedicae Z67.	64
2.3.1.2	Isolation of large size plasmid DNA from H. seropedicae Z67.	64
2.3.2	Transformation of plasmid DNA	65
2.3.2.1	Transformation of plasmid DNA in E. coli	65
2.3.2.2	Electroporation of plasmid DNA in H. seropedicae Z67.	65
2.3.3	Agarose gel electrophoresis	65
2.3.4	Restriction enzyme digestion analysis	65
2.3.5	Gel elution and purification	66

Chapters	FHIC	1 age IN
2.3.6	Ligation	67
2.3.7	Polymerase Chain Reaction (PCR)	67
2.4	Aromatic hydrocarbon utilization	68
2.5	Lactose and Citrate utilization	68
2.6	P-solubilization phenotype	68
2.7	Potassium soluiblizing assay.	69
2.8	Mutant Complementation Phenotype.	69
2.9	Physiological experiments	70
2.9.1	Inoculum preparation	70
2.9.2	Growth characteristics and pH profile	70
2.10	Estimation of Plant growth promoting factors	71
2.10.1	Culture conditions for EPS production and quantification	71
2.10.2	Bioflim assay	71
2.10.3	Indole acetic acid (IAA) production and estimation	72
2.11	PQQ determination	72
2.12	Analytical techniques	72
2.13	Enzyme assays	75
2.13.1	Preparation of cells and cell free extracts	75
2.13.2	Enzyme Assay Protocols	75
2.13.2.1	GDH assay	75
2.13.2.2	Gluconate dehydrogenase assay (GADH)	75
2.13.2.3	CS assay.	76
2.14	Hydroponic plant study with rice (Oryza sativa).	77
2.15	Pot experiments - Interaction with (Oryza sativa Gujarat-17).	77
2.15.1	Plant inoculation experiments.	77
2.15.1.1	Antioxidant enzymes / ROS scavenging enzyme activity.	78
	Estimation of water soluble protein content	80

Chapters	Title	Page No
Chapter 3	Monitoring the MPS ability of <i>H. seropedicae</i> Z67 containing	
	E. coli NADH insensitive citrate synthase (Y145F) -	
	Salmonella typhimurium Na ⁺ dependent citrate transporter	
	(<i>citC</i>) operon.	
3.1	Introduction	81
3.1.1	Rational of the present study	83
3.2	The experimental plan of work includes the following-	85
3.2.1	Bacterial strains used in this study	85
3.2.2	Expression of <i>lac</i> promoter in <i>H. seropedicae</i> Z67	87
3.2.3	Construction of H. seropedicaeZ67 stable plasmid containing E.	88
	coli NADH insensitive csgene under lac promoter	
3.2.4	Incorporation of NADH insensitive E. coli csand Na ⁺ dependent	88
	citrate transporter (citC) gene of Salmonella typhimuriumunder lac	
	promoter in pUCPM18.	
3.3	Results	90
3.3.1	Use of <i>lac</i> promoter for constitutive expression of desired genes	90
	in H. seropedicae Z67.	
3.3.2	Construction and functionality of pJNK3 and pJNK4 plasmids	92
	containing $P_{lac}cs^*$ gene and $P_{lac}cs^*citC$ operon.	
3.3.3	E. coli csmutant complementation	94
3.3.4	Growth and MPS ability of <i>H. seropedicae</i> Z67 transformants of	94
	pJNK3 and pJNK4 plasmids.	
3.3.5	Effect of NADH insensitive (cs*)and Na ⁺ dependent citrate	96
	transporter on growth, biomass and glucose utilization of H.	
	seropedicae Z67 transformants grown on HRP minimal	
	medium with 50mM glucose as C source.	
3.3.6	CS activity and organic acid secretion in H. seropedicaeZ67	99
	transformants.	
<u></u>		

Chapters	Title	Page No.
3.3.7	Influence of phosphorous levels on IAA, EPS and biofilm	99
	production.	
3.3.8	Effect of Hs (pJNK3) and Hs (pJNK4) on the nutrient status of	101
	Rice plants	
3.4	Discussion	105
Chapter 4	Monitoring the MPS ability of H. seropedicae Z67	
	harboring <i>pqq</i> gene clusters.	
4.1	Introduction	109
4.1.1	Rational of study	111
4.2	Experimental design	112
4.2.1	Bacterial strains used in this study	112
4.2.2	Bacterial strains, plasmids, media, and culture conditions.	113
4.2.3	DNA manipulation	113
4.3	Results:	114
4.3.1	Subcloning of pqqE gene of E. herbicola in broad host range	114
	vector pBBR1MCS2 km ^r from pMGC898.	
4.3.2	Growth and MPS ability of H. seropedicae Z67 transformant of	116
	pqqgenes.	
4.3.3	GDH activity and gluconic acid secretion in H. seropedicae	120
	Z67 transformant of pqqgenes.	
4.3.4	Secretion of PQQ by H. seropedicae Z67 transformants.	123
4.3.5	Influence of phosphorous levels on IAA, EPS and biofilm	124
	production.	
4.4	Discussion	126
Chapter 5	Determining the MPS ability of H. seropedicaeZ67	
	containing pqqcluster and gad genes	
5.1	Introduction.	130
5.1.1	Rational of study	132

•

5.2	Experimental design	133
5.2.1	Bacterial strains used in this study	133
5.2.2	Bacterial strains, plasmids, Media, and culture conditions.	134
5.2.3	DNA manipulation	134
5.3	Results:	135
5.3.1	Subcloning of pqq gene of Pseudomonas fluorescens B16 in	135
	broad host range vector pBBR1MCS2Km ^r from pOK53.	
5.3.2	Subcloning of pqq gene of Acinetobactercalcoaceticus in broad	136
	host range vector pUCPM18Gm ^r from pSS2.	
5.3.3	Subcloning of gad operon of Pseudomonas putida KT 2440 in	137
	broad host range vector pJNK5Gm ^r from pCNK12	
5.3.4	Growth and MPS ability of H. seropedicaeZ67 transformants of	138
	pJNK5 and pJNK6 plasmids	
5.3.5	Potassium solubilizing ability of H. seropedicaeZ67	142
	transformants.	
5.3.6	GDH and GADH activity and organic acid secretion in H.	143
	seropedicaeZ67 transformants.	
5.3.7	Effect of Hs (pJNK5) and Hs (pJNK6) on the nutrient status of	145
	rice plants	
5.4	Discussion	149
Chapter 6	Determining the alleviation of Cd toxicity and biocontrol	
	abilities of <i>H. seropedicae</i> Z67 harboringpqq gene clusters in	
	rice plants,	
6.1	Introduction	153
6.2	Experimental design	155
6.2.1	Bacterial strains used in this study	155
6.2.2	Bacterial strains, plasmids, Media, and culture conditions.	156
6.2.3	Antibacterial and antifungal activity of Hs transformants	156
6.3	Results.	157
		1

6.3.1	PQQ fluorescence property	157
6.3.2	Antibacterial activity of H. seropedicaecontainingpqqgene	158
	clusters.	
6.3.3	Antifungal activity	159
6.3.4	Effect of <i>H. seropedicae</i> transformantsHs(pJNK5) and Hs	160
	(pJNK6) on cadmium tolerance.	
6.3.5	H. seropedicaepqqtransformants (pJNK5) and (pJNK6) effect	161
	on growth of rice seedling against cadmium stress.	
6.3.6	H. seropedicaepqqtransformants (pJNK5) and (pJNK6) effect	162
	on enzyme activity of rice seedling against cadmium and salt	
	stress.	
6,4	Discussion	164
	Summary	167
	Bibliography	172
	List of Tables	
Chapters	Title	Page No
Chapters Chapter: 1	Title Review of Literature and Introduction	Page No
Chapters Chapter: 1 Table 1.1	Title Review of Literature and Introduction Nature of organic acids secreted by PSMs	Page No 14
Chapters Chapter: 1 Table 1.1 A	Title Review of Literature and Introduction Nature of organic acids secreted by PSMs Nature of organic acids secreted by PS fungi	Page No 14 14
Chapters Chapter: 1 Table 1.1 A B	Title Review of Literature and Introduction Nature of organic acids secreted by PSMs Nature of organic acids secreted by PS fungi Nature of organic acids secreted by PS fungi Nature of organic acids secreted by PS microorganisms	Page No 14 14 15
Chapters Chapter: 1 Table 1.1 A B Table 1.2	Title Review of Literature and Introduction Nature of organic acids secreted by PSMs Nature of organic acids secreted by PS fungi Nature of organic acids secreted by PS fungi Nature of organic acids secreted by PS microorganisms Genetic modifications of microorganisms for phosphate	Page No 14 14 15 21
Chapters Chapter: 1 Table 1.1 A B Table 1.2	Title Review of Literature and Introduction Nature of organic acids secreted by PSMs Nature of organic acids secreted by PS fungi Nature of organic acids secreted by PS fungi Secreted by PS microorganisms Genetic modifications of microorganisms for phosphate solubilization	Page No 14 14 15 21
Chapters Chapter: 1 Table 1.1 A B Table 1.2 Table 1.3	Title Review of Literature and Introduction Nature of organic acids secreted by PSMs Nature of organic acids secreted by PS fungi Nature of organic acids secreted by PS microorganisms Genetic modifications of microorganisms for phosphate solubilization Functions of pqqgenes	Page No 14 14 15 21 26
Chapters Chapter: 1 Table 1.1 A B Table 1.2 Table 1.3 Table 1.4	Title Review of Literature and Introduction Nature of organic acids secreted by PSMs Nature of organic acids secreted by PS fungi Nature of organic acids secreted by PS microorganisms Genetic modifications of microorganisms for phosphate solubilization Functions of pqqgenes Characterized members of 2HCT family	Page No 14 14 14 15 21 26 39
Chapters Chapter: 1 Table 1.1 A B Table 1.2 Table 1.3 Table 1.4	Title Review of Literature and Introduction Nature of organic acids secreted by PSMs Nature of organic acids secreted by PS fungi Nature of organic acids secreted by PS microorganisms Genetic modifications of microorganisms for phosphate solubilization Functions of pqqgenes Characterized members of 2HCT family	Page No 14 14 15 21 26 39
Chapters Chapter: 1 Table 1.1 A B Table 1.2 Table 1.3 Table 1.4 Chapter 2	Title Review of Literature and Introduction Nature of organic acids secreted by PSMs Nature of organic acids secreted by PS fungi Nature of organic acids secreted by PS microorganisms Genetic modifications of microorganisms for phosphate solubilization Functions of pqqgenes Characterized members of 2HCT family Materials and Methods	Page No 14 14 15 21 26 39
Chapters Chapter: 1 Table 1.1 A B Table 1.2 Table 1.3 Table 1.4 Chapter 2 Table 2.1	Title Review of Literature and Introduction Nature of organic acids secreted by PSMs Nature of organic acids secreted by PS fungi Nature of organic acids secreted by PS microorganisms Genetic modifications of microorganisms for phosphate solubilization Functions of pqqgenes Characterized members of 2HCT family Materials and Methods List of plasmids used in the present study.	Page No 14 14 15 21 26 39 55
Chapters Chapter: 1 Table 1.1 A B Table 1.2 Table 1.3 Table 1.4 Chapter: 2 Table 2.1 Table 2.2	Title Review of Literature and Introduction Nature of organic acids secreted by PSMs Nature of organic acids secreted by PS fungi Nature of organic acids secreted by PS microorganisms Genetic modifications of microorganisms for phosphate solubilization Functions of pqqgenes Characterized members of 2HCT family Materials and Methods List of plasmids used in the present study. Recommended doses of antibiotics used in this study	Page No 14 14 14 15 21 26 39 55 61
Chapters Chapter: 1 Table 1.1 A B Table 1.2 Table 1.2 Table 1.3 Table 1.4 Chapter 2 Table 2.1 Table 2.2 Table 2.3	Title Review of Literature and Introduction Nature of organic acids secreted by PSMs Nature of organic acids secreted by PS fungi Nature of organic acids secreted by PS microorganisms Genetic modifications of microorganisms for phosphate solubilization Functions of pqqgenes Characterized members of 2HCT family Materials and Methods List of plasmids used in the present study. Recommended doses of antibiotics used in this study PCR conditions used in the present study.	Page No 14 14 14 15 21 26 39 55 61 67

	H. seropedicaeZ67 transformants	ļ
Chapter. 3	Monitoring the MPS ability of <i>H. seropedicue</i> Z67 containing <i>E. coli</i> NADH insensitive citrate synthase (Y145F) - <i>Salmonella typhimurium</i> Na ⁺ dependent citrate transporter (<i>citC</i>) operon.	
Table 3.1	NADH binding and inhibition by variant citrate synthases	84
Table 3.2	List of bacterial strains used	86
Table 3.3	Specific primer pair for Na ⁺ dependent citrate transporter (<i>citC</i>) gene.	90
Table 3.4	Physiological attributes and metabolic record of <i>H</i> . <i>seropedicae</i> Z67 transformants grown on HRP minimal medium with 50mM glucose as C source under aerobic condition.	97
Table 3.5	Physiological attributes and metabolic record of <i>H.</i> seropedicaeZ67 transformants grown under micoaerobic condition on HRP minimal medium with 50mM glucose as C source.	98
Table 3.6	Physical and chemical properties of experimental soil used for <i>H. seropedicae</i> Z67 transformants	102
Table 3.7	Effects of <i>H. seropedicae</i> transformants on plant fresh weight, dry weight, plant height leaf chlorophyll content at 30 DAI.	102
Table 3.8	N, P and K levels in rice plants after 30 DAI with <i>H</i> . seropedicaeZ67 transformants.	103
Chapter, 4	Monitoring the MPS ability of <i>H. seropedicae</i> Z67 harboring <i>pqq</i> gene clusters.	
Table 4.1	Bacterial strains used in this study	112
Table 4.2	Physiological attributes and metabolic record of <i>H.</i> seropedicaeZ67 transformants grown on HRP minimal medium with 50mM glucose as C source under aerobic condition.	118
		110

	seronedicae767 transformants grown on N free under	1
	microscrobiocondition UDD minimal madium with 50mM	
	shappe of C source	
	glucose as C source.	
Table 4.4	GDH activity gluconic acid secretion and mps activity of <i>H</i> .	122
	seropedicaeZ67 transformants.	
Table 4.5	Amount of PQQ secretion in native and transformant bacteria.	123
Chapter. 5	Determining the MPS ability of <i>H. seropedicae</i> Z67	
	containing pqqcluster and gad genes	
Table 5.1	Bacterial strains used in this study	133
Table 5.2	Physiological attributes and metabolic record of H.	140
	seropedicaeZ67 transformants grown on HRP minimal medium	
	with 50mM glucose as C source under aerobic condition.	
Table 5.3	Physiological attributes and metabolic record of H.	141
	seropedicaeZ67 transformants grown under microaerobic	
	condition on HRP minimal medium with 50mM glucose as C	
	source.	
Table 5.4	Effect of <i>H. seropedicae</i> Z67 transformants on the enzyme	144
	activity, organic acid secretion and mineral phosphate and	
	potassium solubilization in HRP medium containing 50mM	
	glucose as the carbon source under aerobic condition	
Table 5.5	Effects of <i>H. seropedicae</i> Z67 transformants on rice plant fresh	146
	weight, dry weight, plant height leaf chlorophyll content at 30	
	DAI.	
Table 5.6	N, P and K status of rice plants after 30 DAI with H.	147
	seropedicaeZ67 transformants.	
an a		
Chapter 6	Determining the alleviation of Cd toxicity and biocontrol	
	abilities of <i>H. seropedicae</i> Z67 harboring <i>pqq</i> gene clusters in	
	rice plants.	
Table 6.1	Table 6.1: Bacterial strains used in this study	155

	List of Figures	
	Review of Literature and Introduction	2
Chapters	Title	Page No
Chapter. 1	Review of Literature and Introduction	
Fig. 1.1	Global distribution of phosphorus reserve	2
Fig. 1.2	Share of Rock phosphate production in 2010	3
Fig. 1.3	Total global P consumption	3
Fig. 1.4	Changing share of rock phosphate production	4
Fig. 1.5	Changing share of rock phosphate reserves	4
Fig. 1.6	Depletion of resource base of phosphate rock under the Global	5
	Orchestration (GO) scenario	
Fig. 1.7	Soil pH impacts P availability	8
Fig.1.8	Phosphorous cycle	8
Fig.1.9	Plant- microbe mechanism to increase Phosphorus availability	12
	in rhizosphere	
Fig. 1.10	Total global P consumption	18
Fig. 1.11	Direct oxidative pathway in pseudomonads	24
Fig. 1.12	Structure of PQQ	25
Fig. 1.13	PQQ as a redox cycling agent.	25
Fig. 1.14	PQQ biosynthesis pathway	27
Fig. 1.15	Comparison of the pqqgene clusters	28
Fig. 1.16	Organization of pqqgenes in bacteria	29
Fig. 1.17	Structures of Pqq genes	30
Fig. 1.18	Schematic representation of NADH inhibition of E. coli Type II	32
	CS	
Fig. 1.19	Ribbon structure of NADH bound hexamericE. coli F383A type	33
	II CS.	
Fig. 1.20	Close-up view of the contour of the enzyme surface in the	34

	vicinity of one NADH binding site in hexamericE. coli CS	
Fig. 1.21	RasMol model of E. coli citrate synthase (hexamer).	35
Fig. 1.22	Diagram showing proposed route of communication between	36
	NADH binding sites and active sites in the Type II CS of E. coli	
Fig. 1.23	Citrate fermentation pathway in Klebsiella pneumonia	40
Fig. 1.24	Diagramatic representation of the potassium cycle in soils.	42
Fig. 1.25	H. seropedicaecolonization in Phaseolus vulgaris	43
Fig. 1.26	β -Glucuronidase (GUS) staining of rice seedlings with <i>H</i> .	44
	seropedicaeZ67-gusA	
Fig. 1.27	Scanning electron microscope (SEM) images of H.	44
	seropedicaeZ67-gusA	
Fig. 1.28	Proposed pathways for aromatic compounds metabolism in	45
	H. seropedicaeSmR1	
Fig. 1.29	Molecular mechanisms probably involved in plant colonization	46
	and plant growth promotion identified in the H.	
	seropedicaeSmR1 genome	
Fig. 1.30	Structural organization of the nifand fix gene cluster in the	47
	H. seropedicaegenome	
Fig. 1.31	Model of transcriptional regulation of nitrogen fixation in	48
	H. seropedicae	
Fig. 1.32	Model of posttranslational control of nitrogen fixation in	
	H. seropedicae.	
Chapter. 2	Materials and methods	
Fig. 2.1	Restriction maps of the plasmids used in this study	58
Fig. 2.2	Restriction maps of the plasmids used in this study	59
Chapter. 3	Monitoring the MPS ability of <i>H. seropedicae</i> Z67 containing	
	E. coli NADH insensitive citrate synthase (Y145F) -	
	Salmonella typhimurium Na ⁺ dependent citrate transporter	
	(ciiC) operon.	
Fig. 3.1	E. coli csprotein sequence showing the regulatory variants	84

Fig. 3.2	Schematic representation of construction of <i>H. seropedicae</i> Z67	88
	stable vectors containing NADH insensitive E. coli csgene	
	under <i>lac</i> promoter.	
Fig. 3.3	Schematic representation of construction of plasmid containing	89
	NADH insensitive <i>E. coli cs</i> gene and citrate transporter (<i>citC</i>)	
	gene under lac promoter.	
Fig. 3.4	Lactose utilization of <i>H. seropedicae</i> Z67 strain on M9 minimal	91
	medium.	
Fig. 3.5	pTOL mediated Na-benzoate utilization and GFP expression in	91
	H. seropedicaeZ67.	
Fig. 3.6	PCR amplification of S. typhimuriumNa ⁺ dependent citrate	92
	transporter (citC) gene.	
Fig. 3.7	Restriction digestion pattern for pAB8 and pAB7.	92
Fig. 3.8	Restriction digestion pattern for pUCPM18 Km ^r containing	93
	NADH insensitive csgene	
Fig. 3.9	Restriction digestion pattern for pUCPM18 Km ^r containing	93
	NADH insensitive <i>cs</i> gene and of Na ⁺ dependent citrate	
	transporter (citC) of Salmonella typhimurium	
Fig. 3.10	Complementation of E. coli W620 mutant phenotype by wild	94
	type and NADH insensitive csplasmids.	
Fig. 3.11	MPS phenotype.	95
Fig. 3.12	Growth and pH profile.	95
Fig. 3.13	Organic acid production from <i>H. seropedicae</i> Z67	99
	transformants.	
Fig. 3.14	Plant growth promoting factors.	100
Fig. 3.15	Effect of <i>Hs</i> transformants in rice plants.	104
Chapter. 4	Monitoring the MPS ability of <i>H. seropedicae</i> Z67	
	harboringpqq gene clusters.	
Fig. 4.1	Schematic representation of construction of H. seropedicaeZ67	.114
	stable vectors containing $pqqE$ gene under <i>lac</i> promoter.	

Fig. 4.2	Restriction digestion pattern for pJNK1.	114
Fig. 4.3	Restriction digestion pattern for pSS2.	115
Fig. 4.4	Restriction digestion pattern for pOK53	115
Fig. 4.5	MPS phenotype.	116
Fig. 4.6	Growth and pH profile.	117
Fig. 4.7	Organic acid levels and yield.	121
Fig. 4.8	Effect of <i>Hs</i> transformants on plant growth promoting factors.	125
Chapter. 5	Determining the MPS ability of <i>H. seropedicae</i> Z67	
Fig. 5.1	Schematic representation of construction pJNK2 stable vector	135
U	containing pqqgene cluster (13.4Kb) of P. fluorescensB16	
	under <i>lac</i> promoter.	
Fig. 5.2	Schematic representation of construction pJNK5 stable vector	136
	containing pqqgene cluster (5.1Kb) of A. calcoaceticusunder	
	<i>lac</i> promoter.	
Fig. 5.3	Schematic representation of construction of pJNK6 stable	137
	vectors containing P. putidaKT 2440 gad operon under lac	
	promoter.	
Fig. 5.4	Restriction digestion pattern for pJNK2.	137
Fig. 5.5	Restriction digestion pattern for pJNK5.	138
Fig. 5.6	Restriction digestion pattern for pJNK6.	138
Fig. 5.7	MPS and KS phenotype of <i>H. seropedicae</i> Z67 transformants.	139
Fig. 5.8	Effect of pqqgene cluster and gad operon overexpression on	142
	growth pattern and pH profile of <i>H. seropedicae</i> Z67.	
Fig. 5.9	Effect of <i>H. seropedicae</i> Z67 on rice plants.	148
Chaster		
Cushiel.0	abilition of H association of Cd toxicity and blocompol-	
	abilities of <i>n. seropeatcae</i> 207 harboringpqq gene clusters m	
	nee hisuits:	

.

Fig. 6.1	PQQ fluorescence of <i>E. coli</i> and <i>H. seropedicae</i> Z67 transformantscontaining <i>pqq</i> genes.	158
Fig. 6.2	Antibacterial activity of <i>H. seropedicae</i> Z67 containing <i>pqq</i> genes.	159
Fig. 6.3	Antifungal activity of <i>H. seropedicae</i> Z67 containing <i>pqq</i> gene cluster.	160
Fig. 6.4	Effect of <i>Hs</i> transformants on rice seedling treated with cadmium.	161
Fig.6.5	Relative net elongation (%) of root and shoot of rice seedling (RNE).	162
Fig.6.6	CAT and SOD enzyme activities of rice seedlings inoculated with <i>H. seropedicae</i> Z67 transformants.	163

•

\$

· · ·