LIST OF FIGURES

- **Fig. 1.1:** Surface circulation pattern in the Bay of Bengal during summer and winter monsoon. Note, the reversal of EICC during the two seasons (after Schott and McCreary, 2001).
- **Fig. 2.1:** Water Sampling locations in the Arabian Sea and the Equatorial Indian Ocean. GEOSECS station numbers are given after '#'. The boxed filled circles are the reoccupied GEOSECS stations.
- **Fig. 2.2:** Locations of the sediment core samples collected in the Bay of Bengal. Boxed filled circles are the cores studied in detail.
- **Fig. 3.1:** Location of sampling stations in the Arabian Sea. The boxed filled circles are the GEOSECS stations occupied during this study almost after two decades.
- **Fig. 3.2:** Radiocarbon distribution in the upper 1000 m water column at the equatorial Indian Ocean station 3846. Also, shown the ¹⁴C profile of GEOSECS for the station occupied during 1978. Dashed line is the pre-bomb ¹⁴C simulated curve.
- **Fig. 3.3**: Model Δ^{14} C of tropospheric CO₂ for the atmosphere over the Northern Indian Ocean used in the upwelling calculation (thick gray line). Tropospheric Δ^{14} C of Northern Hemisphere Zone 3 (Hua and Barbetti, 2004) is shown as thin line. Tropospheric Δ^{14} C values measured over the Arabian Sea during 1993-'95 and over the Bay of Bengal during 1997 (Dutta et al., 2006) are shown as filled circles.
- **Fig. 3.4**: Distribution of $\Delta^{14}C^*$ (excess bomb ^{14}C) versus depth for different stations. The solid line represents the simulated curve based on 1-D model of Oeschger et al., (1975) for the exchange rate (E), eddy diffusivity (K) and upwelling velocity (w).
- Fig. 4.1:Core locations in the Bay of Bengal. Boxed filled circles
are the two cores studied in detail. Rivers supplying
sediment to the Bay are also identified.37
- Fig. 4.2:Correlation of Organic Carbon (Corg) in the surface
sediments with CaCO3, C/N ratio and V
concentration. No apparent correlation of Corg with41

13

4

14

23

27

28

32

C/N can be noticed indicating marine source of $C_{\text{org.}}$

Distribution of Al (%) in the Bay of Bengal surface sediments. Note, Al decrease from the coast to the open ocean. Western Bay of Bengal show Fe rich sediments, contribution from peninsular river.	42
Distribution of Ti (ppm) in the surface sediments of the Bay of Bengal.	43
Distribution of Fe (%) in the surface sediments of the Bay of Bengal. Western Bay of Bengal show Fe rich sediments, contribution from peninsular river.	44
Distribution of V and Cr in the surface sediments. Erosion of Basaltic rocks from the peninsular India is responsible for higher V and Cr in western region.	45
Distribution of Mn (%) in the surface sediments of the Bay of Bengal. Higher Mn concentrations in the northern Bay of Bengal is due to enrichment of surface sediments in high sedimentation regions.	46
Distribution of CaCO ₃ and organic carbon (C_{org}) in the surface sediments of the Bay of Bengal. Increasing CaCO ₃ from the coast to the open ocean indicates decreasing detrital contribution. Whereas, high C_{org} near the coast reflects its enhanced preservation with increasing detrital flux	47
Distribution of Ba/Al, productivity proxy in the surface sediments of the Bay of Bengal. Dilution of Ba due to increasing continental flux from coast to the open ocean can be observed.	48
⁸⁷ Sr/ ⁸⁶ Sr and ɛ _{Nd} of the river mouth samples measured. Irrawaddy river data from Colin et al., 1999	49
⁸⁷ Sr/ ⁸⁶ Sr versus ε_{Nd} plot of surface sedments. Also, shown are the boxes representing the end members. G-K (Godavari-Krishna) sediments values are the river mouth value.(Singh et al., 2008; Colin et al., 1999)	51
87 Sr/ 86 Sr and ϵ_{Nd} of surface sediment samples. Also, shown are the boxes representing the end members. G-K (Godavari-Krishna) sediments values are the river mouth value.(Singh et al., 2008; Colin et al., 1999; Ahmad et al., 2005).	51
	 sediments. Note, Al decrease from the coast to the open ocean. Western Bay of Bengal show Fe rich sediments, contribution from peninsular river. Distribution of Ti (ppm) in the surface sediments of the Bay of Bengal. Distribution of Fe (%) in the surface sediments of the Bay of Bengal. Western Bay of Bengal show Fe rich sediments, contribution from peninsular river. Distribution of V and Cr in the surface sediments. Erosion of Basaltic rocks from the peninsular India is responsible for higher V and Cr in western region. Distribution of Mn (%) in the surface sediments of the Bay of Bengal. Higher Mn concentrations in the northern Bay of Bengal is due to enrichment of surface sediments in high sedimentation regions. Distribution of CaCO₃ and organic carbon (Corg) in the surface sediments of the Bay of Bengal. Increasing CaCO₃ from the coast to the open ocean indicates decreasing detrital contribution. Whereas, high Corg near the coast reflects its enhanced preservation with increasing detrital flux Distribution of Ba/Al, productivity proxy in the surface sediments of the Bay of Bengal. Dilution of Ba due to increasing continental flux from coast to the open ocean can be observed. ^{\$7}Sr/⁸⁶Sr and ε_{Nd} of the river mouth samples measured. Irrawaddy river data from Colin et al., 1999 ^{\$7}Sr/⁸⁶Sr and ε_{Nd} of surface sediments. Also, shown are the boxes representing the end members. G-K (Godavari-Krishna) sediments values are the river mouth value. (Singh et al., 2008; Colin et al., 1999;

Fig. 4.13:	⁸⁷ Sr/ ⁸⁶ Sr vs 1/Sr and ε _{Nd} versus 1/Nd plot of the surface sediment.	52
Fig. 4.14:	Contour plot of ⁸⁷ Sr/ ⁸⁶ Sr distribution of sediments in the Bay of Bengal.	52
Fig. 4.15:	Contour plot of ε_{Nd} distribution of sediments in the Bay of Bengal. Note, third end member with high ε_{Nd} from the eastern Bay of Bengal along the coast of Arakan through Irrawaddy River	53
Fig. 5.1:	Sediment core locations in the Bay of Bengal	56
Fig. 5.2:	Age-Depth plot model of the core 4032 and 4040 from the Bay of Bengal.	57
Fig. 5.3:	Mass Accumulation Rate for the core 4032.	59
Fig. 5.4:	Downcore variation of Al (%), Fe(%), Mg(%) and Ti(ppm) in the core 4032. In general, a slow decreasing pattern from 50 kyr to 14 kyr and a gradual decreasing pattern from 14 kyr to 7 kyr can be noticed.	60
Fig. 5.5:	Downcore variation of Al (%), Fe (%), Mg (%) and Ti (ppm in the core 4040. Note, relatively high variability in their concentrations.	64
Fig. 5.6:	Mass accumulation rate of lithogenic proxies for the core 4032.	67
Fig. 5.7:	Downcore variation of Al, Fe/Al, Mg/Al and Ti/Al in the Core 4032.	68
Fig. 5.8:	Downcore variation of Al, Fe/Al, Mg/Al and Ti/Al in the Core 4040.	69
Fig. 5.9:	Downcore variation of CaCO ₃ , C_{org} and C/N in the core 4032.	70
Fig. 5.10:	Downcore variation of CaCO ₃ , C_{org} and C/N in the core 4040.	73
Fig. 5.11:	Downcore variation of C_{org} and $\delta^{13}C$ and $\delta^{15}N$ of the organic matter in the core 4032.	74
Fig. 5.12:	Downcore variation of Ca/Al, Ba/Al and Sr/Al in the core 4032.	79
Fig. 5.13:	Downcore variation of Ca/Al, Ba/Al and Sr/Al in the	80

core 4040.

Fig. 5.14:	Downcore variation of fluxes of redox sensitive proxies viz. Mn, Cr and V in the core 4032	81
Fig. 5.15:	Downcore variation of fluxes of trace elemental proxies of Ni, Co, Zn and Cu in the core 4032	82
Fig. 5.16:	Downcore variation of the redox sensitive elements normalized to Al for the core 4032.	83
Fig. 5.17:	Downcore variation of redox proxies normalised to Al in the core 4040	83
Fig. 5.18:	Downcore variation of trace element proxies normalised to Al in the core 4032.	84
Fig. 5.19:	Downcore variation of trace element proxies normalised to Al in the core 4040.	85
Fig. 5.20:	Downcore variation of ⁸⁷ Sr/86Sr in the core 4032. Three prominent low ⁸⁷ Sr/ ⁸⁶ Sr ratios at 14, 20 and 43 kyr are observed.	87
Fig. 5.21:	Downcore variation of ϵ_{Nd} in the silicate fraction of the sediments from the core 4032. Note, the lowest ϵ Nd of -8.8 at 20 kyr.	97
Fig. 5.22:	Downcore variation of ϵ_{Nd} in the silicate fraction of the sediments from the core 4040. Note, the lowest ϵ_{Nd} of -8.0 at 20 kyr.	98
Fig. 5.23:	Comparison of ⁸⁷ Sr/ ⁸⁶ Sr with solar insolation and mean effective moisture (Herszchuh et al., 2006). Note, synchronous variation of ⁸⁷ Sr/ ⁸⁶ Sr with solar insolation and moisture indicative of global correlation of the Bay of Bengal climate.	101
Fig. 5. 24 :	Periodicities observed in the core 4032 in its various proxies. Note 3.7 kyr periodicity prominent in all the proxies.	104
Fig. 5.25:	Periodicities observed in the core 4040 in its productivity proxies. Note 2.7 kyr periodicity prominent in all the proxies.	105
Fig. 5.26:	Periodicities observed in the core 4032 for Mn and V/Al. Note 2.4 kyr periodicity prominent in all the proxies.	106