LIST OF FIGURES

.

Fig. 1.1.	Geological map of Rajasthan.	2
Fig. 1.2.	Geological map of Malani igneous province, Rajasthan.	4
Fig. 1.3.	Alk - SiO ₂ diagram of various rocks from the Malani	
	igneous province.	7
Fig. 1.4.	FeO - Al ₂ O ₃ +CaO diagram of rhyolitic rocks from	
	Malani igneous province.	8
Fig. 1.5.	Pre-Quaternary interpretative geological map of southwest	
	Rajasthan.	10
Fig. 2.1.	Geological map of felsic volcanics from Gurapratap Singh	
	and Diri, Pali district, Rajasthan.	13
Fig. 2.2.	Harker diagrams of Gurapratap Singh and Diri volcanics.	14
Fig. 2.3.	Plot of normative Q-Or-Ab-H ₂ O of Gurapratap Singh and	
	Diri volcanics.	16
Fig. 2.4.	Variation of Rb, Sr and Ba with progressive differentiation	
	in the felsic volcanics of Gurapratap Singh and Diri.	17
Fig. 2.5.	Variation of Zn, Cr, Li, Ni and Co with progressive	
	differentiation in the felsic volcanics of Gurapratap Singh	
	and Diri.	18
Fig. 2.6.	Variation in Ni/Co, Fe/Zn and Mg/Li with progressive	
	differentiation in the felsic volcanics of Gurapratap	
	Singh and Diri.	19
Fig. 2.7.	Geological map of Siwana ring structure, Barmer district,	
	Rajasthan.	21
⁻ Fig. 2.8.	Geological map of Tavidar volcanics, Jalore district,	
	Rajasthan.	24
Fig. 2.9.	The Deccan volcanic province showing the distribution	
	of plugs and alkaline intrusions.	28

Fig. 2.10.	Geological map of Mundwara alkali igneous complex,	
	Rajasthan.	29
Fig. 3.1.	Decay scheme diagram for the branched decay of ${}^{40}K_{19}$ to	
	40 Ar ₁₈ by electron capture and by positron emission and	
	to ⁴⁰ Ca ₂₀ by emission of negative betaparticles.	33
Fig. 3.2.	Schematic of the complete mass spectrometer,	
	gas extraction - purification system.	44
Fig. 3.3.	Section through gas extraction furnace and purifi-	
	cation line.	45
Fig. 3.4.	Middle section of the S-S block with only one valve	
	assembly shown.	46
Fig. 3.5.	Typical argon spectrum.	49
Fig. 4.1.	⁴⁰ Ar- ³⁹ Ar age spectrum for Diri Basalt (D/88).	64
Fig. 4.2.	⁴⁰ Ar- ³⁹ Ar age spectrum for Diri Dacite (D/25).	66
Fig. 4.3.	⁴⁰ Ar- ³⁹ Ar age spectrum for Diri Rhyolite (D/174).	68
Fig. 4.4.	Rb-Sr conventional isochron diagram for Basalt-Andesite-	
	Dacite-Rhyolite association from Diri and Gurapratap Singh.	72
Fig. 4.5.	Rb-Sr best isochron diagram for Basalt-Andesite-	
	Dacite-Rhyolite association from Diri and Gurapratap Singh.	74
Fig. 4.6.	Rb-Sr conventional isochron diagram for Ultrapotassic	
	Rhyolites from Diri and Gurapratap Singh.	77
Fig. 4.7.	⁴⁰ Ar- ³⁹ Ar age spectrum for Jalore Granite (JR 86/15).	81
Fig. 4.8.	⁴⁰ Ar- ³⁹ Ar age spectrum for Jalore Granite (JR 86/17).	83
Fig. 4.9.	Rb-Sr conventional isochron diagram for Jalore Granite.	86
Fig. 4.10.	Rb-Sr conventional isochron diagram for Siwana Granite.	89
Fig. 4.11.	Rb-Sr conventional pooled isochron diagram for Peralkaline	
-	Granites and Peralkaline Volcanics from Siwana.	91
Fig. 4.12.	Rb-Sr conventional isochron diagram for Outer Rhyolites	
	from south of Siwana.	93

x

,

Fig. 4.13.	Rb-Sr conventional pooled isochron diagram for Outer	
	and Ultrapotassic Rhyolites.	94
Fig. 4.14.	⁴⁰ Ar- ³⁹ Ar age spectrum for Tavidar Andesite (VA/181).	100
Fig. 4.15.	⁴⁰ Ar- ³⁹ Ar age spectrum for Tavidar Andesite (K/67).	103
Fig. 4.16.	⁴⁰ Ar/ ³⁶ Ar vs. ³⁹ Ar/ ³⁶ Ar isochron plot for Tavidar	
	Andesite (VA/181).	104
Fig. 4.17.	⁴⁰ Ar/ ³⁶ Ar vs. ³⁹ Ar/ ³⁶ Ar isochron plot for Tavidar	
	Andesite (K/67).	105
Fig. 4.18.	⁴⁰ Ar- ³⁹ Ar age spectrum for Tavidar Trachyte (VA/58).	107
Fig. 4.19.	⁴⁰ Ar- ³⁹ Ar age spectrum for Tavidar Trachyte (K/30).	109
Fig. 4.20.	⁴⁰ Ar/ ³⁶ Ar vs. ³⁹ Ar/ ³⁶ Ar isochron plot for Tavidar	
	Trachyte (VA/58).	110
Fig. 4.21.	⁴⁰ Ar/ ³⁶ Ar vs. ³⁹ Ar/ ³⁶ Ar isochron plot for Tavidar	
	Trachyte (K/30).	111
Fig. 4.22.	⁴⁰ Ar- ³⁹ Ar age spectrum for Tavidar Rhyolite (VA/183).	115
Fig. 4.23.	⁴⁰ Ar/ ³⁶ Ar vs. ³⁹ Ar/ ³⁶ Ar isochron plot for Tavidar	
	Rhyolite (VA/183).	116
Fig. 4.24.	⁴⁰ Ar- ³⁹ Ar age spectrum for Tavidar Potassic	
	Rhyolite (VA/168).	119
Fig. 4.25.	⁴⁰ Ar/ ³⁶ Ar vs. ³⁹ Ar/ ³⁶ Ar isochron plot for Tavidar	
	Potassic Rhyolite (VA/168).	120
Fig. 4.26.	⁴⁰ Ar- ³⁹ Ar age spectrum for Tavidar Hawaiite (VA/119).	122
Fig. 4.27.	⁴⁰ Ar- ³⁹ Ar age spectrum for Tavidar Hawaiite (K/69A).	124
Fig. 4.28.	⁴⁰ Ar/ ³⁶ Ar vs. ³⁹ Ar/ ³⁶ Ar isochron plot for Tavidar	
	Hawaiite (VA/119).	125
Fig. 4.29.	⁴⁰ Ar/ ³⁶ Ar vs. ³⁹ Ar/ ³⁶ Ar isochron plot for Tavidar	
٠	Hawaiite (K/69A).	126
Fig. 4.30.	Plot of initial Sr ratios Against Sr content of	
	Tavidar volcanics.	130

Fig. 4.31.	Plot of mean initial Sr ratio of Tavidar volcanics and	
	Mundwara igneous complex on Sr evolution diagram.	131
Fig. 4.32.	⁴⁰ Ar- ³⁹ Ar age spectrum for Musala Essexite (MR 86/1).	134
Fig. 4.33.	⁴⁰ Ar/ ³⁶ Ar vs. ³⁹ Ar/ ³⁶ Ar isochron plot for Musala	
	Essexite (MR 86/1).	135
Fig. 4.34.	⁴⁰ Ar- ³⁹ Ar age spectrum for Musala Basalt (MR 86/2).	138
Fig. 4.35.	⁴⁰ Ar/ ³⁶ Ar vs. ³⁹ Ar/ ³⁶ Ar isochron plot for Musala	
	Basalt (MR 86/2).	139
Fig. 4.36.	⁴⁰ Ar- ³⁹ Ar age spectrum for Musala Syenite (MR 86/4).	141
Fig. 4.37.	⁴⁰ Ar/ ³⁶ Ar vs. ³⁹ Ar/ ³⁶ Ar isochron plot for Musala	
	Syenite (MR 86/4).	142
Fig. 4.38.	⁴⁰ Ar- ³⁹ Ar age spectrum for Musala Syenite (MR 86/5).	145
Fig. 4.39.	⁴⁰ Ar- ³⁹ Ar age spectrum for Mer Syenite (MR 86/7).	147
Fig. 4.40.	⁴⁰ Ar/ ³⁶ Ar vs. ³⁹ Ar/ ³⁶ Ar isochron plot for Mer	
	Syenite (MR 86/7).	148
Fig. 4.41.	⁴⁰ Ar- ³⁹ Ar age spectrum for Toa Gabbro (MR 86/9).	150
Fig. 4.42.	Plot of initial Sr ratios Against Sr content of	
	Mundwara alkali igneous complex.	154

٠

•

•