CHAPTER

VII

HYDROGEOLOGICAL ASPECTS

GENERAL HYDROGEOLOGICAL CATEGORISATION BLOCKWISE DESCRIPTION CHEMICAL QUALITY SOME ASPECTS OF MANAGEMENT

.

.

HYDROGEOLOGICAL ASPECTS

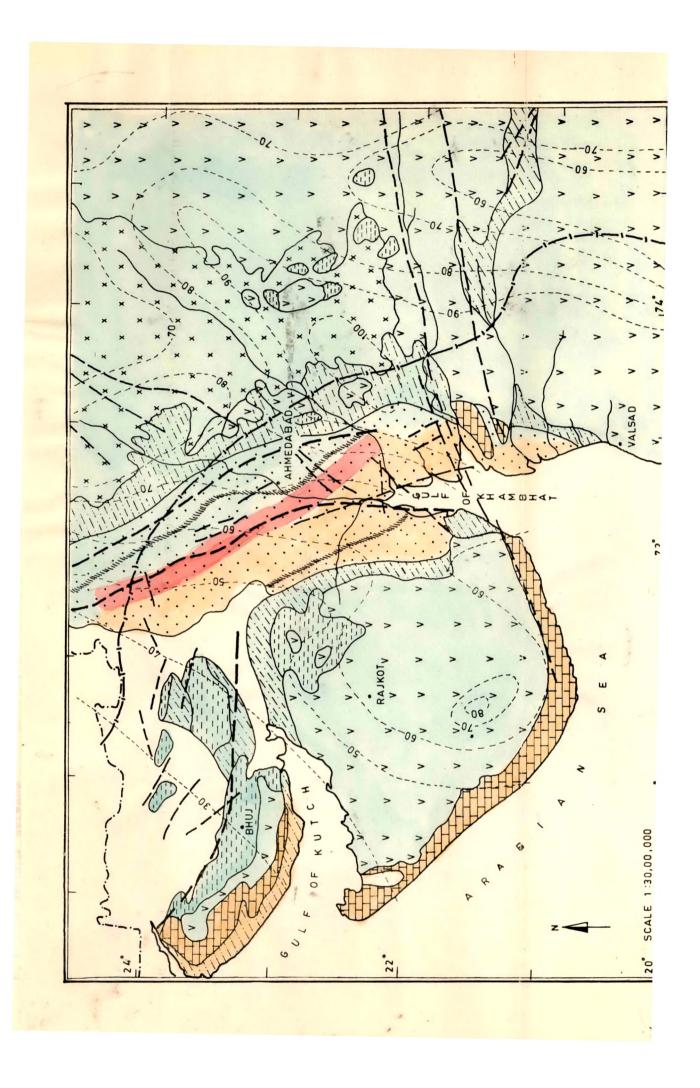
GENERAL

Coastal areas always pose problems of groundwater. By and large it is saline, and availability of sweet water is much restricted. It is common knowledge that the groundwater conditions in the coastal areas are unfavourable on account of the salinity of the available water. But it is equally true that favourable lithological, geomorphic and climatic factors do provide sufficient quantity of sweet water under surface and subsurface storage conditions. Occurrence and availability of water from phreatic aquifers is an important feature, and any evaluation of onshore geoenvironmental conditions of a coastal area cannot ignore this vital aspect.

In the course of his investigations the author having realised the importance of the porblems of drinking water faced by the coastal villages, made it a point to study the behaviour of unconfined to semiconfined groundwater along the Gulf coast in somewhat greater detail. The author could not get much information, published or unpublished on this subject because <u>powhere</u> no agency or individual in the past have made an attempt to evaluate the groundwater conditions and the freshwater availability in the coastal areas around the Gulf Khambhat. By and large the groundwater in all coastal segment is saline and the sweet water supply is very limited and restricted to very shallow water table type unconfined aquifers.

HYDROGEOLOGICAL CATEGORISATION

The entire coast of the Gulf of Khambhat exhibits variable hydrogeological regimes, which can be categorised in conjunction with the prevailing geomorphic and lithologic configuration and hydroclimatic variations. The occurrence of potable groundwater in the onshore areas of the Gulf, except south of Ghogha, to a large extent is influenced by the geomorphology and the sediment characteristics.


Geomorphic features or landform patterns have made significant contribution to the development of hydrogeological setup, as they have provided suitable depressions (surface as well as subsurface) for the accumulation of groundwater and thereby contribute towards the development of aquifer systems, enhancing the recharge to the aquifers and sites for the surface. water storage. Hydroclimatic parameters have also played a vital role in the development of regional groundwater occurrence, the rainfall being the most important parameter as a function of aquifer recharge and stream flow. The other important parameters which have got direct bearing on groundwater conditions are humidity, insolation and evapotranspiration. The combined effect of all these factors and their changing pattern from area to area have provided an important basis to the author, to evaluate the shallow groundwater conditions of the various segments of the Gulf coast.

Hydrogeologically, the onshore coastal tracts of the Gulf represent lithostratigraphic units of Tertiary and Quaternary periods, and the diversity of these lithounits has given rise to a variety of aquifer systems of confined to phreatic nature. Further, the hydrogeological set up of the Gulf coast needs to be judged in the regional

recharge zones of the inland areas. The availability or otherwise of even unconfined groundwater is controlled by the processes of recharge taking place from fairly far off terrains in the NE and E.

A delicate balance exists between the unconfined sweet water and the underlying saline groundwater in the coastal areas, and in the various segments of the Gulf coast it is observed that the hydrogeological conditions from segment to segment vary, and in turn influence the availability of sweet water.

According to the regional hydrogeological map of the Gujarat State (Tiwari, 1986) in the eastern coast of the Gulf (Fig.VII.1) the aquifers between Mahi and Narmada rivers are of unconfined to confined in nature and of moderate TDS content, between Narmada and Tapi rivers the aquifers are of semiconfined to phreatic in nature with moderate TDS, here the major source of recharge is irrigation and, seepage. In the Bhal area i.e. the area between Sabarmati river and Bhaynagar creek, the deep confined aquifers are present but since the area is occupying the site of a regressed sea, the water is brackish. Only shallow phreatic aquifers of limited thickness exist in this area. The west coast area of the Gulf exhibits two different hydrogeological conditions.

۱ ا		•	130	FIG. VII-1
1	GROUNDWATER CONDITIONS GROUNDWATER BASIN HAVING EXTENSIVE LAT- ERAL EXTENT AND THICKNESS OF AQUIFFRS UNDER CONFINED CONDITIONS BEYOND 100 m MARGINAL AREAS OF GROUNDWATER BASINS HAVING AQUIFERS WITHIN 100 m WITH LIMITED EXTENSION DUE TO BOUNDRY CONDITIONS	KARSTIC LIMESTONES (MILIOLITE AND GUJ) IN COASTAL AREA HAVING GROUNWATER IN CAVERNS AND SOLUTION CHANNELS WITHIN 50 TERTIARY AND MESOZOIC SEDIMENTARY ROCKS WITH RESTRICTED CONFINED AQUIFERS IN PLATFORM AREAS.	GROUND WATER OCCURRENCE RISTRICTED TO WEATHERED ZONE, JOINT PLANES, ZONES OF SHEARING AND VESICALS PHREATIC UNCONFIND CONDITIONS PREVAIL IN WEATHERED ZONE AND RIESTIC CONDITIONS IN DEEP FRACTURES. GROUNDWATER OCCURRENCE RESTRICTED TO SOIL & REGOLITHIC COVER AND WEATHERED AND FISSURRED ZONES UNDER PHREATIC UNCONFINED CONDITIONS	GEOTECTONIC FÉATURES MAJOR FAULTS MINOR FAULT MINOR FAULT TECTONIC ZONAL BOUNDARY
TECTONIC FRAMEWORK	PLAN ER	COASTAL AREAS OF SAURASH- TRA AND BETWEEN TAPI AND NARMADA MQUTHS PLATFORM AREAS IN KUTCH AND NW SAURASHTRA OUTLIRES AND INLIRES IN E GUJARAT AND NARMADA VALLEY	TERRESTRIAL VOLCANIC EFFUSI- ONS ON PLATFORMS ANCIENT PLATFORM AREAS OF ARCHAEAN FOLDING	SPECIAL HYDROLOGICAL FEATURES ^{Munun} , Boundary Areas with Artesian ^{Munun} , Flowing Conditions (Sov. Rainfall in cm
11TH0106V	CLAY, SILT, SAND CLAY, SILT, SAND GRAVEL, PEBBLES, BOULDERS, CALCAREOUS CONCRETIONS	LI ME STONES (Milolite, Guj Kirthar) GRITS, SANDSTONS, SILTSTONES, SHALES, CONGLOMERATES, LI MESTONE	BASALTS (WITH INTERTAPPEAN BEDS) SANDSTONES, SHALES SLATES, PHYLLITES, QUATIZITES, DOLO- MITES, MARBLES , SCHISTS, GRANITES, BASIC IGNEOUS ROCKS	TY WITH LITT-
	UNCONSOLIDATED FORMATION	SEMI CONSOLIDATED	CONSOLIDATED FORMATION	ITER SALI BILITY OF VTER AT TER SALI DE PTH DE PTH HAZAROS
AGE GROUP	<u> </u>	QUATERNARY AND TERTIARY TERTIARY AND MESOZOIC	CRETACE OEO- CENE PRECAMBRIAN	WATER QUALITY GROUNDWATER SALINI LE POSSIBILITY OF E FRESH WATER AT DI GROUNDWATER SALINI ES WITH DE PTH GROUNDWATER FREE SALINITY HAZARDS
SYMBOL			> x x x	
5	۰ ۲			

,

. . .

-

HYDROGEOLOGICAL MAP OF THE GUJARAT AND ADJACENT AREAS

, •-

Ļ

1

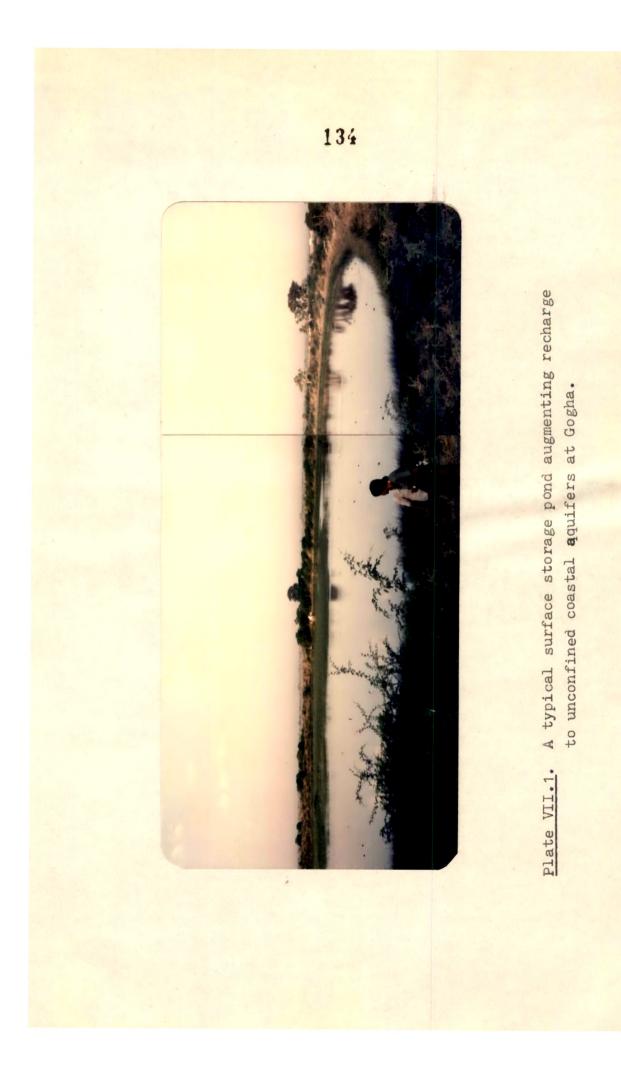
1

The area covered by the Deccan Trap basalts, shows moderate to good groundwater potentials. The majority of the aquifers are unconfined and located within the weathered and fractured basaltic flows. The TDS content is low. The groundwater behaviour in the limestone areas covered by the miliolites south of Shetrunji River is prone to serious salinity hazards due to sea water encroachement in the freshwater aquifers.

Irrespective of the hydrogeological conditions prevailing in the different parts of Gujarat specially in the vicinity of the coastal areas of the Gulf of Khambhat the most relevant aspect of the groundwater studies of the Gulf coast is that which pertains to the nature of unconfined or phreatic groundwater occurrence, in the form of shallow dug wells. It has been observed by the present author that such wells comprise the most important source of sweet water and together with surface accumulations of rain water in the form of ponds provide one of the vital resource for the coastal population. With a view to obtain authentic and dependable information on this environmental aspect, the present author carried out his own investigations and attempted to obtain adequate data, such that an interesting picture of the availability of sweet water along the Gulf coast has emerged. On the basis of his own personal observations together with the prevailing subsurface conditions as well as the physiographic features the author has categorised the Gulf coast into following five blocks:

Block - I	Between Methla creek and Kalubhar river
Block - II	Between Kalubhar and Sabarmati rivers
Block - III	Between Sabarmati and Mahi rivers
Block - IV	Between Mahi and Narmada rivers
Block - V	Between Narmada and Tapi rivers

BLOCKWISE DESCRIPTION


BLOCK - I

This coastal hydrogeological block is essentially rocky and as compared to other parts of the coastal area is somewhat rugged. The availability of sweet water here is dependent on the unconfined aquifer conditions identical to the rest of the Saurashtra coast. Between Methla creek and Gopnath, shallow dug wells of 17-20 m depths are encountered which are situated within the miliolite formation. Generally, miliolite provides good aquifer conditions and hence is a better source rock for water supply. In this area, the dug wells are the only source of sweet water supply but due to the cavernous nature of this miliolite limestone and overpumping of the limited water resources the saline water ingress from the sea side has caused increased salinity in the aquifers. The present author came across this problem near the village Jhanjhmer. To the north east, near the Shetrunji river mouth, thick and extensive delta deposits provide a reasonably good supply of sweet water, the average

depth of dug wells being 5 to 9 m. But as this water is being increasingly used for agricultural purposes, due to overexploitation, the sweet water supply is in danger of saline ingress.

The water table type aguifers from Shetrunji river to Ghogha show a well marked difference in their nature between that of the coastline proper and that of the backshore areas. The former consists of accumulated sweet water in the coastal sands and in the underlying Gaj beds. but these are observed to be getting saline especially in the pre-monsoon months. Such types of well are observed in the villages Kuda, Ratanpur and Alang where the average depth of sweet water phreatic aquifer is 7 to 10 m. On the other hand inland coastal areas are free from the influence of sea water ingress and hence hold enough water, which even finds use in small scale irrigation. Here the aquifers are located within the weathered top of Deccan Trap rock. Wells situated in Budhel, Thoradi, Badi are of this type. The average depth of dug wells encountered here are of the order of 12 to 15 m.

The coastal area around Ghogha and Bhavnagar has got its own distinct hydrological conditions. Here the demand of sweet water is being fulfilled through the surface ponds (Plate VII.1) and shallow dug wells and the average depth

•

of sweet water availability is only 5 m. The water at greater depth tends to be saline as is evident from a well at village Akvada where water is encountered at 7 m depth. Table 7.1 gives details of hydrogeological conditions prevailing in this block.

BLOCK - II

The vast coastal plain to the north of Bhavnagar comprises an almost flat terrain, a large part of which is under the tidal influence. Though above the highwater line, the tidal waters innundate this area during monsoonal storms. As the area marks an ancient mudflat, it is now made up of barren wasteland with an inherent palaeosalinity in the This condition is reflected in the almost total soil. absence of dug wells in this region. Drinking water demand is met in this block from the ponds dug by the local villagers. The availability of water in these ponds also depends directly on precipitation each year. Some of the big villages like Dholera, Navagam, Pipli etc. each have a relatively large sized ponds, on the periphery of which are located, what one could call as nearest to dug wells; these pond supported dug wells get simultaneously depleted with the drying of the ponds.

These ponds get dry during the summer months, but they provide sites for the villagers to dig numerous pits

Table 7.1 - HYDROGEOLOGICAL INFORMATION

Well No	Village Name	Aquifer Formation	^T otal Depth (m)	Pre	Level (m) Post NSOON
1	Methla		7.00	6.50	4.80*
2	Jhanjmer		19.50	18.50	10.60*
3	Pithalpur	Miliolite	20.00	16.00	09.20*
4	Gopnath		17.00	12.00	07.50*
5	Saltanpur	Fluvio-marine	09.00	7.20	04.60
6	Dakana	sediments	04.50	04.00	01.50
7	Lilivav		17.00	13.50	8.70
8	Kathva	Deccan Trap	18.00	16.00	12.80
9	Alang	Dectail 11ap	17.00	15.00	09.60
10	Mithivirdi	Sandstone	20.00	19.00	15.40
11	Hathab	Dunal Sand	09.50	8.00	4.50
12	Badi	Deccan Trap	15.00	10.00	6.45
13	Kuda	Dunal Sands	5.00	3.00	2.00*
14	Kuda	·	9.50	9.00	2.60*
15	NavaRatanpur	Sandstone	5.00	4.00	2.20*
16	Ghogha		11.00	5.00	1.80
17 ·	Thoradi	Deccan Trap	12.00	9.00	3.70
18	Budhel	F	11.50	7.00	3.40
19	Akvada	Trap covered by fluvio- marine sediments	7.00	4.00	2.90*
20	Karnej	Deccan Trap	35.00	29.70	·20 .40

BLOCK - I

* Become saline during late summer

** Brackish on account of salinity ingress

\$

of 0.50 to 2 m depth within the bed of the pond and these pits supply sweet water for a few days. This area is so chronically deficient in sweet water that all the villages along the northern part of this block (upto Dholera) are supplied drinking water by pipeline from Sabarmati river. Rest of the villages further south are supplied water by tankers. Table 7.2 gives details of hydrogeological conditions prevailing in this block.

Table 7.2 HYDROGEOLOGICAL INFORMATION

-					
Well No.	Village Name	Aquifer formation	Total depth (m)	Water leve Pre monsoo	Post
21	Madhavpura	fluvio-	3.00	0.50	P.L. *
22	Rahtalav	marine	-	-	-
23A.	Dholera	sediments	Artesian	n well **	
23B.	Dholera	with	5.00	4.5	3.0 **
24	Pipli	dominantly	5.0	0.20	P.L.
25	Moti Baru	silty-clay	2.0	0.50	P.L.
26	Varna	fractions.	2.0	0.50	P.L.

BLOCK II

*P.L. = Pond Level

** Brackish/Saline water

BLOCK - III

The coastal tract between Sabarmati and Mahi is also interesting from the point of view of the availability of sweet water, aquifer depth and recharge conditions.

Geomorphically, the tract between Sabarmati river and Khambhat town forms a low flat gradientless terrain whereas the ground to the east and north east of Khambhat shows a conspicuous rise of about 6 to 10 meters. The former portion represents an ancient tidalflat made up of marine sediments which now forms a saline wastel and liable to innundation during monsoon season. The latter is composed of typical alluvial deposits brought by the Mahi river.

In the areas west of Khambhat there are practically no sweet water aquifers because the sediments here have got inherent paleosalinity. The villages like Vadgam, Mitli, Golana, Navagam etc. are situated on this salt wasterland and the entire population of this part is totally dependent on the stored rain water in ponds dug by the villagers. By the side of these ponds, there are also dugwell supported by ponds, when the water get dry in the ponds these dugwell in $\operatorname{or}_{\Lambda}$ the periphery of these ponds continue to supply sweet water for a couple of days at least (Plate VII.2 & 3).

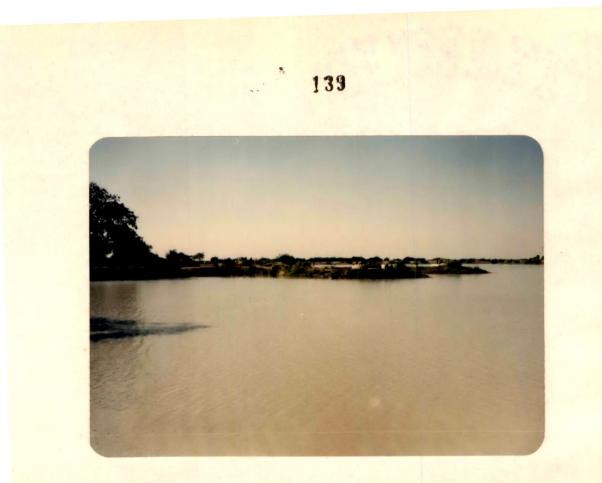


Plate VII.2. A pond and pond supported dug wells serving domestic need of the village Vadgam.

<u>Plate VII.3</u>. A number of dugwells in and around the pond at Daheda.

On the other hand, to the east and northeast of Khambhat the area is very rich from the point of view of sweet water availability. Numerous wells are located here and these are the source of abundant water supply. The average encountered depth of groundwater in dug wells the maximum being at Kathol 25 m and minimum 18 meters at Undel 10.5 m. A perusal of the subsurface and surface conditions prevailing to the north east, points to 1) horizontallity of the ground and lack of surface drainage and ii) porous and permeable nature of the alluvial sediment upto considerable depth. These two factors have combined to generate ideal hydrological conditions such that the aquifers are being substantially recharged from the north-east. Table 7.3 gives details of hydrogeological conditions prevailing in this block.

BLOCK - IV

On crossing Mahi, the hydrogeological characteristics of the coast between Mahi and Narmada again show some difference. The tract between Mahi and Dhadhar is sandy to silty in nature while that between Dhadhar and Narmada shows sandy to clayey types of alluvial sediments. This difference has made the two segment to show somewhat distinct hydrogeological regimes. As the drainage density in this area is less and the area receives moderate

Table 7.3 HYDROGEOLOGICAL INFORMATION

Well No	Village Name	Aquifer formation	Total depth (m)	Pre	evel (m) Post soon
27	Vadgam		8.00	7.40	1.60*
28	Pondad		6.80	6.50	1.50*
29	Rohini	Fluvio-marine sediments	5.00	4.00	1.20*
30	Navagam	• of clayey silts	5.00	3.90	1.00*
31	Daheda	520.05	6.5	5.80	2.00*
32	Ne ja		6 .0 0	4.50	2.00*
33	Sakarpur		16.00	15.80	10.00
34	Wasna	Fluvial	11.00	17.00	13.00**
35	Undel	sediments of sands and	10.50	9.50	5.00
36	Watra	silts	24.00	22.50	17.00
37	Indrana j	Fluvio-marine sediments	9.00	7,80	2.60**
38	Tarapur	· · · · ·	10.00	8,30	1.50
39	Bhurakui	Fluvial	18,00	5.50	1.40**
40	Dhuran	sediments of sandy gravels	18.60	6.00	1.80
41	Daheyan	and silty sands with clay bands	16.00	12.00	9.00
42	Kathol	Ň	25.00	14.00	10.45
43	Bhadran		19.00	16.00	14.00

BLOCK III

* Pond supported dug wells

** Brackish/saline water

precipitation (750-850 mm/year) the source of aquifer recharge is through rain water only which is either through direct percolation or through storage in ponds, pond supported dug wells and other surface depressions. Away from the coastline the alluvial cover provides aquifers upto the depth of 10 to 25 m, but in the immediate vicinity of the coastline the ponds and pond supported dugwells are the only source of fresh water supply for domestic purposes (Plate VII. 4 & 5). These ponds are of 6 to 7 m depth and the dugwells are sunk within or on the periphery of the ponds which are 1.5 to 2.5 m deeper than the pond bottoms. These wells supply water almost year round, even when the ponds get dry during late summer. Table 7.4 gives details of hydrogeological conditions prevailing in this block.

BLOCK - V

South of Narmada the geology and geomorphology changes and so does the hydrogeology. Here the alluvial thickness is much less, the gradient somewhat more and the coast is cut by a number of west flowing rivers. On the whole, this coastal block is much more dissected by streams and channels of various orders and this fact has considerably influecned the freshwater storage as ponds and dugwells. The rainfall also is quite high, of the order of 900-1100 mm year.

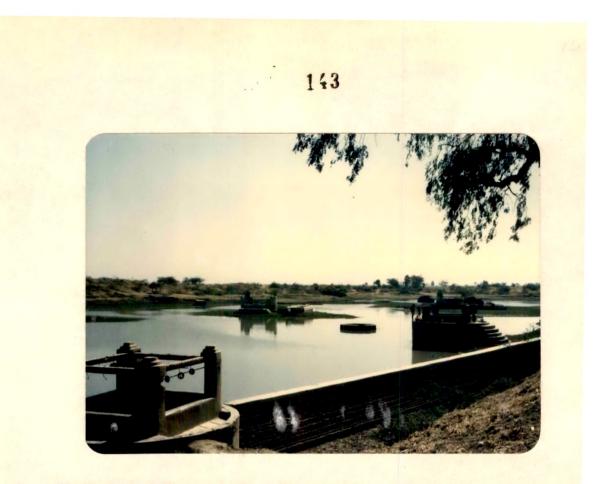


Plate VII.4. Freshwater dugwells located within and around a pond at Nada.

Plate VII.5. A dug well located near the pond at Padriya.

Table 7.4 HYDROGEOLOGICAL INFORMATION

BLOCK IV

Well No	Village Name	Aquifer formation	Total depth	Water Le Pre mons	Post
44 45 46A 46B 47	Chokari Wedack Sarod Sarod Kavi	Intercalated sequence of sandy gravel, silty clays and clays of fluvial origin	17.50 19.00 8.00 15.00 14.00	16.40 18.00 6.00 14.50 11.50	13.80* 15.20 3.60* 9.40 8.50
489012345678901234567	Degam Sigam Chhidra Jantran Bhadkodra Sindhvav Devla Nada Tankari Kalak Uchhed Matar Nahryer Achhod Tankaria Chanchwel Gandhar Aladar Padria Dahej	Fluvio-marine sediments with dominantly silty clay and clays	$12.00 \\ 15.00 \\ 15.00 \\ 13.20 \\ 7.00 \\ 6.50 \\ 4.00 \\ 6.50 \\ 7.50 \\ 8.00 \\ 17.00 \\ 10.00 \\ 14.00 \\ 6.50 \\ 9.00 \\ 6.5 \\ - \\ 7.00 \\ 7.00 \\ 6.00 \\ 10.00$	11.40 12.80 10.50 6.30 6.50 4.50 DRY DRY 6.50 7.20 16.40 8.90 12.20 6.00 8.50 DRY 	8.00 7.00 6.50* G.L. 5.10* 1.00 G.L. G.L. 1.00 1.40 2.20 4.60 4.50 4.00 3.00 G.L. *** 3.00 2.00
68 69	Lakhigam Luhara	Dunal sands	- 7 . 5	6.80	** * 4 . 20
70 71 72 73	Bhensi Navetha Kantharia Bharuch	Fluvio-marine sandy & silty clay and clays	6.00 14.00 15.00 11.00	4.70 8.50 14.00 9.50	G.L. 3.50 12.10 6.00*

* Saline/Brackish water ** Salinity increases during late summer *** Pond

.

NOTE: Almost all the dug wells are pond supported

In between Narmada and Tena creek, as usual a close relationship is seen to exist between the availability of sweet water in wells and their location near the ponds. It is observed that the large number of ponds in this part represent water impounded by construction of artificial barriers at appropriate spots across small streams and palaeochannels of Narmada, Kim and Tena rivers. The average encountered depth of sweet water in dug wells are 3 to 7 m from the ground level. During monsoon period a majority of wells are either free flowing or water table is close to the ground level.

Field data have shown that the average depth of sweet water in this area is limited to 7-8 m below ground level.

Another interesting feature of the unconfined groundwater occurrence is observed in the immediate vicinity of the shoreline where wells are located on coastal **s**and dunes. Only a few meters away from the high water line these wells contain 2 to 3 m thick fresh water column. Local inhabitants sustain their drinking water requirements on these wells. So long as the balance between the recharge and the draft is not disturbed, the quality of the water is maintained.

To the south of Tena Creek upto Tapi river, on account of over-irrigation and seepage through unlined canals, the groundwater table has risen to the surface causing water logging. As this water does not have appropriate surface or subsurface drainage it is not in a position to drain off and the stagnating waters through capillary action is adding to the salinity of soils. As this subject matter is still under investigation one has to await at least for a few years to get a clearer picture of the water logging vis-a-vis groundwater conditions. Table 7.5 gives details of hydrogeological conditions prevailing in this block.

CHEMICAL QUALITY

The entire Gulf coast environs comprise variety of Quaternary formations with equally a large number of sediment types of various origin. Groundwater circulating in different lithologies would develop a chemical character conformable to the constituent minerals. Contamination of fresh water by sea water too adds significantly to the dissolved constituents which is ultimately reflected in the chemical quality of the groundwater and the hydrogeological environmant of groundwater occurrence.

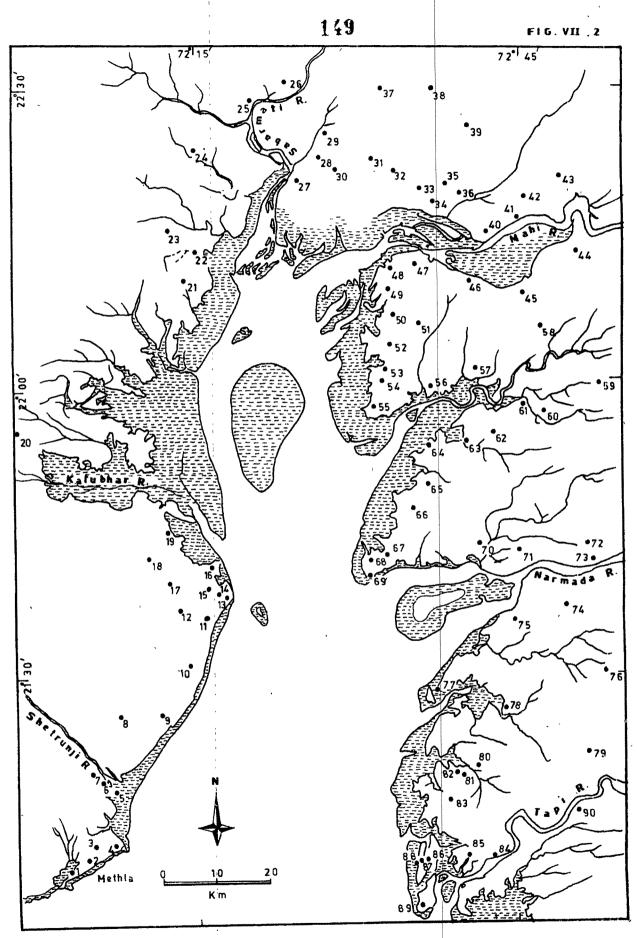
As discussed earlier, there is no significant data available on coastal hydrogeology and the author himself analysed the samples collected from various locations for determining their hydrochemistry. In all 92 samples were

Table 7.5 HYDROGEOLOGICAL INFORMATION

Well No.	Village Name	Aquifer formation	Total depth (m)	Water Leve Pre monsoo	post
74	Sajod		5.50	3.60	G.L.
75	Hansot		10.00	6.00	4.00
76	Umarwada		8.00	7.20	2.00
77	Kanthia jal		6.00	DRY	2.00
78	Elao	Fluvio- maine	8.00	6.80	2.00
79	Moti Naroli	silty clays and sands	8.00	DRY	6.50
80	Olpad	derived from trap wash	8.50	3.00	1.50*
81	Saras		6.00	3.00	1.50
82	Saras		5.00	3.50	1.50*
83	Veluk		7.50	5.50	1.75
84	Bha tha		7.00	6.00	2.00
85	Ichhapur		5.50	4.50	2.00
86	Mora		8.00	7.50	5.00
87	Suvali	Dunal sands	6.00	5.00	2.50*
88	Suvali	·	7.00	5.00	3.00
89	Hazira	Silty clay and	5.50	4.50	3.00
90	Navagam	sandy gravels	12,00	8.00	3.00

BLOCK - V

* Saline Brackish water


NOTE: 1) Well No.80-85 falls under canal irrigation and area is waterlogged.

2) Majority of the wells are pond supported

analysed (Fig. VII.2) for determining their Total Dissolved solids (TDS). Hydrogen Ion Concentration (pH), Cations : Sodium (Na), Potassium (k), Calcium (Ca) and Magnesium (Mg); Anions: Carbonate (Co₃), Bicarbonate (HCO₃), Chloride (Cl) and Sulphate (SO₄). Table 7.6 gives the details of the chemistry of analysed samples.

The chemical quality of the groundwater along the Gulf coast is dominantly influenced by the sea water ingression. The blockwise percentile variation of various dissolved constituents gives a good indication of the over all quality of the groundwater along the Gulf coast.

In Block-I between Methla creek and Kalubhar river as in general the groundwater no doubt is somewhat saline but the TDS content is within permissible limits and qualityTwise the water is usable. The TDS ranges between 3374 to 474 ppm. In the cations, sodium ions predominate though the overall percentage of calcium as compared to other blocks is also higher, which could be attributed to the miliolitic limestones and basalts of the area. Among anions, bicarbonates and chlorides show higher proportion. The sulphates are of moderate percentage. The very low percentage of carbonates could be attributed to the normal hydrogen ion concentration (pH=7) which has prevented the dissociation of bicarbonates to

LOCATION MAP OF HYDROGEOLOGICAL OBSERVATIONS

,

GULF COAST
THE
S
GROUNDWATER
THE
붱
CHEMISTRY
ł
7.6
Table

ğ
HE
6
CHEMISTRY
1
- 9.2
ł

Sample Victor				1	CATIONS (ppm)	(H)		- 1	ANIONS (ppm)	(u	REMARK
19010		(mdd)	Na	м	Ca	Mg	Co3.	нсо3	ਰ	so4	pH
-	06.50	2669	1100	3	. 73	16	ጽ	881	540	238	7.5
5	18,50	474	160	60	6	11	7	244	670	85	7.7
ñ	16.00	645	180	6	06	02	R	5445	465	89	7.6
đ	12.00	1225	130	05	109	48	X	153	603	56	6*9
5	07.20	1905	270	39	120	62	ı	1 <u>9</u> 8	735	346	7.1
	04.00	. 2541	560	35	. 29	64	3	885	845	620	7.7
b -1	13.50	545	125	6	3 2	106	ł	290	358	256	7.2
-	16.00	657	50	02	14	62	T	259	248	44	7.3
•	15.00	645	8	60	31	51	15	229	355	262	7.4 H
10	19.00	478	65	<u>5</u> 0	27	21	ı	198	952	96	
11	08.00	2990	500	63	69	35	120	610	1100	242	17 OC
12	10.00	290	8	02	02	31	•	381	465	43	
13	03.00	1110	220	34	23	53	ł	503	867	398	7.6
14	00.60	1153	315	01	11	52	ł	702	1166	567	7.7
15	04.00	1003	235	02	60	ጽ	, 45	290	1228	64	7.7
16	05.00	3118	535	40	70	108	30	275	1242	620	7.4
17	00.60	854	9 5	01	20	Я	£-1	244	177	76	7.5
18	0.0	1238	270	60	8	34	Ľ	473	355	148	7.7
19	04*00	÷ 3374	560	88	63	201	1	580	348	284	7.3
20	29.70	1090	360	ξO	10	18	165	702	635	443	7.6
21	00*50	117	8	11	19	15	ı	366	<u>465</u>	189	8.3
22	1'	704	185	60 <i>;</i> ⁄	14	12	1	244	1238	69	6. 3
234	1	8 69 1 1	780	15	135	12	- 1	214	5680	274	7.3 H
2 339	04.50	15163	6800	330	330	1150	R	906	1265	28	7.4
24	00,20	2520	OFF.	7 4	- 72	11	8	336	1242	116	BLO 7.4
25	8. 50	666	145	ଷ୍ପ	କ୍ଷ	22	£4	336	248	96	
26			•								

.

.

Mat K Ca Mat Ca Mat K Ca K 04.50 256 92 14 09 25 - 229 106 147 96 7.6 7.6 06.50 291 30 74 113 200 120 12 964 7.6 7.6 06.50 293 76 14 19 29 26 147 964 7.6 07.20 290 110 01 01 22 22 22 22 22 27 7.4 07.20 397 140 01 20 22 140 171 610 7.2 7.4 06.00 397 140 12 21 141 141 7.6 12.20 397 140	Sample Number	Depth (m)	TDS (nnm)		ซี	CATIONS (ppm)			ANT ON S	(mqq) SNG	~	2	DeWant
04.50 421 53 70 72 70 7.1 04.50 125 22 14 03 23 14 7.3 04.60 256 22 14 03 23 14 13 26 105 16.7 81 7.1 06.00 139 200 13 20 13 20 14 15 16 7.6 7.6 16.40 360 10 20 20 13 10 20 14 7.6 16.40 360 10 13 20 14 13 14 7.6 16.40 360 10 20 14 13 14 14 16 7.8 06.50 397 140 21 20 14 7.6 7.1 16.40 140 21 21 21 21 21 14 7.6 7.1 06.50 391 10			1-11	Na	×	¢9	Mg	ŝ	нсо3		so4	чиđ	ANNULAN
04.00 256 92 14 09 25 29 16 66 143 66 166 143 66 143 66 143 66 143 66 143 66 143 61 143 61 143 61 143 61 143 61 143 61 143 61 143 61 143 61 143 61 143 61 143 61 143 61 143 61 143 61 143 61 143 61 143 143 173 173 173 173 173 173 173 173 173 173 173 174 173 174 176 174 <	53	04.50	427	95	19	05	23	8	88	341	674	7.9	
06.00 229 04 24 1 966 163 163 163 173 81 173 81 06.50 1133 280 74 18 28 71 18 75 7.7 07.30 313 280 71 18 29 71 29 775 7.7 06.40 313 660 105 190 71 200 775 294 7.6 16.40 313 660 105 74 72 200 777 294 7.6 16.40 376 10 0.2 20 17 194 7.6 7.2 06.00 397 10 0.2 20 17 164 7.6 7.8 06.00 397 10 10 10 10 10 10 7.8 7.1 06.00 10 10 10 10 10 10 10 7.8 7	54	04.60	256	92	14	60	25	ı	229	106	865	7.8	
06.50 1133 280 7 16 39 75 7.7 07.20 363 35 13 03 40 16 56 75 7.7 11.40 3183 680 06 49 200 110 944 7.6 11.40 3183 680 05 49 7.6 7.4 7.4 11.40 3191 210 110 01 - 200 110 100 7.4 11.230 320 110 01 - 24 05 371 146 7.6 06.00 397 196 10 10 11 10 11	55	06.00	299	8	29	04	24	Ħ	366	106	1437	. B	
07.20 363 35 13 03 5 13 03 5 13 03 5 14 7.6 16.40 3183 660 06 48 7.6 666 1846 656 7.2 08.30 931 210 03 03 93 100 864 7.8 17.2.80 330 310 03 120 130 142 1065 7.4 06.03 331 140 100 140 100 142 143 7.4 06.03 337 140 100 140 170 686 8.1 7.4 06.03 337 140 100 140 170 140 7.8 7.4 06.04 1460 146 146 146 7.9 7.4 06.05 1461 140 170 142 147 7.4 17.10 1450 1461 1461 177	56	06.50	1153	280	74	18	9 2	15	610	390	755	7.7	
16.40 3183 680 06 491 510 50 461 656 7.2 06.30 391 210 03 50 50 501 461 650 7.3 11.2.20 320 110 01 - 24 70 660 961 7.6 06.30 397 140 01 27 27 27 27 06.30 397 55 140 05 142 140 7.9 7.4 06.30 397 55 03 15 142 142 7.9 06.30 397 516 20 21 20 21	57	07.20	36 3	, £	13	63	07	* 1	320	177	787	7.6	
06.90 991 210 03 05 81 461 527 7.4 12.20 320 110 01 - 24 50 427 106 664 7.8 06.00 337 140 03 25 1 24 50 142 108 7.9 06.00 337 536 03 150 645 177 682 8.1 7.9 06.50 337 55 03 15 15 142 106 7.9 7.9 06.50 377 55 03 15 15 14 7.9 7.9 7.9 06.50 1704 400 70 14 7.0 7.9 7.4 7.9 06.40 1704 400 70 14 7.0 7.4 7.6 06.40 1704 400 70 14 14 7.6 7.4 7.6 06.40 160	58	16.40	3183	680	90	87	209	105	686	1846	636	7.2	
12.20 320 110 01 - 24 24 66 461 7.8 06.00 397 140 03 397 140 03 7.9 7.9 7.9 06.50 397 397 310 02 03 7.9 7.9 7.9 06.50 397 510 02 03 15 17 682 8.1 7.8 06.50 397 510 50 17 16 17 682 8.1 7.8 06.50 1704 400 70 17 147 7.8 7.4 04.50 1704 400 70 14 7.1 7.8 7.4 05.00 918 200 17 467 147 7.8 7.4 10.10 10.1 10.1 10.2 140 7.1 7.8 7.4 10.2 11.2 10.2 11.2 10.2 11.2 10.2 <	59	08.90	166	210	60	05	88	%	381	461	627	7.4	
06.00 391 140 03 131 142 035 7.9 08.50 397 310 02 03 131 65.5 171 66.5 171 66.5 171 66.5 171 66.5 171 144 7.8 8.1 06.50 397 55 03 12 12 123 7.4 7.8 POND 2136 50 03 12 14 7.1 147 7.8 7.4 POND 1704 400 20 12 14 7.1 147 7.8 7.4 06.500 918 200 20 21 10 20 21 147 7.8 7.4 07.00 918 200 20 20 21 147 7.8 7.4 06.00 910 20 20 20 20 20 20 7.4 06.00 910 20 20 20	8	12.20		110	01	t	24	3	124	106	864	7.8	
08.50 693 310 02 03 15 15 15 17 682 8.1 POND 2136 59 03 15 15 15 15 17 682 8.1 POND 2136 50 03 14 71 1474 7.8 7.4 POND 2136 50 23 14 71 1474 7.8 7.4 POND 2136 50 24 7.4 7.8 7.4 7.8 Old-50 146 100 22 14 11 147 7.8 7.4 Old-50 1516 162 24 177 142 147 7.8 FOND 1516 151 16 177 160 177 162 17.4 0.5.00 1516 151 152 177 142 143 7.4 0.6.10 1516 151 152 141 143 17	61	06.00	797	140	60	60	25	F	351	142	1085	7.9	
06.50 397 55 09 15 <th< td=""><td>62</td><td>08.50</td><td>893</td><td>310</td><td>02</td><td>60</td><td>ô5</td><td>150</td><td>645</td><td>177</td><td>682</td><td>8.1</td><td>٨</td></th<>	62	08.50	893	310	02	60	ô5	150	645	177	682	8.1	٨
FOND 2136 50 25 14 06 T 2444 71 1474 7.8 14.0 04.50 1704 400 30 126 7.6 7.6 7.6 7.6 04.50 1704 400 30 126 126 7.6 7.6 05.00 918 280 24 14 11 276 1142 7.6 7.6 90.00 1516 465 330 214 11 276 117 1142 7.9 06.80 1516 465 390 21 12 177 1442 7.8 04.70 555 180 06 12 16 12 177 142 6.7 04.70 555 180 06 12 147 142 6.7 04.70 559 146 7.9 147 142 6.7 7.8 04.70 590 141 240	63	06.50	797	55	60	15	15	£-1	153	213	1235	7.4	IX
04.50 1704 400 30 42 77 60 305 102 126 7.6 05.00 469 100 42 05 02 14 140 7.8 05.00 918 280 27 10 26 14 14 7.9 05.00 918 280 24 14 11 276 117 142 7.8 06.00 1516 465 390 21 92 137 144 7.9 04.70 555 180 09 26 12 105 381 177 142 6.7 04.70 555 180 09 26 12 105 381 177 142 6.7 04.70 555 180 09 26 12 105 8.1 7.9 04.70 571 580 145 7.9 7.8 7.8 7.8 04.70 571	64	POND	2136	50	25	14	96	ŧ٩	244	11	1474	7.8	e lo
05.00 450 100 42 05 02 T 427 142 1567 7.8 05.00 918 280 27 10 26 240 763 177 1140 7.8 POND 1516 465 330 21 14 11 276 1177 1425 5.7 POND 1516 465 330 21 92 135 467 603 144 7.9 04.70 555 180 09 06 12 105 941 7.9 7.9 04.70 1397 390 06 - 18 90 451 7.9 7.9 04.70 1397 390 06 - 18 177 1096 7.9 7.9 04.70 1397 390 06 12 117 1096 7.9 7.9 04.50 271 14 28 12 147 109 </td <td>65</td> <td>04.50</td> <td>1704</td> <td>0017</td> <td>ନ୍ଦ</td> <td>42</td> <td>11</td> <td>99</td> <td>305</td> <td>1029</td> <td>1320</td> <td>7.6</td> <td></td>	65	04.50	1704	0017	ନ୍ଦ	42	11	99	305	1029	1320	7.6	
05.00 918 280 27 10 26 240 10 763 177 1140 7.8 FOW 1068 820 24 14 11 276 1130 177 1425 6.7 06.80 1516 465 390 21 92 113 276 1137 1098 8.1 04.70 555 180 09 06 12 105 381 177 1098 8.1 04.70 1397 390 06 $ 86$ 120 177 1098 8.1 04.70 1397 390 06 $ 88$ 120 717 639 945 7.9 14.00 1397 390 06 $ 88$ 120 717 639 945 7.9 04.50 2712 675 11 43 41 285 869 1637 786 7.9 03.50 2712 675 11 43 120 717 639 945 7.8 05.00 717 90 90 02 25 1 120 1637 708 7.8 05.00 717 90 90 02 25 1 296 7.6 7.8 04.50 717 90 90 02 25 1 296 7.6 7.8 05.00 120 210 210 210 210 210 210 210 <t< td=""><td>66</td><td>05.00</td><td>69†</td><td>100</td><td>24</td><td>05</td><td>02</td><td>ŧ,</td><td>427</td><td>142</td><td>1267</td><td>7.8</td><td>52</td></t<>	66	05.00	69†	100	24	05	02	ŧ,	427	142	1267	7.8	52
POND 1C68 820 24 14 11 276 1190 177 1425 06.80 1516 465 390 21 92 135 467 603 1484 06.80 1516 465 390 21 92 135 467 603 1484 04.70 555 180 09 06 12 105 381 177 1098 04.70 1397 390 06 - 88 12 177 1098 08.50 1469 155 05 1 41 285 869 1425 786 786 14.00 1350 2712 675 11 43 41 285 869 1633 786 786 786 03.50 2712 675 11 43 41 285 869 1633 786 786 78 786 78 78 78 78 <t< td=""><td>67</td><td>05.00</td><td>918</td><td>280</td><td>27</td><td>10</td><td>26</td><td>240</td><td>763</td><td>177</td><td>1140</td><td>7.8</td><td></td></t<>	67	05.00	9 18	280	27	10	26	240	763	177	1140	7.8	
06.80 1516 465 390 21 92 135 467 603 1484 04.70 555 180 09 06 12 105 381 177 1098 04.70 555 180 09 06 - 18 30 145 105 341 177 1098 08.50 469 155 05 - 18 30 142 860 945 14.00 1397 390 06 - 88 120 717 639 945 03.60 2712 675 11 43 41 285 869 1633 786 03.60 747 90 02 27 38 163 76 78 03.60 747 90 02 25 7 86 70 86 70 04.00 747 90 02 25 7 7 94 7<	68	POND	1068	820	24	14	11	276	1190	177	1425	6.7	
04.70 555 180 09 06 12 105 381 177 1098 08.50 469 155 05 - 18 90 458 142 860 14.00 1397 390 06 - 88 120 717 639 945 14.00 1397 390 06 - 88 120 717 639 945 03.60 2712 675 11 43 41 285 869 1633 786 945 03.60 2712 675 11 43 41 285 869 1633 786 945 03.60 747 90 02 78 78 77 376 70 843 78 03.60 747 90 02 79 78 70 843 76 70 843 76 70 843 77 994 77 735	69	06.80	1516	465	390	21	92	135	467	603	1484	7.9	
08.50 469 155 05 - 18 90 458 142 860 14.00 1397 390 06 - 88 120 717 639 945 14.00 1397 390 06 - 88 120 717 639 945 09.50 2712 675 11 43 41 285 869 1633 786 03.60 2702 505 11 43 41 285 869 1633 786 03.600 747 90 09 02 25 36 716 682 7 06.00 747 90 02 25 79 7 2 94 7 06.00 747 90 02 25 7 7 94 7 7 1 94 7 94 7 94 7 94 7 94 7 94 7<	70	04.70	555	180	60	06	12	105	381	177	1098	8.1	
14.00 1377 390 06 - 88 120 717 639 945 09.50 2712 675 11 43 41 285 869 1633 786 03.60 2700 505 11 15 38 150 610 816 682 786 03.60 747 90 09 02 25 11 150 610 816 682 786 03.60 747 90 09 02 25 25 77 336 70 843 786 07.20 2777 540 02 79 77 135 77 994 7 07.20 2777 540 02 79 77 458 1242 994 7 06.80 1282 250 51 77 255 177 1185 777 1185 777 1185 777 1185 777 1185 <td>11</td> <td>08.50</td> <td>6911</td> <td>155</td> <td><u>0</u>2</td> <td>ł</td> <td>18</td> <td>8</td> <td>458</td> <td>142</td> <td>860</td> <td>7.9</td> <td></td>	11	08.50	6911	155	<u>0</u> 2	ł	18	8	458	142	860	7.9	
09-50 2712 675 11 43 41 285 869 1633 786 03.60 2200 505 11 15 38 150 610 816 682 03.60 747 90 09 02 25 71 540 843 70 06.00 747 90 09 02 25 70 79 843 94 07.20 2777 540 02 70 79 7 94 94 07.20 2777 540 02 70 79 7 944 94 06.00 1282 250 51 17 24 7 994 06.80 854 70 09 05 23 7 153 177 1185	72	14.00	1397	390	06	ł	88	120	717	639	645	7.8	
03.60 2200 505 11 15 36 150 610 816 662 06.00 747 90 09 02 25 T 336 70 843 07.20 2777 540 02 70 79 T 458 1242 994 07.20 1282 250 51 17 24 T 702 355 1235 06.00 854 70 09 05 23 25 255 1235 1235 06.80 854 70 09 05 23 23 T 153 177 1185	73	09•50	2712	675	:	43	14	285	869	1633	786	7.8	
06.00 747 90 09 02 25 T 336 70 843 1 07.20 2777 540 02 70 79 T 458 1242 994 1 07.20 2777 540 02 70 79 T 458 1242 994 1 06.00 1282 250 51 17 24 T 702 355 1235 1 06.80 854 70 09 05 23 23 177 1185 1	74	03.60	2200	505	:	. 15	Ŕ	150	610	B16	682	7.8	- A BANK SALA AN A S
07.20 2777 540 02 70 79 T 458 1242 994 06.00 1282 250 51 17 24 T 702 355 1235 06.80 854 70 09 C5 25 T 153 177 1185	75	06,00	LHL	8	60	02	25	ŧ-	336	70	843	7.8	
06.00 1282 250 51 17 24 T 702 355 1235 06.80 854 70 09 C5 23 T 153 177 1185	76	07.20	2777	540	02	20	79	£	458	1242	76 6	7.6	
06.80 854 70 09 05 25 T 153 177 1185	77	06.00	1282	250	51	17	24	÷.	702	355	12.35	8.0	
	78	06.80	854	70	60	c5	23	E-	153	177	1185	7.7	

.

Table 7.6 (contd)

.

	Depth			TTEN	(mdd) NOTTYN			AN	ANIONS (ppm)	()		
		1 m m	Na	Х	ខ	Mg	co3	HCO3	ថ	- so4	чd	HEMAHK
62	08,00	1923	450	10	14	36	210	641	640	934	7.6	
80	03.00	1495	270	150	ጽ	28	8	503	191	696	7.3	
81	03.00	L+L	02	10	01	12	₽	305	142	1146	7.5	
82	03-50	5341	580	60	380	423	ł	275	3337	1287	7.1	
83	05.50	046	160	80	1	50	R	458	177	1067	7.5	
84	06.00	2329	567	13	35	22	135	686	781	965	7.6	
85	04.50	1282	270	26	10	45	120	427	461	1234	7.8	٨
86	02.50	046	210	Lo	06	. 25	52	610	106	924	8.2	оск
87	05.00	1132	105	45	20	8	150	519	213	6.19	1.1	BL
88	05.00	5414	6 50	300	24	136	285	1000	745	738	8.0	
89	04.50	147	130 02	20	1	22	ı	473	70	1267	8.2	
8	08.00	1175	300	01	05	06	8	519	320	752	8.2	

· . '

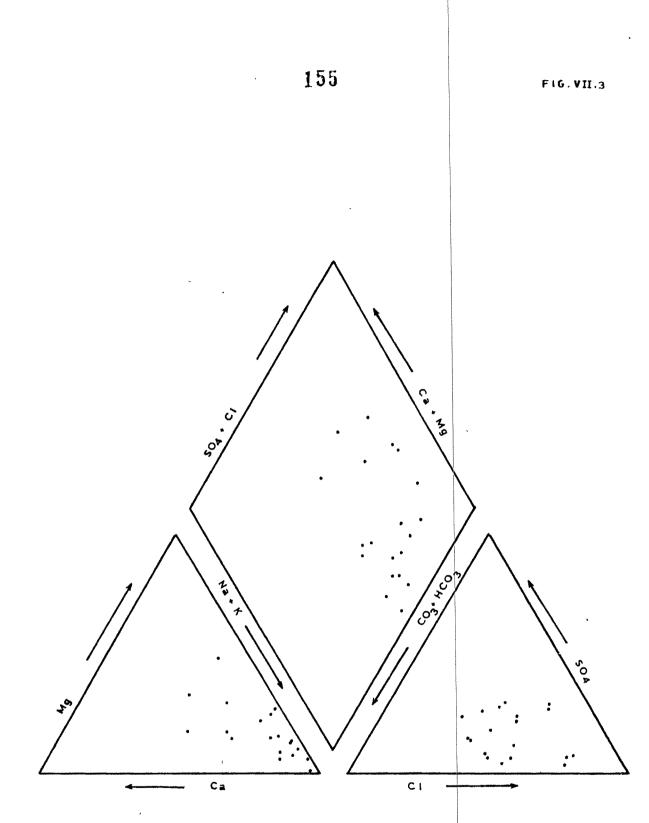
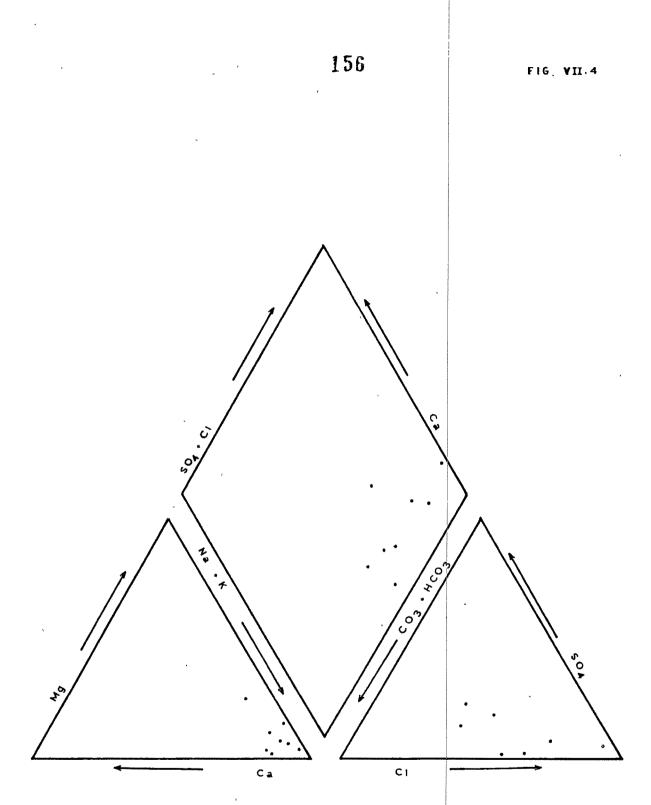
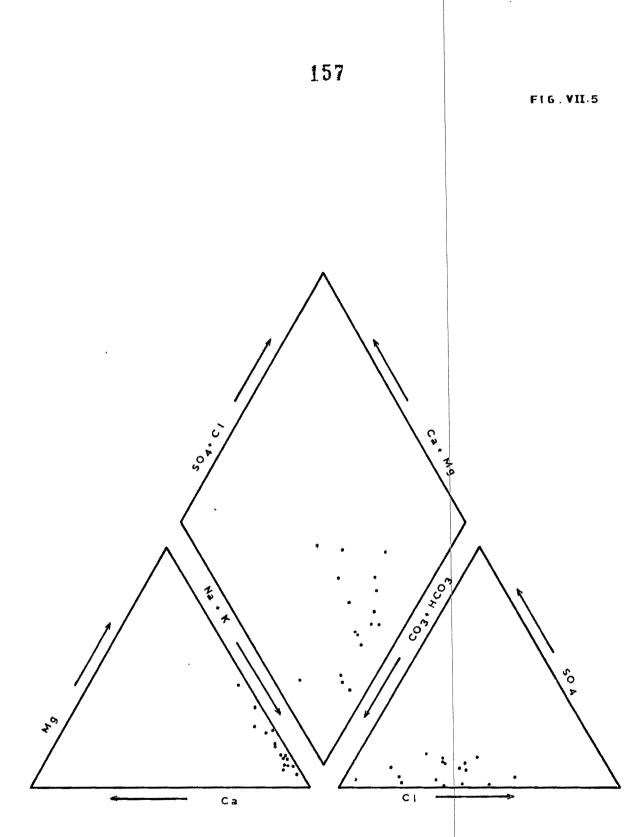

.

Table 7.6 (contd)

carbonates. The Piper Trilinear. diagram (Fig.VII.3) shows the overall distribution of cations and anions in this block.


In the Block-II, the coast between Kalubhar and Sabarmati river which constitutes mostly a saline wasteland, the groundwater is dominantly enriched with dissolved constituents. The deeper confined aquifers of saline water show. TDS of above 15000 ppm. The average TDS range between 704 to 2242 ppm. The inherent palaeosalinity with the sediments and annual monsoonal inundation has further raised the concentration of constituents. Among cations and anions, sodium, potassium and chlorides respectively are dominant. This very obviously points to the salinity having been contributed by the sea water. The Piper trilinear plot (Fig.VII.4) shows the saline nature of the groundwater.

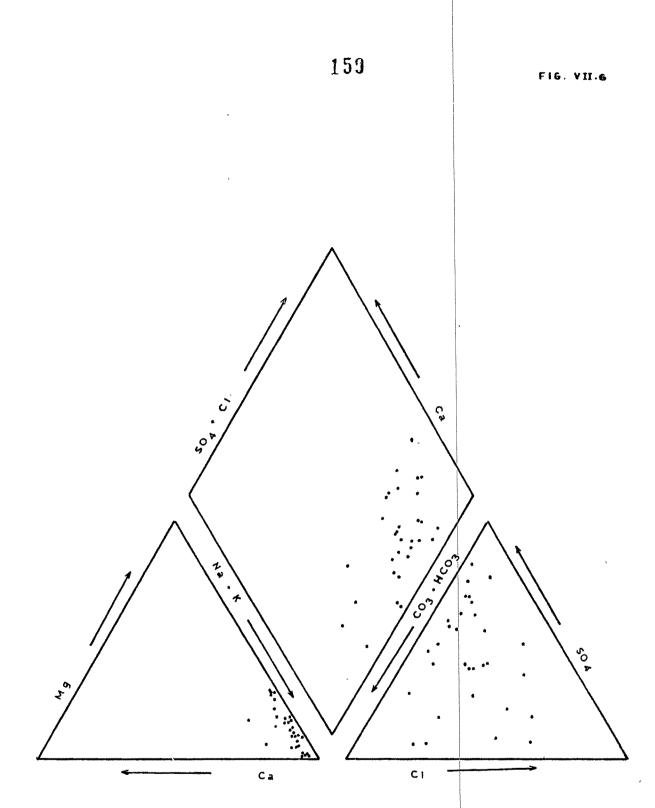
The Block III between the rivers Sabarmati and Mahi, is characterised by occurrence of good quality groundwater. Though the sodium content is moderately high, the other dissolved constituents are within the permissible limits. The chemical quality of the water, is especially in eastern part of the block, is good and points^{to}_A much less sea water contamination. The concentration of all the plots in Piper Trilinear: diagram (Fig.VII.5) is confined to the central part of lower half of the diamond field. The most significant character of the block's groundwater is the low


PIPER'S DIAGRAM SHOWING THE CHEMICAL QUALITY OF GROUNDWATER BLOCK-I.

,

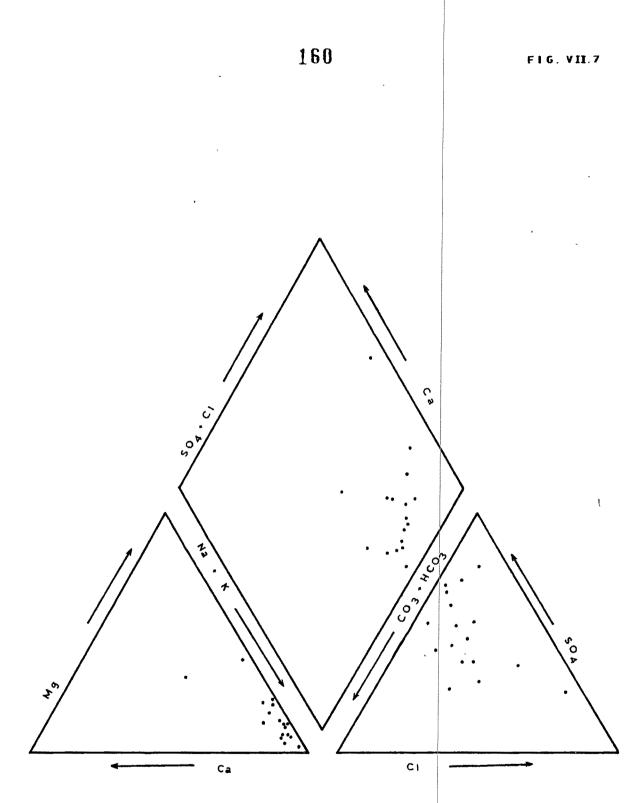
PIPER'S DIAGRAM SHOWING THE CHENICAL QUALITY OF GROUND WATER

BLOCK - II


PIPER'S DIAGRAM SHOWING THE CHEMICAL QUALITY OF GROUNDWATER

sulphate (i.e. 12-146 ppm) and low TDS (500-1200 ppm) contents. This is on account of sandy nature of the aquifer systems.

So far as the chemical quality of the water is concerned the Blocks IV & V between rivers Mahi, Narmada and Narmada-Tapi respectively show almost identical characteristics. The presence of vast tidal mud flats and intermixing of fresh and sea water has contaminated fresh groundwater. The average TDS is in the range of 256-3418 ppm, but the values for Na, K is reasonably potable. There is a rise in sulphate content, but this appears to be due to the bacterial reduction of organic material in the tidal muds. The high sulphate content in the Narmada, Tapi block might also be due to waterlogging and use of chemical fertilizers. The concentration of plots in the diamond field of Piper Trilinear diagram (Fig.VII.6 & 7) shows moderately saline characteristics of the groundwater.


SOME ASPECTS OF MANAGEMENT

Obviously, the present freshwater supplies along the Gulf coast through dug wells and surface storage are not such that they can keep pace with the rapid economic development activities along the coastal areas. On one hand, it is most essential that the quality of life of the

PIPER'S DIAGRAM SHOWING THE CHEMICAL QUALITY OF GROUNDWATER BLOCK - IV

.

PIPER'S DIAGRAM SHOWING THE CHEMICAL QUALITY OF GROUNDWATER

BLOCK-Y

coastal inhabitants has to improve through a variety of developmental activities, but on the other hand, it is equally important to keep in mind the constraints of the availability of potable water. It is not only the question of providing other infrastructural facilities for various economic upliftment, but the increased activities in the coastal areas would involve greater influx of people from outside and also considerable need of augmented water supply.

The present author, has on the basis of his observations and evaluation of the existing resources and future potential has come to following two main conclusions which have to be kept in mind while planning the proper management of groundwater resources along the Gulf coast:

- (1) No single strategy could be adopted for the entire coast, because its various segments pose their own distinct geohydrological conditions and need individual strategies for management.
- (2) There is an optimum beyond which the coastal terrain cannot sustain the interference with the natural conditions of freshwater availability.

The management of groundwater in Saurashtra coast involves an entirely different strategy from that for the Mainland coast. On Saurashtra side, the rocky areas to the south of Bhavnagar do provide sweet water in reasonable quantity; but the supply is such that it cannot be exploited

beyond its present stage of utilisation. The problems arising out of over exploitation would be identical to those faced by the rest of the rocky coast of Saurashtra, (Fig.VII.8) where it has been experienced that once the salinity ingress has taken place, it has been found very difficult to push it back (Ahluwalia, 1983). The coastal terrain to the north of Bhavnagar, poses an entirely different management problem. Here, there are no wells and the water is availed of by storing the rain water in dug ponds. Some bigger ponds support a few shallow wells around the pond fringes. This area is chronically deficient in sweet water and needs a special strategy involving augmentation of surface storage facilities and prevention of loss of impounded water through downward seepage and evaporation. Experiments at Rahtalav near Dholera have been conducted on a very limited scale by a voluntary organisation (Mahiti Project) to line the ponds with polyethylene sheets and spraying certain chemicals to inhibit seepage and evaporation losses respectively (Plate VII.6). As the area has a low and erratic rainfall, the present author is of strong opinion that the sweet water availability can be suitably augmented by digging many more ponds, lining them by impervious material and cutting down the evaporation.

On the Mainland coast, the hydrogeological conditions in the Mahi right bank area are ideal in the sense that it

FIG. VII.8

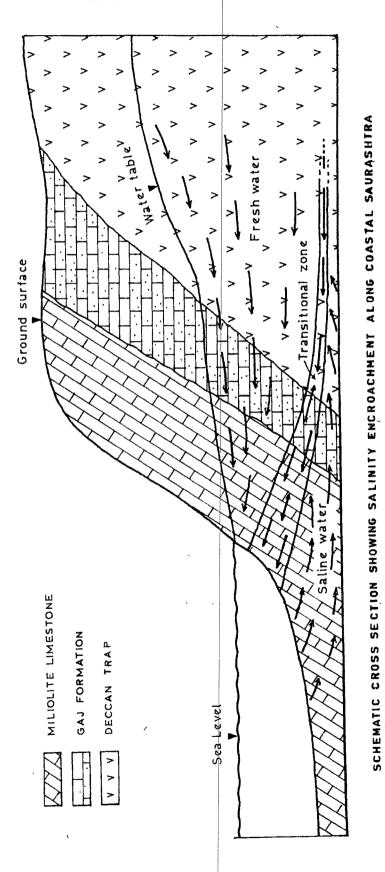
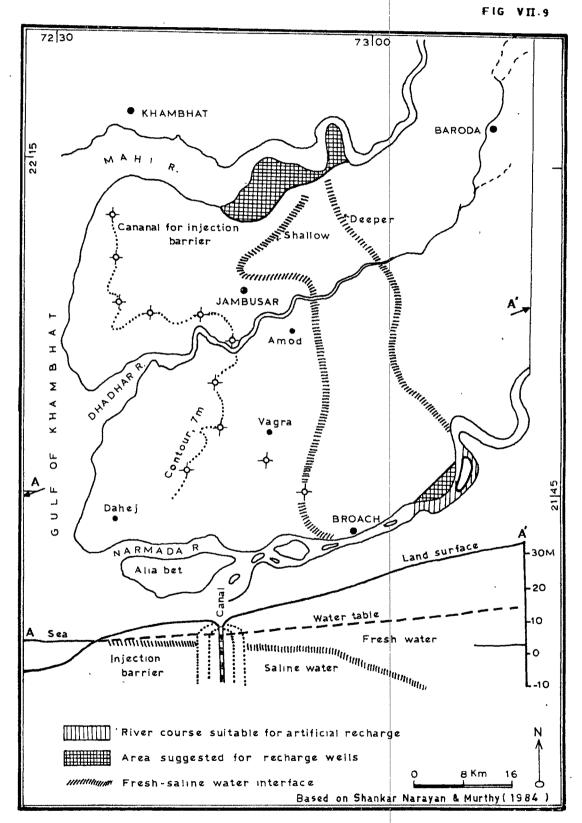


Plate VII.6. An artificial polypropylene lined pond for sweet water storage at Rahtalav.



<u>Plate VII.7</u>. View of a tobaccofield reflecting the excellent agricultural conditions at Bhadran.

provides ample water both for domestic consumption as well as for irrigation (Plate VII.7). There is no scarcity of water availability. On the other hand, some areas on account of over-irrigation and seepage from Unlined canals have created problems of waterlogging and salinity of soils. This hazard before it spreads, has to be tackled by appropriate measures to utilise and divert the surplus water to other areas which are in need of this resource. It is also very necessary to restrict the rise of groundwater table further up by adopting suitable measures.

The coastal segment between Mahi and Narmada, in many ways, is identical to the Saurashtra northern coast, except that here the rainfall is higher and the alluvial cover supports shallow dug wells, which have sweet water mounds resting over saline water. Most of these wells are located in and around ponds, which act as the sources of recharge. So long as a balance is maintained between the withdrawal the saline water level does not contaminate the wells. But in future, if these areas have to be developed, it is essential to bring water through a canal system and allow controlled percolation through surface storage and drains, to create effective sweet water barrier (Shankarnarayan & Murthy, 1984), thereby preventing the ingress of salinity (Fig. VII. 9).

South of Narmada, the geohydrology is mainly dependent on heavy rainfall that is stored in surface ponds type of

GROUND WATER RESOURCES MANAGEMENT IN MAHI-NARMADA BLOCK

.

.

reservours. By and large, the water supply is ample and this segment is most rich in groundwater availability and accordingly higher prosperity of the area. As already stated earlier, the construction of ponds along numerous paleochannels has been an effective man-made technique of groundwater enrichment. If the existing water resources are properly managed, there is ample scope of removing the chronic shortage and planning for proper development. But the author would like to strike a note of warning that the hazards of waterlogging and soil salinity in some areas cannot be ruled out and the planners have to very carefully attend to this problem while planning the canal network in these areas. Table - 7.7 summarizes the overall aspect of management for all the five blocks around the Gulf.

Finally, the author would like to emphasize that the factor of sweet water availability specially the groundwater has to be critically evaluated in all its aspects before embarking upon ambitious developmental activities. After all the coastal resources should **not** be strained beyond a limit otherwise it may generate unexpected environmental problems and hazards.

			1	68		
	Preventive Measures	Optimal utilization of groundwater resources. Delimiting the draft	Prevention of inundation and tidal ingress by adopting suitable measures	Delimiting the draft	Restricting the rise of groundwater table by	conjuctive use. Draining out the excess water.
CES MANAGEMENT	Hazards	Contamination of fresh water aquifers, socio- economic imbalance	High salinity and soil degradation.	Contamination of sweet water aquifers.	Rising of water table, concentra-	tion of salts near the surface Land degradation. Eco-system imbalance
ASPECTS OF WATER RESOURCES MANAGEMENT	Problem	Early stages of salinity ingress	Chronic scarcity of sweet water. Fresh water turning saline at shallow depth. Inundation and stagnation of monsoonal water on account of flat and low topography.	Salinity ingress in the coastal area	Waterlogging in the inland areas	
7.7	r Area	Methla-Bhavnagar (Kalubhar)	Bhavnagar- Sabarmati	Sabarmati-Mahi		
TABLE	Block Number	н	II ,	TTT		

.

TABLE 7.7 (contd)

Number	Агеа	Problem	Hazards	Preventive Measures
ΓΛ	Mahi-Narmada	Limited groundwater potential, further subjected to salinity encroachment	Land degradation Socio-economic imbalance	By means of artificial recharge
Λ	Narmada-Tapi	Over - irrigation and salinity	Water logging Land degradation	Draining out the surplus water. Conjunctive use of water resources

,