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1.1 Rhizobia: The master microbe

Nitrogen fixing bacteria in legume nodules collectively designated as rhizobia
have been known since 1888 (Quispel, A.1988). They were the first biofertilizers
produced and allowed savings of millions of dollars in chemical fertilizers that may
contaminate soil and water (Hungria et al 2006). In 1888, Beijerink obtained the first pure
bacterial culture named by him Bacillus radicicola from nodule suspension. This isolate
could nodulate Pisum and Vicia was later renamed as Rhizobium leguminosarum (Frank,
1889). The description of the first rhizobial species was mainly based on the legume,
which acted as host. This fact led to the definition of the cross-nodulation groups, which
was based on the nodulation specificity after infectivity experiments in several legumes
(Baldwin and Fred, 1929).

1.1.1: General Taxonomy

The current taxonomy of rhizobia consists of several genera in the subclass
Alpha- and Beta- Proteobacteria. Rhizobium, Mesorhizobium, Ensifer (formerly
Sinorhizobium), Azorhizobium, Methylobacterium, Bradyrhizobium, Phyllobacterium,
Devosia and Ochrobactrum are genera that belong to rhizobial Alpha-Proteobacteria.
Rhizobial Beta-Proteobacteria includes the following genera: Burkholderia,
Herbaspirillum and Cupriavidus (Weir, 2012). This classification is based on
taxonomically important strains that may not necessarily be important reference strains
for legume growth improvement. Rhizobial strains commonly used in inoculants have
good field performance and stability of symbiotic properties in culture, but are not
necessarily well documented or used in taxonomy or molecular biology studies
(Lindstrom et al., 2010).

1.1.2: Host Specificity and Nodulation

The legume-rhizobia association is specific (each rhizobial strain establishes a
symbiosis with only a limited set of host plants and vice versa). Thus, a restricted number

of inoculants fit with a leguminous plant and farmers need to be familiar with the
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suitability of inoculants for application according to the characteristics of plant and soil
(Mabrouk and Belhadj, 2010). Plants mutually compatible with the same species of
rhizobia were listed in earlier years in so-called cross inoculation groups (Table 1.1).

Table 1.1: Cross-inoculation group and Rhizobium-legume association (Morel et al.,

2012)

Rhizobia

Legume Cross-inoculation group

Ensifer meliloti

Alfalfa Group: alfalfa (Medicago sativa), sweet clover
(Melilotus spp.) (yellow and white), fenugreek (Trigonella

spp.)

R. leguminosarum bv
trifolii

Clover Group (Clover I, I, Il and 1V): clovers (Trifolium
spp.)

B. japonicum

Soybean Group: soybean (Glycine max)

Bradyrhizobium spp.

Cowpea Group: pigeon pea (Cajanus cajan); peanut (Arachis
hypogaea); cowpea, mungbean, black gram, rice bean (Vigna
spp.); lima bean (Phaseolus lunatus); Acacia mearnsii; A.
mangium; Albizia spp.; Enterlobium spp., Desmodium spp.,
Stylosanthes spp., Kacang bogor (Voandzeia subterranea),
Centrosema sp., winged bean (Psophocarpus
tetragonolobus), hyacinth bean (Lablab purpureus), siratro
(Macroptilium atropurpureum), guar bean (Cyamopsis
tetragonoloba), calopo (Calopogonium mucunoides), puero
(Pueraria phaseoloides)

R. leguminosarum bv
viciae

Pea Group: peas (Pisum spp.), lentil (Lens culinaris), vetches
(Vicia spp.), faba bean (Vicia faba)

R. leguminosarum bv
phaseoli

Bean Group: beans (Phaseolus vulgaris), scarita runner bean
(Phaseolus coccineus)

Mesorhizobium loti

Chickpea Group: chickpea (Cicer spp.), Birdsfoot trefoil
(Lotus corniculatus L.)

Rhizobium lupini

Group Lupines

Rhizobium spp.

Crown vetch
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The specificity of symbiotic interactions is achieved by exchange of molecular
signals. In the early steps of symbiosis, a diverse array of compounds is exuded into the
rhizosphere, including flavonoids, isoflavonoids, and non-flavonoid inducers (Peters et
al. 1986; Caetano-Anolle’s et al., 1988; Dharmatilake and Bauer 1992; Spaink et al.,
1991, 1995; Hungria and Stacey 1997).

Molecular determinants of host specificity during nitrogen-fixing symbiosis are
depicted in Fig. 1.1 (Wang et al., 2012) — (i) the plant produce flavonoid signals (such as
the luteolin from M. truncatula) to free-living soil bacteria, activating the bacterial NodD
proteins. NodD proteins, bind to the conserved nod-box in the promoters of bacterial

nodulation genes to induce their expression.
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Fig. 1.1: Molecular determinants of host specificity during nitrogen-fixing
symbiosis (Wang et al., 2012).

(i) The nod genes code for enzymes for the synthesis of Nod factors, which are
recognized on the plant surface by transmembrane Nod factor receptors in a strain- and
ecotype-specific fashion. Modifications on the Nod factor such as the length and
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saturation of the acyl group determine host specificity. Activation of Nod factor receptors
triggers growth changes in the root hair to trap a small number of bacteria, which would
give rise to the entire population colonizing the resulting nodule. (iii) Possibly
downstream of Nod factors, rhizobia also use their surface polysaccharides (such as EPS
from S. meliloti, depicted) to modulate host range. The plant receptor(s) are unknown, but
may resemble animal receptors for surface polysaccharides from bacterial pathogens. (iv)
In certain rhizobial strains, NodD also induces the expression of Ttsl, which codes for a
transcriptional regulator that binds to highly conserved promoter elements, called tts
boxes, upstream of operons encoding the type Il secretion machinery and effectors.
Recognition of these effector proteins by R genes present in some varieties of plants
limits host range.

The legume secretes flavonoids which induce the rhizobia to produce Nod factors
and attract them to the plant root hair cells (Fig. 1.2) (Haag et al., 2012). Nod-factor
signaling triggers a number of developmental changes, including root hair curling which
traps the rhizobia in Shepherd’s crooks. Inward growth of the root hair tip results in
tubular structures called infection threads, which allow the rhizobia to enter the cortical
cell layers of the plant root. The rhizobia escape the infection thread and are taken into
the host cell via an endocytosis-like process (Fig. 1.2, c-1), forming vesicles composed of
host-derived membrane and are known as symbiosomes. In legumes of the Inverted
Repeat-Lacking Clade (IRLC) (consisting of legumes such as Medicago, Pisum, Vicia,
Trifolium, Galega and Astragalus), the rhizobia are challenged with nodule-specific
cysteine-rich peptides (NCR) peptides (Fig. 1.2, c-2), and differentiated into elongated
bacteroids (Fig. 1.2, c-3). The bacterial BacA protein is essential for protecting the
rhizobia against the antimicrobial activity of NCR peptides (Fig. 1.2, c-2). In contrast,
BacA is dispensable for rhizobia infecting legumes of the phaseoloid clade that do not
produce NCR peptides. In these host plants, rhizobia do not differentiate terminally and

often multiple bacteroids can be found inside a single symbiosome membrane.
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Fig. 1.2: Rhizobia interacting with legumes (Haag et al., 2012). (WT: wild-type).
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Fig. 1.3: Nodulation involves the coordinated development of bacterial infection and
nodule organogenesis (Oldroyd et al., 2011). Cell division (indicated with dotted lines)
in the inner or mid-cortex and pericycle is initiated early in the interaction between the
root and rhizobial bacteria and precedes the initiation of infection events. Bacteria are
entrapped in a curled root hair, and from this site infection threads (ITs) are initiated. The

route of the IT is predicted by pre-infection threads that are densely cytoplasmic
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subdomains with aligned cytoskeleton. Its progress into the inner cortex where the nodule
primordium has formed is through a series of cell divisions. From these divided cells, the

nodule meristem forms.

Depending on the host plant, changes in rhizobial metabolism are accompanied by
changes in rhizobial cell size and shape and three distinct types of bacteroids (Vasse et
al., 1990; Mergaert et al., 2006; Bonaldi et al., 2011; Haag et al., 2011b). The first type of
bacteroids, develop in legumes of the IRLC. Infecting rhizobia undergo repeated rounds
of genome amplification, increase their cell size by elongation and can even be branched
(Fig. 1.2 c) (Bisseling et al., 1977; Paau et al., 1979; Kobayashi et al., 2001; Mergaert et
al.,, 2006). Bacteroids that undergo such type of metamorphosis are terminally
differentiated and are no longer viable once extracted from the nodule (Mergaert et al.,
2006). The second type of bacteroids is found in legumes such as those of the Dalbergoid
clade (Aeschynomene and Arachis species). Bacteroids are enlarged by either elongation
as for example in Aeschynomene afraspera or by forming large spheres as in Arachis,
Aeschynomene indica or Aeschynomene evenia (Sen and Weaver, 1984; Bonaldi et al.,
2011). In contrast, the third type of bacteroids is found in rhizobia that infect phaseoloid
legumes (i.e. Phaseolus, Vignia, Lotus and Glycine species). In this case, rhizobia do not
undergo terminal differentiation and retain a cell shape and size and DNA content similar
to free-living bacteria (Fig. 1.2c) (Bisseling et al., 1977; Paau et al., 1979; Mergaert et al.,
2006). Rhizobium strains nodulate legumes of different clades and adopt a bacteroid
morphotype according to the host, it was concluded that bacteroid metamorphosis was
induced by host factors rather than being encoded in the bacterial genome (Sen and
Weaver, 1984; Mergaert et al., 2006; Bonaldi et al., 2011). A class of nearly 600 genes
encoding nodule-specific cysteine-rich peptides (NCRs) has been discovered and the
expression of more than 300 NCRs confirmed (Mergaert et al., 2003; Graham et al.,
2004; Young et al., 2011).

The list of metabolites produced by symbiotic enhancers is as follows: vitamins
that may supplement the nutritional requirement of rhizobia (Marek-Kozaczuk and
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Skorupska, 2001); hydrolytic enzymes that assist during rhizobial penetration in the root
hair, or attack phytopathogenic fungi (Sindhu et al., 2002; Egamberdieva et al., 2010); or
P-solubilizing acids that increase phosphorus availability (Elkoca et al., 2008). The use of
Nitragina, as a donor of effective Rhizobium, for pea plants resulted in slightly higher

Green Area Index values (Zajac et al., 2013).

The growth of rhizobial infection threads (ITs) in root hairs may be further
understood by the given model (Fig. 1.3; Fig. 1.4) (Oldroyd et al., 2011). Nod factors
(NFs) produced by rhizobia within root hairs are perceived by an NF receptor complex
that resides in signaling microdomains at the infection thread apex. One of the
mechanisms may be that NFs induce the production of reactive oxygen species (ROS).
Although their role is not clear, NADPH oxidases is required for both pollen tube and
root-hair growth, so they may play an analogous role in IT growth. One of the main roles
of ROS is the activation of calcium channels. The cytoskeleton is also essential for IT
growth. Microtubules help to determine the direction of growth at the site of Ca®* influx
and actin provides the infrastructure for vesicle delivery at the site of growth root hairs
For example, F-actin, which is found in the sub-apex of growing root hairs, along with
microtubules participate in the recycling and endocytosis of PM sub domains, plays a key
role for the cytoskeleton in signaling. Small G proteins also play crucial roles in support
of tip growth. The proximity of the nucleus to the site of root-hair growth is significant,
and its movement is mediated by actin. This invagination is associated with bacterial
infection, and the promotion of cell division in the cortex leading to the nodule meristem.
The nodules and associated symbiosomes are structured for efficient nitrogen fixation
(Oldroyd et al., 2011). Infection thread is major key and check point for selection of
competitive rhizobia, mutation in LPS and EPS which are cell surface components failed
to be released IT, which fails to show symbiosis of rhizobia to plant (Gibson et al., 2008)

Development of mineral phosphate solubilization ability in Rhizobium spp. by metabolic engineering of tricarboxylic acid cycle

Page 7



Chapter 1: Review of Literature and Introduction

| Bl
IT cell wall
IT cell matrix
Cortical cytoplasm
mictodomang withfoslinsand 8 Efrich oytoplasmic brdge (7)
remorins (33, 79). U NF-producing rhizobia

The IT is surrounded by an array of microtubules
(158).

A Ca* gradient is needed for vesicle fusion
and cell wall flexibility at the growing tip. Golgi-derived vesicles may be required to deliver
cell wall and matrix materials and signaling

components to the growing IT apex.

Small G proteins localized at the apex may

determine where growth takes place. Dynamic F-actin (as well as microtubules) in the

subapex may participate in turnover of PM
proteins, and F-actin may be further needed for
vesicle delivery.

Nucleus

A nearby nucleus is important for early — —
signaling events and tip growth.

k 5 Axial actin cables. Actin is probably required for
nuclear movement during IT development.

The vacuole controls cell turgor. —F———

Fig. 1.4: A model for the growth of rhizobial infection threads (ITs) in root hairs
(Oldroyd et al., 2011).

1.1.3: Rhizobium as nitrogen-fixer

Legume crops are not only used as human diet but also for improving soil fertility
through biological nitrogen fixation (Anjum, 2006). Biological nitrogen (N) fixing
microbes are free living in soil media that are also found in association with rhizosphere
and the tissues (endophytes) of the healthy plant are beneficial for plants systems (Fig.
1.5) (Bashan and de-Bashan, 2005; Herridge et al., 2008). N fixing organisms having
ability to enhance the N fixation performance, as well as they may also increase nutrient
level in soil, which is due to the production of substances like hormones, siderophores,
phosphate solubilization, improvement of nutrients, water uptake and also these microbes

are also helps to enrich soil fertility and counteract agro environmental problems (Badawi
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et al., 2011; Mader et al., 2011). The different N fixing organisms and symbioses found

in agricultural and terrestrial natural ecosystems are shown in Fig. 1.5.

Biological Nitrogen Fixation

Agricultural systems Natural systems
I i
| |
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| | |
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* legume-rhizobia (symbiotic) » legume-rhizobia (symbiotic) * |egume-rhizobia (symbiotic)
+ Azolla-cyanobacteria (symbiotic)  cereal-associative bacteria * nonlegume-Frankia (symbiotic)
» cereal-associative bacteria « cereal-endophytic bacteria + Azolla-cyanobacteria (symbiotic)
« cereal-endophytic bacteria « cycad-cyanobacteria (symbiotic)
Free-living « cereal-associative bacteria

Free-living « cereal-endophytic bacteria

= cyanobacteria

: Ey?nobi:?tetzla teri « heterophic bacteria F livi
- -
eterophic bacterla « autotrophic bacteria ree-living

= autotrophic bacteria « cyanobacteria
» heterophic bacteria
« autotrophic bacteria

Fig. 1.5: The different N,-fixing organisms and symbioses found in agricultural and

terrestrial natural ecosystems (Herridge et al., 2008).

In many tropical forests, N inputs via free-living N-fixers, which are ubiquitous
and responsive across space and time, are critical for meeting high N demands and loss
rates (Houlton et al., 2008; Hedin et al., 2009; Brookshire et al. 2012). Free-living N
fixations are an important source of new N to ecosystems (Reed et al., 2011). Based on
this nitrogen-fixing symbiosis, legume crops require 35-60% less fossil-based energy
than conventional, N-fertilized crops (Jensen et al., 2012). On a global scale, biological
nitrogen fixation in the legume—rhizobia symbiosis accounts for roughly 200 million tons
of fixed nitrogen per year. Thus, legumes are agriculturally and ecologically very
important and account for 25% of the world’s primary crop production (Ferguson et al.,

2010).
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The soil borne, gram-negative Rhizobia bacteria have nitrogen reduction capacity
catalyzed by nitrogenase, an enzyme not found in plants (Kessel and Hartley, 2000;
Raven and Johnson, 2008; Taiz and Zeiger, 2010; Valentine et al., 2011).

N, + 16ATP + 16H,0 + 8e- — 2NH;3 + H, + 16ADP +16Pi + 8H"

This nitrogen fixation process is essential for life, because fixed nitrogen is
required to biosynthesize the basic building blocks of life, e.g. nucleotides for DNA and
RNA and amino acids for proteins (Raven and Johnson, 2008; Taiz and Zeiger, 2010).
The family Fabaceae establishes symbiosis with diazatrophic bacteria (for example, the
genus Rhizobia, which has the unique ability to establish N,-fixing symbiosis on legume
roots) in exchange for metabolites and reduced carbon (Kessel and Hartley, 2000;
Valentine et al., 2011).

Nitrogen fixation is the most energetically expensive reaction known to occur in
any plant cell (Raven and Johnson, 2008). Each symbiotically fixed ammonium molecule
utilizes 8 ATPs for the reaction and the cost of symbiotic N, reduction in legumes is
between 2 and 3 mg carbon (C) per mg fixed N, varying according to the species and
specific genotypes (Valentine et al., 2011). Symbiotic nitrogen fixation required
significantly more energy per N fixed than NO3 uptake and reduction. Abiotic stresses
account for major reductions in nitrogen fixation, where more than 50% of legume crops

are lost worldwide due to drought, salinity, aluminium toxicity and nutrient deficiencies.

1.1.4: Plant Growth Promoting Rhizobzcteria (PGPR )

Interactions between plants and micro-organisms in the rhizosphere can clearly
affect crop yields. The most studied PGPR belong to gram-negative genera, and large
number of strains belongs to fluorescent pseudomonads (Kloepper, 1993). Plant Growth
Promoting Rhizobzcteria (PGPR) are divided into two groups according to the mode of
action: PGPR that directly affect plant growth and biocontrol that indirectly benefit the
plant growth (Fig. 1.6; Fig. 1.7; Table 1.3) (Glick, 1995; 1999). Direct mechanisms of
plant growth by PGPR include (i) the provision of bioavailable phosphorus for plant
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uptake, (ii) nitrogen fixation for plant use, (iii) sequestration of iron for plants by
siderophores, (iv) production of plant hormones like auxins, cytokinins and gibberellins,
and (v) lowering of plant ethylene levels (Podile and Kishore, 2006; Bhattacharyya and
Jha, 2012). Indirect mechanisms used by PGPR include (i) antibiotic protection against
pathogenic bacteria, (ii) reduction of iron available to phytopathogens in the rhizosphere,
(iii) synthesis of fungal cell wall-lysing enzymes, and (iv) competition with detrimental

microorganisms for sites on plant roots.

Phytohormones like indole-3-acetic acid (IAA), gibberellic acid and cytokinins
PGPR increase root surface and length and promote plant development (Kloepper et al.,
2007). Several PGPR as well as some pathogenic, symbiotic and free living rhizobacterial
species produce IAA and gibberllic acid in the rhizospheric soil and plays a significant
role in increasing the root surface area and number of root tips in many plants (Vessey,
2003; Bhattacharya and Jha, 2012). Ethylene, a gaseous phytohormone commonly
induced by wounding in plants, causes root growth inhibition. Many PGPR have the
capability to produce 1-aminocyclopropane-1-carboxylate (ACC) deaminase which
contributes to growth promotion even in stressful conditions such as flooded or soils

contaminated with cadmium (Podile and Kishore, 2006).

Microorganisms and plants have evolved specific mechanisms to chelate
insoluble iron through the release of siderophores and uptake of iron-siderophore
complexes through specific outer membrane receptor proteins to meet their iron
requirement (Sharma and Johri, 2003). These siderophores can be of different types:
hydroxamates, phenol-catecholates, and carboxylates (Podile and Kishore, 2006).
Pathogenic microorganisms affecting plant health are a major and chronic threat to food
production and ecosystem stability all over world (Compant et al., 2005). Diverse PGPR
antagonize the root pathogens through one or more different mechanisms, for example by
production of bacterial allelochemicals such as volatile or non-volatile antibiotics,
siderophores, detoxification enzymes, lytic enzymes and other secondary metabolites like
HCN (Podile and Kishore, 2006).
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Fig. 1.6: Mechanism of growth promotion by phosphate solubilizing bacteria (Zaidi
et al., 2009).

Production of these compounds is highly influenced by the qualitative and
quantitative nutrient availability and is also subjected to quorum sensing (Haas and Keel,
2003). Many PGPR present the ability to produce peptide antibiotics, which are
oligopeptides that inhibit synthesis of pathogens cell walls, influence membrane
structures of cells, and inhibit the formation of initiation complex on small subunit of
ribosomes system of the plant (Maksimov, et al., 2011). It was revealed that B. subtilis
surfacine is able to stimulate induced systemic resistance by activation of components
like lipoxygenases, lipid peroxidases and the formation of reactive oxygen species
(Maksimov et al., 2011).
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Table 1.2: Growth-promoting substances released by phosphate solubilizing

bacteria (Zaidi et al., 2009).

Phosphate solubilizing Plant growth-promoting traits References
bacteria
Pseudomonas sp., IAA, siderophore Rajkumar et al.
Bacillus sp. (2006)
Bacillus spp. IAA, siderophores, ammonia Wani et al. (2007a,

production, HCN, chromium
reduction, metal solubilization

2007b, 2007c)

Mesorhizobium loti MP6

HCN, IAA

Chandra et al. (2007)

Dyella ginsengisoli,
Burkholderia kururiensis,
Pandoraea sp. ATSB30

Siderophore, IAA, salicylic acid,
ACC Deaminase

Anandham et al.
(2008)

Pseudomonas sp.

siderophore  ACC deaminase,
I1AA,

Poonguzhali et al.
(2008)

Bacillus subtilis IAA, siderophore, antifungal | Singh et al. (2008)
activity

Serratia marcescens IAA, siderophore, HCN Selvakumar et al.
(2008)

P. fluorescens ACC deaminase Shaharoona et al.
(2008)

Acinetobacter sp., ACC deaminase, IAA, antifungal | Indiragandhi et al.

Pseudomonas sp. activity, N,-fixation (2008)

Enterobacter sp.

ACC deaminase, 1AA,
siderophore

Kumar et al. (2008)

Burkholderia

ACC deaminase, I1AA, heavy
metal solubilization siderophore,

Jiang et al. (2008)

P. jessenii

ACC deaminase, I1AA, heavy
metal solubilization siderophore,

Rajkumar and
Freitas (2008)

P. aeruginosa

ACC deaminase, siderophore,
IAA

Ganesan (2008)

Mesorhizobium sp., Bacillus | IAA, siderophore, antifungal | Ahmad et al. (2008)
sp., Azotobacter sp., | activity, ammonia production,

Pseudomonas sp. HCN

P. aeruginosa, P. mosselii, | Siderophore, IAA, protease, | Jhaetal. (2008)

P. plecoglossicida

cellulose and HCN

Some PGPR can induce plant growth promotion through a combination of modes

of action and act synergistically to stimulate the growth of the host plant (Antoun et al.,
1998; Belimov et al., 2001; Vessey, 2003; Dey et al., 2004; Khan et al., 2009). ACC

deaminase activity along with expression of one or more of the traits such as suppression
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of phytopathogens, solubilization of tricalcium phosphate, production of siderophore
and/or nodulation promotion by the PGPR contributed to the enhancement of growth,
yield, and nutrient uptake of peanut (Dey et al., 2004). Seed inoculation of rice (cv.
Naveen) by the six individual PGPR isolates had a considerable impact on different
growth parameters including root elongation that was positively correlated with ACC
deaminase activity and IAA production and also showed other plant growth attributes
including ammonia production and at least two isolates produced siderophores (Bal et al.,
2013).

1.1.4.1: Rhizobium as PGPR for non-legumes.

Rhizobia also have an excellent potential to be used as PGPR and PSM with non-
legume plants (Chabot, 1996). Beyond nitrogen fixation, rhizobia also colonize roots of
non-legume species and promote their growth without forming any nodule-like structure
(Mehboob et al., 2009; Mia and Shamsuddin, 2010). Inoculation with Rhizobium had
significant effect on the plant height, number of branches, root and shoot dry weight,
number of nodule, seed and biomass yields, number of pod, crude protein rate and
phosphorus content of seed (Erman et al., 2009). Increased rice production was seen by
inoculation with a Rhizobium leguminosarum bv. trifolii strain (Yanni and Dazzo, 2010).
R. leguminosarum PETPO1 and TPVO08 are excellent biofertilizers for tomato and pepper
in different production steps leading to increased yield and quality (Garci’a-Frailel et al.,
2012). Rhizobia strains establish endophytic relationships with rice plants to promote
shoot growth and enhance grain production (Biswas et al., 2000a, b; Mia and
Shamsuddin, 2010; Costa, et al., 2013). One native rhizobia, POA3 isolated from the
Porto Alegre locality promoted growth of white clover (Trifolium repens) and rice plants
(Oryza sativa) (Granada, et al., 2013).

The symbiotic rhizobia isolated from leguminous plants also promote plant
growth via their inherent PGP capacities: siderophores and indolic compound production
and nutrient solubilization (Ashraf et al., 2013; de Souza et al., 2013; Jida and Assefa,

2013). Indolic compounds production was the most common characteristic of the rhizobia
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species isolated from Cajanus cajan (Dubey et al., 2010). Crop enhancement, plant
nutrients like P, K, Ca, Mg and even Fe accumulation and biofertilizer attributes were
observed in cereal crops due to rhizobial inoculation (Mia and Shamsuddin, 2010)
Rhizobia also promotes plant growth by synthesis of vitamins, phytohormones and
enzymes, producing siderophores, dissolving phosphates and other nutrients and
prevention deleterious effects of phytopathogenic microorganisms besides biological
nitrogen fixation (Boiero et al., 2007; Hayat et al., 2010; Ahemad and Khan, 2011).

The effects of Rhizobium inoculation, lime and molybdenum supply on yield and
yield components of Phaseolus vulgaris L. significantly improved the number of pods
per plant, number of seeds per plant, 100-seed weight and seed yield (Bambara and
Ndakidemi, 2010). On average, an increase of 4-5% in crop yield has an important

impact in agricultural production.

1.1.5: Effect of P on nodulation

Next to nitrogen, phosphorus is the most important element for adequate grain
production. The evolution of science, particularly in the past century, has clearly
demonstrated the significance of phosphorus for all animal and plant life on the earth
(Ryan et al., 2012). Calcium increased root growth, number of nodule primordia, nodules,
and growth of the soybean plant (Waluyo et al., 2013). Ca and P had a synergistic effect
on BNF of soybean in acid soils. Ca is important for the establishment of nodules, whilst
P is essential for the development and function of the formed nodules. P increased
number of nodule primordia, thus it also has an important role in the initiation of nodule
formation. This effect of P supply on nodule formation is because P supply affects the
production of root-exudates including flavonoids that trigger nod-gene expression to form
nodules, and also plays a role in nodule cell metabolism that affects nodule development
(Raghothama et al., 1999; Abel et al., 2002). Improved soil P status enhanced the positive
effect of elevated [CO;] on grain yield, biomass and shoot total N and P contents of the

legumes tested (Lam et al., 2012). Besides contributing to plant growth by making
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soluble phosphorus more available, the legume-nodulating strains increased levels of
soluble phosphate, thus improving the efficiency of biological nitrogen fixation (Silva et
al., 2006). A positive correlation is observed between BNF and P availability in natural
soils (Pearson and Vitousek, 2002; Labidi et al., 2003). Wherever soil P availability is
low, elevated CO, does not increase BNF, and pasture quality decreased because of a
reduction in above ground; at low P availability, there is a limited response of biomass
production by grass community (Edwards et al., 2005; 2006).

Crop growth and vyield reduce greatly due to low P availability especially for
legumes, since legume nodules responsible for N, fixation have high P requirements
(Sulieman and Tran, 2012). P is often the limiting element for biological productivity
(Sato and Miura, 2011; Lopez-Arredondo and Herrera-Estrella, 2012). P deficiency is one
of the critical limiting factors, adversely affecting nodulation and N, fixation, and thus
legume growth and productivity, worldwide (Tesfaye et al., 2007). M. truncatula plants
inoculated with either the S. meliloti 102F51 or 2011 strain but due to P deficiency
severely inhibited plant growth and development of nodules as well as N and P
assimilation (Sulieman and Schulze, 2010a). Plants engaged in symbiotic N, fixation
have high P demand (Vance et al.,, 2003; Sulieman et al., 2013a). Low levels of
phosphorus affected symbiosis by decreasing the supply of photosynthates to the nodule,
which reduced the rate of bacterial growth and the total population of legume-nodulating
microorganisms (Moreira et al., 2010). P availability dominantly controlled free-living N
fixation in tropical rain forest (Reed et al., 2013). Thus, the efficiency of nitrogen fixation
by the strains approved as inoculants may be related to a greater ability to solubilize low

soluble phosphates.

1.1.6: Phosphorus deficiency and Nitrogen fixation

Phosphorus deficiency is commonly reported along with AI** toxicity as 40% of
the world’s arable soil is considered acidic. Phosphorus deficiency and Aluminium (A1%")
toxicity are associated with each other in acid soils, and they both have major effects on

legume plant growth and function and are collectively considered as inseparable factors
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that limit crop productivity on such soils (Ward et al., 2008). Nodule biomass is strongly
correlated to P availability to plants as about 3 times more P is required by nodules than
the surrounding root tissues. An increase in P supplied to host legume plants led to a 4-
fold increase in nodule mass (Olivera et al., 2004). P deficiency in soil severely limits
plant growth productivity, in legumes, and this has a deleterious effect on nodule
formation, development and function (Haque et al., 2005). Nodule construction cost and
growth respiration of soybeans increased with P deficiency (Andrews et al., 2009). In the
case of legumes, more P is required by symbiotic than non-symbiotic plants. Symbiotic
nitrogen fixation (SNF) has a high demand for P, with up to 20% of total plant P being
allocated to nodules during N fixation. The process consumes large amounts of energy,
such that the energy generating metabolism is depended upon the availability of P
(Schulze et al., 1999; Schenk, 2012). The effects of P deficiency may be direct, as P is
needed by nodules for their growth and metabolism, or indirect. The high requirement of
P are linked to its role in nodule carbon and energy metabolism, therefore as the
deficiency may affect the supply of carbon to the nodules, the bacteria will have greater
respiratory demand on the host plant during nitrogen fixation (Sar and Israel, 1991;
Valentine et al., 2011).

1.1.7: Rhizobium- PSM co-inoculation

Considering the main limitations to the biological N, fixation with soybeans and
common beans inoculated with rhizobia and the benefits to crop growth attributed to
Azospirillum, co-inoculation with both microorganisms might improve plant’s
performance. This approach is current with modern demands of agricultural, economic,
social and environmental sustainability (Chaparro et al., 2012). Many evidences are there
to show that co-inoculation with Rhizobium and PSM have additive or synergistic effect
on plant growth and crop yield (Table 1.4) (Morel and Brana, 2012). The results confirm
the feasibility of using rhizobia and PSM such as azospirilla as inoculants in a broad
range of agricultural systems, replacing expensive and environmentally unfriendly N-

fertilizers (Hungria et al., 2013).
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Table 1.3: Ten years of studies on legume co-inoculation (2002-2012). Increase in legume symbiotic parameters and yield
by co-inoculation compared to single-inoculation with rhizobia. Abbreviations are as follows: RDW: root dry weight; SDW:
shoot dry weight; RL: root length; NN: nodule number; NFW: Nodule fresh weight; PDW: plant dry weight; PFW: plant fresh
weight (Morel et al., 2012).

Rhizobium and PSM

Host plant

Observation (% increase)

Reference

Rhizobium and PSB

chickpea

enhanced nodulation, plant growth, yield and nutrient
uptake

Rudresh et al., 2005.

R. leguminosarum D293

Pea

increased plant biomass, nodulation parameters, N,

Stancheva et al., 2006.

and AM fungi fixation activity, increased significantly total P content
in plant tissues and percentage of root colonization
Bradyrhizobium sp. | green gram plants increased dry matter yield, chlorophyll content in | Zaidi and Khan, 2006

(Vigna) and B. subtilis

foliage and N and P uptake

Bradyrhizobium spp./ | legumes increased root and shoot biomass, nodule dry matter, | Elkoca et al., 2008.
Rhizobium and PGPR nitrogenase activity, N,-fixation, and grain yield

B. japonicum USDA110- | Mung bean Increase in total Biomass and in Nodule Number Shaharoona et al., 2006
P. putida (Vigna radiata

Rhizobium sp. -P.putida/ | Pigeon pea Increase in Nodule Number Tilak et al., 2006

P. fluorescens/B. cereus | (Cajanus cajan)

Rhizobium sp.-Bacillus Pigeon pea Increase in plant fresh weight and in Nodule Number | Rajendran et al., 2008

Spp.

(Cajanus cajan)

R. leguminosarum-

Lentin (Lens

Increase in plant fresh weight and in Nodule Number

Mishra et al., 2009

B. thuringeinsis Culinaris L.)

R. leguminosarum- Pea (Pisum sativum Increase in plant fresh weight and in Nodule Number | Mishra et al., 2009
B. thuringeinsis L. cv. Capella

R. leguminosarum Pea (Pisum sativum Increase in plant dry weight Kumar et al., 2001
bv viceae -P. fluorescens | L. cv. Capella

R. leguminosarum Vetch Increase in SDW, nod gene induction and decrease in Star et al., 2011

bv. viciae - A. brasilense
30

(Vicia sativa)

indoles content
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R. galegae bv. orientalis - | Galega (Galega Increase in SDW RDW and in Nodule Number Egamberdieva et al.,

Pseudomonas spp. orientalis) 2010

S. meliloti - Delftia sp. Alfalfa (Medicago increase in SDW and in nodulation rate Morel et al., 2011
sativa)

Bradyrhizobium Altramuz (Lupinus 66 in SDW and 20-40, 25, and 30-50 decrease in Cd, Dary et al., 2010

sp. -Pseudomonas sp./ luteus) Cu and Zn — accumulation in roots, respectively

Ochrobactrum cytisi

R. leguminosarum Clover (Trifolium 20 in SDW; 100 in Nodule Number Marek-Kozaczuk and

bv.trifolii - P. fluorescens | repens) Skorupska, 2001

R. leguminosarum Clover (Trifolium 50 in SDW and 80 in nodulation rate Morel et al., 2011

bv. trifolii - Delftia sp repens)

Rhizobium sp. - Peanut (Arachis 50 in PDW; 80 in Nodule Number Anandham et al., 2007

Thiobacillus sp. hypogaea)

M. ciceri - Azotobacter Chickpea (Cicer | 15 in Nodule Number; 25 in P-soil availability Qureshi et al., 2009

chroococcum arietinum)

M. ciceri - Pseudomonas | Chickpea (Cicer | 20 in PDW; 30 in Nodule Number; 100 in P-uptake Wani et al., 2007
sp/Bacillus sp arietinum)

Mesorhizobium sp. Cicer | Chickpea (Cicer | 70 in Nodule Number; 30 in SDW, 30 in Nuptake Goel et al., 2002

- arietinum)

Pseudomonas spp.

Mesorhizobium sp. Cicer | Chickpea (Cicer | 1,2-1,86 in Nodule Number; 1,3-2,11 NFW; Malik and Sindhu,
-Pseudomonas spp. arietinum) 1-2,93 in PDW 2011

Rhizobium -B. subtilis/ Chickpea (Cicer | 18 in SDW; 16-30 in RDW; 14 in total Elkoca et al., 2008
megaterium arietinum) biomass yield

Rhizobium spp. -A. Common bean | 30 total yield Remans et al., 2008b
brasilense (Phaseolus vulgaris)

R. tropici - Paenibacillus | Common bean | 50 in Nodule Number; 40 in N uptake in non-drought Figuereido et al., 2008
Polymyxa (Phaseolus vulgaris) | stress

R. tropici/etli - A. Common bean | 18-35 and 20-70 in RDW; 29 and 28 in SDW under Dardanelli et al., 2008
brasilense (Phaseolus vulgaris) | non saline and saline conditions, respectively.

R. etli - C. balustinum Common bean | 35 in SDW; 35 in Nodule Number under non-saline Estevez et al., 2009
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(Phaseolus vulgaris)

conditions; and 39 in SDW; 63 in RDW under saline
conditions

Rhizobium spp. - P.
putida /B. subtilis/A.

Common bean
(Phaseolus vulgaris)

30 in Nodule Number; 20 in SDW:; 30-45 in
RDW

Remans et al., 2007

brasilense
Rhizobium spp. - A. Common bean | 70 in Nodule Number Remans et al., 2008a
brasilense (Phaseolus vulgaris)

R. tropici - Paenibacillus
polymyxa

Common bean
(Phaseolus vulgaris)

50 in Nodule Number; 40 in N uptake in non-drought
stress

Figuereido et al., 2008

Rhizobium spp. - P.
fluorescens /A. lipoferum

Common bean
(Phaseolus vulgaris)

25 in Nodule Number; 13 in SDW; 74 in seed yield

Yadegari et al., 2010

S. meliloti B399 and the
Bacillus sp. M7c

alfalfa plants

increase in root and shoot dry weight, length, and
surface area of roots, number, and symbiotic properties

Guifiazl et al., 2010;
Lorena et al 2010.

E. fredii - Soybean (Glycine | 56 and 44 in SDW; 100 and 200 in RDW; 155 and 286 | Estevez et al., 2009

Chryseobacterium max) in Nodule Number

balustinum

B. japonicum USDA110- | Soybean (Glycine | 40 in SDW; 80 in Nodule Number; 45 in RDW Rosas et al., 2006

P. putida max)

B. japonicum USDA110- | Soybean (Glycine | 12 in SDW; 10 in P-uptake Han and Lee, 2005

B. subtilis/ max)

S. proteamaculans

B. japonicum USDA110- | Soybean (Glycine | 47 in Nodule Number Cassan et al., 2009

A. brasilense max)

Rhizobium and PSB grass enhanced nodulation and increased the number and | Abusuwar and Omer,
weight of nodules 2011.

Pseudomonas fluorescens | Common increased nodule number and dry weight, shoot dry Yadegari et al., 2010

P-93 and Azospirillum bean seeds weight, amount of nitrogen fixed as well as seed yield

lipoferum S-21
Rhizobium strains Rb-133
and Rb-136

and protein content.
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B. japonicum
USDA110RCR 3407
strain B. subtilis

Common
bean seeds

influence plant growth, vitality, and the ability of the
plant to cope with pathogens

Elkoca et al., 2010;
Tsigie et al., 2012

Rhizobium and phosphate
solubilizing bacteria

faba bean plants

increased yield and seed quality decreased seeds
carbohydrate content

Rugheim and
Abdelgani, 2012

Pseudomonas and
Rhizobium isolates

common bean

improved growth and yield production

Samavat et al., 2012

Rhizobium and AM fungi

Chick pea plant

significantly increased fresh and dry weights of shoot
and root

Moradi et al., 2013

P. chlororaphis and A.
pascens amendment with
RP

Walnut

highest plant height, shoot and root dry weight, P and
nitrogen (N) uptake of walnut seedlings, and
the maximum amounts of available P and N in soils

Xuan Yu etal., 2012

B. japonicum
USDA110with A.
brasilense

Soybean and
common bean

increased seed yield, improved nodulation

Hungria et al., 2013

tetra inoculants

R. leguminosarum + A.
chroococcum + P.
aeruginosa + T.
Harzianum,

tri inoculants of

R. leguminosarum +

A. chroococcum +

P. aeruginosa and

R. leguminosarum + A.
chroococcum +

T. harzianum

Common
bean seeds

significant nodulation, grain yield and nutrient uptake

Varma and Yadav,

2012

Development of mineral phosphate solubilization ability in Rhizobium spp. by metabolic engineering of tricarboxylic acid cycle

Page 21



Chapter 1: Review of Literature and Introduction

1.1.8: Phosphate solubilization by Rhizobium spp.

The phosphate-solubilizing activity of Rhizobium is associated with the
production of 2-ketogluconic acid, indicating that phosphate-solubilizing activity of the
organism is entirely due to its ability to reduce pH of the medium (Halder and
Chakrabarty, 1993). Since 1950s it is reported that P-solubilizing bacteria release
phosphorus from organic and inorganic soil phosphorus pools through mineralization and
solubilization (Fig. 1.7) (Khan et al., 2009).

P
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Fig.1.7: Schematic diagram of soil phosphorus mobilization and immobilization by
bacteria (Khan et al. 2009)

General sketch of P solubilization in soil is shown in (Fig. 1.8). A wide range of
microbial P solubilization mechanisms exist in nature and much of the global cycling of
insoluble organic and inorganic soil phosphates is attributed to bacteria and fungi (Banik
and Dey, 1982). Phosphatic rocks are solubilized by acid producing microorganisms to
release more P for plant uptake (Gyaneshwar et al., 2002). A few strains or species of
Rhizobium are involved in phosphate solubilization also along with symbiotic nitrogen
fixation (Deshwal et al., 2003). Lowering of soil pH by microbial production of organic
acids such as acid phosphatases, lactate, citrate, and succinate, gluconic and 2-
ketogluconic acids etc. and proton extrusion is the main principal mechanism of
mineralization of organic form of phosphorus (Goldstein, 1995; Deubel et al., 2000).
Phosphate availability in soil is greatly enhanced through microbial production of
metabolites leading to lowering of pH and release of phosphate from organic and
inorganic complexes (Alikhani et al., 2006). Many phosphate-solubilizing bacteria are
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found in soil and in plant rhizospheres and potentially represent 40% of the culturable
population (De Freitas, et al., 1997; Richardson, 2000; Chen et al., 2006). PBS produces
a range of organic acids such as citrate, lactate, and succinate that solubilize mineral
phosphates. To make P available for plant nutrition Bacillus, Pseudomonas, Klebsiella
and Enterobacter spp. are involved in the stepwise degradation of phytate to lower
phosphate esters of myo-inositol and phosphorous by means of acid and alkaline
phosphatase enzymes (Podile and Kishore, 2006). Bacteria also enhance phosphorus
availability to crops by solubilizing precipitated forms of phosphorus (Chen et al., 2006).
Single and dual inoculation with Rhizobium along with P fertilizer is 30-40% better than
only P fertilizer for improving grain yield of wheat, where Rhizobium with non-legumes
could act as phosphate solubilizer, hormone producer and to some extent as N-fixer
(Afzal and Bano, 2008). Bacteria assimilate soluble phosphorus, and make it available by
preventing it from adsorption (Khan and Joergensen, 2009). Phosphate solubilization
activity of rhizobia is related with the production of 2-ketogluconic acid, due to its ability
to reduce pH of the medium (Hayat et al., 2010). During phosphate solubilization, the
nature of organic acid produced by rhizobia is more important than the quantity (Hayat et
al., 2010).

Rhizobium ciceri inoculation and phosphorus application in combination
increased growth rate and P utilization of chickpea cultivars as compared to the control,
greatly affected the P Efficiency Index (EI) and P utilization performance of chickpea
cultivars.( Karaman et al., 2013). Certain strains of R. leguminosarum (bv. viciae, bv.
phaseoli, bv. trifolii), R. leguminosarum sp, B. japonicum, Mesorhizobium ciceri,
Mesorhizobium mediterraneum and S. meliloti are good P-solubilizers (Antoun et al.,
1998; Peix et al., 2001; Alikhani et al., 2006; Daimon et al., 2006; Rivas, 2006; Boiero et
al., 2007). B. japonicum USDA110518 strain showed the ability to solubilize insoluble
tricalcium phosphate (Marinkovic et al., 2013).

1.1.9: Phosphorus in agriculture
Phosphorous is going to be plant nutrient that will limit the agricultural

production in the next millennium. It is a major growth-limiting nutrient, and unlike the
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case of nitrogen, there is no large atmospheric source that can be made biologically
available (Ezawa et al., 2002). As regards the role of P, it stimulates root development
and growth, gives plant rapid and vigorous start leading to better tillering, essential for
many metabolic processes in plant life and for seed formation and organization of cells,
encourages earlier maturity. In most soils, its content is about 0.05% of which only 0.1%
is plant available (Achal et al., 2007). About 20-25% of total phosphorous in arid soils of
India is organic in nature and 68% organic phosphorous in the soil is present as phytin
(Yadav and Tarafdar, 2007), which are not directly available to plants. Phosphorous is
taken up from soil in the form of soluble orthophosphate ions; H,PO4*, HPO,? and PO,
and generally the availability of these ions to the plants is in the order of H,PO,*>HPO,?
> PO, 2. Only about 20% of the phosphorus used in agriculture reaches the food we
consumed, most of the rest is lost in inefficient steps along the phosphorus cycle (Cordell
et al, 2011) (Fig. 1.8).

—
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Fig. 1.8: Simplified cycle of phosphorus in agriculture (based on data from Cordell et
al., 2009 and 2011). Red arrows represent losses into water systems ultimately, and green
arrows represent current recoveries into arable land from the different subsystems. The
percentages under the red arrows represent the percentage losses from each subsystem,
and shown in brackets are the percentage losses relative to the total input into agriculture
land. For example, the livestock system loses about 45% of the phosphorus entering the
livestock system itself, and this represents about a 29% loss of the phosphorus entering
the agriculture system overall.
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Fig. 1.9: P dynamics in the soil/rhizosphere-plant continuum. C-P, Carbon- P; NO,
nitric oxide; OA, organic acids (Shen,et al 2011).

Rhizobacteria secrete organic acids as end products or by-products of primary
metabolism. In most cases, sugars are catabolized by glycolytic or Entner-Doudroff
pathway. The amount of the organic acid secretion differs between members of the same
genus and sometimes between strains of the same species due to presence or absence of
enzymes (Vyas and Gulati, 2009; Buch et al., 2010). Organic acids of aerobic or
anaerobic respiration such as gluconic acid, 2-ketogluconic acid are directly formed
extracellularly or in the in the periplasm by the membrane bound enzymes (Fig. 1.10)

(Archana et al., 2012). However, organic acids formed by intracellular enzymes require

Development of mineral phosphate solubilization ability in Rhizobium spp. by metabolic engineering of tricarboxylic acid cycle

Page 26



Chapter 1: Review of Literature and Introduction

specific transport proteins that aid in their extracellular secretion. Mono-, di- and tri-
carboxylate transporters are located in the plasma membrane mediate their secretion.
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Fig.1.10: Pathways and enzymes involved in organic acid biosynthesis by
rhizobacteria (Archana et al., 2012). The organic acids secreted are depicted in boxes. The
diagram depicts a comprehensive set of pathways — all may not be present in any given organism.
Abbreviations: GDH glucose dehydrogeanse, GADH gluconate dehydrogenase, GA-5-DH
gluconate-5-dehydrogenase, glk Glucokinase, zwf Glucose-6-phosphate dehydrogenase, gntk
Gluconate kinase, edd 6-phosphogluconate dehydratase, eda 2-keto-3-deoxy-6-phosphogluconate
aldolase, ppc phosphoenolpyruvate carboxylase, pyc pyruvate carboxylase, gltA citrate synthase,
acnB Aconitase, icdA Isocitrate dehydrogenase, icl Isocitrate lyase, sucABa ketoglutarate
dehydrogenase, sucDC succinyl-CoA synthetase, sdhABCD succinate dehydrogenase, fumABC
Fumarase, frdABCD fumarate reductase, mdh Malate dehydrogenase, sfcA malic enzyme, aceA
Isocitrate lyase, aceB/glcB Malate synthase, GOE Glyoxalate oxidizing enzyme, ldh Lactate
dehydrogenase, aceEF-IpdA pyruvate dehydrogenase, pta phosphotransacetylase, ackA acetate
kinase A, poxB pyruvate oxidase, pfl pyruvate formate lyase.
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Table 1.4: Organic acids involved in P-solubilization and produced by PS bacteria

(Zaidi et al., 2009).

Bacterial communities Organic acids References
produced
Burkholderia cepacia DA23 Gluconic Song et al. (2008)
Pseudomonas corrugata Gluconic, Trivedi and Sa

(NRRL B-30409)

2-ketogluconic

(2008)

Citrobacter sp. DHRSS

Acetic, gluconic

Patel et al. (2008)

Burkholderia, Serratia, Ralstonia and

Gluconic

Elizabeth et al.

Pantoea (2007)
Bacillus, Rhodococcus, Arthrobacter, Citric, gluconic, Chen et al.
Serratia and one Chryseobacterium, lactic, succinic, (2006)

Delftia, Gordonia, Phyllobacterium,
Arthrobacter ureafaciens,
Phyllobacterium myrsinacearum,
Rhodococcus erythropolis and Delftia sp.

propionic

Enterobacter intermedium

2-ketogluconic

Hwangbo et al.

(2003)

B. amyloliquefaciens, B. licheniformis, Lactic, itaconic, Vazquez et al.
B. atrophaeus, Penibacillus macerans, isovaleric, acetic | (2000)
Vibrio proteolyticus, xanthobacter agilis, isobutyric
E. aerogenes, E. taylorae, E. asburiae,
Kluyvera cryocrescens, aerogenes,
Chryseomonas luteola
Pseudomonas cepacia Gluconic, Bar-Yosef et al.

2-ketgluconic (1999)
Bacillus polymyxa, B. licheniformis, | Oxalic, citric Gupta et al. (1994)
Bacillus spp.

Table 1.5 Organic acids produced by phosphate solubilizing fungi (Zaidi et al 2009)

Organism

Organic acids produced

References

Aspergillus niger

Gluconic, oxalic

Chuang et al. (2007)

Penicillium oxalicum

Malic, gluconic, oxalic

Shin et al. (2006)

Aspergillus flavus, A. niger, | Oxalic, citric, gluconic | Maliha et al. (2004)
Penicillium canescens succinic

Penicillium rugulosum Citric, gluconic Reyes et al. (2001)

A. niger Succinic Vazquez et al. (2000)
Penicillium variabile Gluconic Fenice et al. (2000)
Penicillium rugulosum Gluconic Reyes et al. (1999)
Penicillium radicum Gluconic Whitelaw et al.(1999)
P. variabile Gluconic Vassilev et al. (1996)
A. niger Citric, oxalic, gluconic Illmer et al. (1995)
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A. awamori, A. foetidus, A. | Oxalic, citric Gupta et al. (1994)

tamari, A. terricolaA.

amstelodemi,

A. japonicus, A. foetidus Oxalic, citric  gluconic | Singal et al. (1994)
succinic, tartaric
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Fig. 1.11: Mechanisms of P-solubilization by phosphate solubilizing bacteria (Zaidi
et al., 2009).

PS microbes are well known for making soluble P accessible for uptake by plants.
They can also facilitate growth and development of plants by producing essential
nutrients (Thomas et al., 2005) or by changing the concentration of plant growth
promoting substances including phytohormones such as indoleacetic acid (Wani et al.,
2007a, b), through asymbiotic or symbiotic N, fixation (Zaidi, 2003; Zaidi and Khan,
2007), soil conditioning, exhibiting bio-control activity (Pandey et al., 2006), by
synthesizing siderophores (Vassilev et al. 2006), antibiotics, and cyanide (Lipping et al.,
2008), by synthesizing an ACC deaminase that can modulate plant ethylene levels
(Anandham et al., 2008; Poonguzhali et al., 2008), and by solubilizing or reducing the
toxicity of metals (bioremediation) (Khan et al., 2009).
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1.2: Central Carbon Metabolism

The term “central carbon metabolism” (CCM) describes the integration of
pathways of transport and oxidation of main carbon sources inside the cell. In most
bacteria, the main pathways of the CCM are those of the phosphotransferase system
(PTS), glycolysis, ED pathway gluconeogenesis, pentose phosphate (PP) pathway, and
the tricarboxylic acid cycle (TCA) with the glyoxylate bypass. As a whole, the system
has a complex structure and it is regulated by complex networks of reactions. The
knowledge about regulation in CCM has great industrial relevance as it allows the
engineering of selected metabolic steps to reroute carbon fluxes toward precursors for

industrially important metabolites (Nielsen, 2011).

Carbon Metabolic networks of active reactions were identified using **C
constrained metabolic-flux analysis that relies on the detection of mass isotopomer
pattern in proteinogenic amino acids (Fischer and Sauer, 2003; Fischer et al., 2004).
Based on the established amino acid biosynthesis schemes, intracellular-flux ratios was
calculated from the labeling patterns of the amino acids by using the algebraic equations
of METAFoR analysis (Fischer et al., 2003). These flux ratios represent direct, local
evidence for the in vivo activity of particular pathways and reactions. Thus from the
elucidated network topology of active reactions and from literature data, organism-
specific metabolic-reaction models were deduced using the master network model (Fig.
1.12).

—
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Fig. 1.12: Master network reaction that was used as the basis for net-flux analysis
(Fuhrer et al., 2005). Metabolites in bold were precursors for amino acid biosynthesis, and
metabolites in boxes were extracellular substrates or products. Doubled-headed arrows indicate
reactions assumed to be reversible. Abbreviations: S7P, sedoheptulose-7-P; Acetyl-CoA, acetyl

coenzyme A.
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1.2.1: Escherichia coli —as the Model Organism

The CCM of E. coli and specifically the metabolism of glucose are intensively
studied and well known topics (Raab et al., 2010; Blankschien, et al., 2010). Glucose
metabolism starts with its uptake via the PTS and proceeds with several interconnected
pathways with the major being: glycolysis, gluconeogenesis, the pentose- monophosphate
bypass with the Entner-Dudoroff pathway, the TCA cycle with the glyoxylate bypass,

anaplerotic reactions and acetate production and assimilation (Fig. 1.13).

Glucose
1 2 NADP' — 2NADPH
Glc-6P ' Ribulose-5P
1 LF ‘
Fru-6P + Ribose-5P
1 L. A
Fru-1,6P2
1 A
Glyceraldehyde-3P

1
3P -Glycerate

Acetyl-AMP i
— '\‘ﬁcetate

T Acetyl-P & c

-

o/

Succinate

Fig. 1.13: Simplified representation of the central carbon metabolism of E. coli. (A)
glycolysis and gluconeogenesis, (B) anaplerotic reactions, (C) acetate formation and
assimilation, (D) TCA cycle, (E) Glyoxylate shunt, (F) PP pathway. The dotted line
arrow from oxaloacetate to pyruvate indicates the anaplerotic reaction catalysed by
pyruvate carboxylase. The broken line arrows indicate the removal of metabolites.

Development of mineral phosphate solubilization ability in Rhizobium spp. by metabolic engineering of tricarboxylic acid cycle

Page 32



Chapter 1: Review of Literature and Introduction

The extensive knowledge gained on E. coli CCM (Sauer and Eikmanns, 2005)
offers key advantages in metabolic engineering efforts to achieve increased metabolite
production. Such efforts have been focused intensively rather on the upper part of the
carbon assimilation network, consisting of glycolysis and glyconeogenesis and their

genetic and metabolic regulation.

The terminal stages of glycolysis in E. coli involve complex interplays. PEP
conversion is coupled to two metabolic processes: PEP forms pyruvate by pyruvate
kinase (PK) in the PTS or it forms oxaloacetate by the PEP carboxylase (ppc)-catalyzed
anaplerotic reaction. The final products of glycolysis PEP and pyruvate enter the TCA
cycle via acetyl-CoA and via the formation of oxaloacetate by carboxylation. This route,
referred to as anaplerosis, replenish the intermediates of the TCA cycle that were used for
anabolic purposes. Under gluconeogenic conditions, the TCA cycle intermediates
oxaloacetate or malate are converted to pyruvate and PEP by decarboxylation and this
way the PEP-pyruvate-axaloacetate node provides the precursors for gluconeogenesis.
Therefore, the metabolic link between glycolysis, gluconeogenesis and the TCA cycle is

represented by the PEP-pyruvate-oxaloacetate node (Sauer and Eikmanns, 2005)

1.2.2: Glucose catabolic pathways in pseudomonads

In pseudomonads although organic acids are the preferred carbon sources
presence of glucose as the sole carbon source does induce the glucose metabolizing
pathways. Pseudomonads do not catabolize glucose to triose phosphate via the traditional
EMP pathway as they lack the key glycolytic enzyme PFK (Lessie and Phibbs, 1984).
Unlike E. coli, pseudomonads generally lack PEP-PTS system for glucose uptake
(Romano et al., 1970). Instead, pseudomonads catabolize glucose by two different routes:
the direct oxidative pathway which acts on glucose extracellularly and the simultaneously
operating intracellular phosphorylative pathway. Pseudomonads glucose oxidation occurs
in two successive reactions forming D-gluconate and 2-keto-D-gluconate (2-KG)
catalyzed by a membrane-bound PQQ-GDH and gluconate dehydrogenase (GADH)
respectively (Lessie and Phibbs, 1984; Fuhrer et al., 2005) (Fig.1.14).
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Fig.1.14: Carbohydrate metabolism in pseudomonads. Key to the pathway: Blue
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that reaction is very low; Brown arrows=Occurrence of those genes is highly variable
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1.2.3: Glucose Metabolism in Bacillus subtilis

B. subtilis is a gram positive spore forming bacterian and is the second most

intensively studied bacteria after E. coli. Glucose is internalized via PTS and metabolizes
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a large proportion of it to pyruvate and acetyl CoA, and subsequently converts these
compounds to lactate, acetate and acetoin as by-products of metabolism which are
excreted into the extracellular environment. The overall flux distribution done by **C
metabolic flux analysis suggested glycolysis as the main catabolic pathway for glucose,
acetate secretion, significant anaplerosis, and absent gluconeogenesis (Fig. 1.15) (Martin
etal., 2011).
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35.320.3
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DHAP,
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Fig. 1.15: Glucose Metabolism in Bacillus subtilis (Martin et al., 2011). Shown are
relative flux values normalized to the glucose uptake rate of 8.2mmol g-1 h-1. Black arrows
depict maximum and inner white arrows the minimum estimated flux value based on the Monte
Carlo bootstrap error estimates with a confidence interval of 95%.

1.2.4: Glucose Metabolism in Rhizobium

The mechanism of glucose transport is established in both fast and slow-growing
rhizobia, neither fast nor slow-growing rhizobia possessed a phosphoenolpyruvate
phosphotransferase system and the uptake of glucose proceeded via an active process
requiring an energized membrane state (Stowers et al., 1977; Mulongoy et al., 1978;
DeVries et al., 1982). Carbohydrate supply is a major factor limiting nitrogen fixation by
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the Rhizobium-legume symbiosis (Bethlenfalvay and Phillips, 1977; Hardy, 1977; Pate,
1977). Both fast- and slow-growing species possess the Entner-Doudoroff pathway
(Katznelson and Zagallo, 1957; Keele et al., 1969; Martinez-de Drets and Arias, 1972,
Mulongoy and Elkan, 1977 a). Fast-growing rhizobia also possess NADP*-dependent 6-
phosphogluconate dehydrogenase the key enzyme of the pentose phosphate pathway, but
it was not found in slow-growing rhizobia (Katznelson and Zagallo, 1957; Keele et al.,
1969; Martinez-de Drets and Arias, 1972; Mulongoy and Elkan, 1977a, b). The
tricarboxylic acid cycle also operated in hexose catabolism in B. japonicum
USDA110(Keele et al., 1969; Mulongoy and Elkan, 1977a). ED pathway was established
as the presence of 6PG dehytratase (EC 4. 2. 1. 12) and 2-keto-3-deoxy-6-
phosphogluconate aldolase (EC 4.1.2.14) activities were observed in glucose-grown cells
(Keele et al.,1970; Stowers et al., 1985)( Fig. 1.16.)
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Fig. 1.16. Pathways of glucose and fructose catabolism available to R. trifolii strain
7000 (Ronson and Primrose, 1979). The mutants are blocked at the steps indicated: glk, strains
7009, 7013 and 7039; fup, strain 7039; pyc, strain 7049. Strain 7028 is blocked at one of the two
steps labelled edp. Abbreviations: GLC, glucose; FRU, fructose; G6P, glucose 6-phosphate; F6P,
fructose 6-phosphate; 6PG, 6-phosphogluconate; KDPG, 2-keto-3-deoxy-6-
phosphogluconatGe;A P, glyceraldehydes 3-phosphate; RUSP, ribulose 5-phosphate; X5P,
xylulose 5-phosphate; R5P, ribose 5-phosphate; S7P, sedoheptulose 7-phosphate; E4P, erythrose
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4-phosphate; PYR, pyruvate; AcCoA, acetyl-CoA; OAA, oxaloacetate; CIT, citrate; ISOCIT,
isocitrate; 20G, 2-oxoglutarate; SUCC, succinate; FUM, fumarate; MAL, malate; TCA,
tricarboxylic acid.

Rhizobium trifolii strain 7000 contained key enzyme activities of the ED and PP
pathways (Fig. 1.16). The lack of phosphofructokinase indicated that the EMP pathway

was absent (Ronson and Primrose, 1979).
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Fig.1.17 Outline of Possible pathways of Carbohydrate metabolism in R. meliloti
(Arias et al., 1979)
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Fig.1.18: Reactions of the TCA cycle. (Dunn, 1998) Cycle intermediates are in capital
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are commonly used in biosynthetic reactions are also indicated.
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Fig. 1.19: Possible integration of anaplerotic and bypass pathways with the TCA
cycle. (Dunn, 1998) Intermediates of the TCA cycle are in capital letters. Not all reaction
products are shown.

The sources of acetyl-CoA are pyruvate and carbohydrate metabolism product in
S.meliloti (Fig. 1.20) (Imperlini et al., 2009).. The main fates of acetyl-CoA are (i) its
oxidation by the TCA cycle,(ii) its incorporation into PHB, and(iii) its utilization via the
glyoxylate bypass. TCA cycle intermediates are commonly used in biosynthetic reactions

and some reactions are inhibited by NADH.

—
Development of mineral phosphate solubilization ability in Rhizobium spp. by metabolic engineering of tricarboxylic acid cycle

Page 38



Chapter 1: Review of Literature and Introduction

v Glucose Gluconate
= e IGK
Sucrose e .
v 6P v
Glucose 6-F - Ge¥ llb et 6-P-Cluconate
e 6PGI),
PGl
Fructose _ v
Mannitol 4 T Frudose 6-F < +—— Ribulese S5

Sorbitol

. t e EDD
FBPasi | | PP, -PFK

Fructose-1.6-1 l
v

Trise- P «—— T Kpore

v B-hydroxybutyryl-CoA

Phosphoenolpyruvide  /
Ty / PhbB o~
|PK /

v / / \
* Pyruvale € f \
g | PHB-cycle |
\ f
PC v \ J

Byttt 4 o tmetnte | S~ €S
o
o e
MDH 2
MS

FUM / > \ ACN

Acetyl-Con \
’ \\
FADIL [ttt |
sl)ll |
’ (&

ATP w- \‘\\I)III
“Ketogl arate

\l(\

/, I
Biosynthests / a-KGD Biosynibests

CO; Napn

Fig.1.20: Carbohydrate metabolism in S. meliloti (Imperlini et al., 2009). MS malate
synthase; PhbA B-ketothiolase; PhbB acetoacetyl-CoA reductase.

S. meliloti converted glucose to gluconate, which then entered metabolism
(Stowers, 1985; Portais et al., 1999). Pyruvate carboxylase was assumed to be the
anaplerotic reaction by analogy to A. tumefaciens (Dunn et al., 2001). Both the PP and
ED pathways were present, and glycolysis was absent, in both rhizobia (Arthur et al.,
1979; Stowers, 1985) In rhizobia, the ED pathway was basically the exclusive pathway
of glucose degradation, while the pentose-5-P precursors for biomass were generated
through the oxidative and nonoxidative branches of the PP pathway (Fig. 1.21). With a
flux well above 100% relative to the glucose uptake rate high TCA cycle flux is seen.
B¥c- and 3'P-NMR profiles of bacteroids presented quantitative and qualitative
differences from that of their vegetative state, which reflect some physiological

adaptations of rhizobia to the plant host environment.
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Fig. 1.22: Metabolic pathways for Rhizobium etli (Resendis -Antonio et al., 2007).

The metabolic reconstruction for R. etli includes 26 metabolic pathways involving 363
genes and 383 metabolic reactions. (Fig. 1.22)There are some major differences between
free living B. japonicum USDA110and bacteroids as depicted in Fig. 1.23. (Vauclare et
al., 2013).
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1.Pentose and glucuronate, 8.Glycogen metabolism. 15.TCA cycle. 22. Glycine, serine
2.Purine metabolism. 9.Penthose phosphate. 16. Oxidative phosphorylation. and threonine metabolism.
3. Histidine metabolism. 10.Entner-Doudoroff. 17. Aminoacids tRNA. 23. Methionine metabolism.
4.Pyrimidine metabolism. 11.Glycolysis. 18. Nitrogen fixation. 24.Sulfur assimilation and
5. Arginine and proline metabolism. 12.PHB cycle. 19.Valine, leucine and isoleucine. cysteine metabolism.
6. Amino group/ Urea. 13. Aspartate metabolism 20, Glutamate-glutamine metabolism.  25. Nicotine/nicotinamide.
7.Inositol metabolism. 14.Glyoxylate shunt. 21.Glutatione metabolism. 26. Lysine.
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Fig. 1.23: Schematic representation of major differences between(a) free living
B. japonicum USDA110and (b) bacteroids (Vauclare et al., 2013).
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1.2.5: Importance of PEP-Pyruvate-OAA branch point in the cellular metabolism

In most chemotrophic, aerobic and facultatively anaerobic bacteria, the Embden—
Meyerhof-Parnas pathway (glycolysis) or the Entner—-Doudoroff pathway and the
tricarboxylic acid (TCA) cycle are the main pathways of central metabolism. The former
two are the primary routes for carbohydrate breakdown to phosphoenolpyruvate (PEP),
pyruvate and acetyl-CoA,there by providing energy and building blocks for the synthesis
of cellular components. The TCA cycle also serves a dual role in catabolism and
anabolism by catalyzing complete oxidation of acetyl-CoA to CO, for respiratory ATP
formation and by providing carbon precursor metabolites and NADPH for biosynthetic
processes. Upon growth on TCA cycle intermediates or on substrates that enter central
metabolism via acetyl- CoA (e.g. acetate, fatty acids and ethanol), the cycle intermediates
malate or oxaloacetate must be converted to pyruvate and PEP for the synthesis of

glycolytic intermediates.

This gluconeogenic formation of sugar phosphates from PEP is accomplished by
the reversible reactions of glycolysis and one further enzyme, fructose-1,6-
bisphosphatase.The metabolic link between glycolysis/gluconeogenesis and the TCA
cycle is represented by the PEP—pyruvate—oxaloacetate node, also referred to as the
anaplerotic node (Fig. 1.24).
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Fig. 1.24: The enzymes at the PEP—pyruvate—oxaloacetate node in aerobic bacteria.

Development of mineral phosphate solubilization ability in Rhizobium spp. by metabolic engineering of tricarboxylic acid cycle

Page 42



Chapter 1: Review of Literature and Introduction

The carbon flux control at the PEP—pyruvate—oxaloacetate node is often more
complex than simple on/off regulation under a given condition and in some bacteria, two
C3-carboxylating and up to three C4-decarboxylating enzymes are simultaneously active,
even during growth on glucose as sole carbon and energy source (Dauner et al., 2001;
Fischer et al., 2003) One enzyme, although operating in the same direction, fulfills a
different function under certain conditions (Petersen et al., 2000).In other organisms or
under different conditions, the same enzyme can operate in the reverse direction and thus
contribute to a third function. These examples show that there is a complex interplay of
the enzymes at the PEP—pyruvate—oxaloacetate node and it is obvious that sophisticated
control is realized to ensure an optimal carbon and energy flow within central

metabolism.

In most aerobic and facultatively anaerobic bacteria the chief metabolic pathways
are the EMP pathway (glycolysis), ED pathway and the TCA cycle. The former two are
involved in breakdown of carbohydrate to PEP and pyruvate which serve as precursors
for biosynthesis of several cellular components. The pyruvate dehydrogenase (PDH)
complex links the glycolytic/ED pathway and TCA cycle by further breakdown of
pyruvate to acetyl-CoA which enters directly into TCA cycle. TCA cycle also performs
dual functions of complete catabolism of acetyl-CoA for respiratory ATP formation as
well as supplying the precursors for anabolism. On the other hand, when grown on TCA
cycle intermediates or substrates that enter the central metabolism via acetyl-CoA, the
cell diverts the metabolism towards gluconeogenic pathways for synthesis of the PEP and
pyruvate to synthesize the essential sugar phosphates. Hence, the balance in the cellular
physiology is highly dependent on the interactions between the catabolic and anabolic

pathways.

The crucial metabolic link between the glycolytic / gluconeogenic / ED pathway
and TCA cycle is the PEP-Pyruvate-OAA node often referred to as the anaplerotic node
(Sauer and Eikmanns, 2005). The set of reactions operating at this node decide the carbon
flux in a particular direction depending on the growth condition, thus acting as a key
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switch governing the overall cellular metabolism. Under glycolytic conditions, PEP and
pyruvate enter the TCA cycle by two routes, one by oxidative decarboxylation forming
acetyl-CoA and second by Cj3 carboxylation to form OAA which together energize the
first reaction of TCA cycle. The formation of OAA by carboxylation of PEP or pyruvate
is defined as anaplerosis, a process that replenishes the TCA intermediates utilized for
anabolic purposes. Commonly, enzymes involved in Cjz carboxylation are PEP
carboxylase (PPC) and pyruvate carboxylase (PYC). C, decarboxylation is irreversibly
catalyzed by OAA decarboxylase (ODx). PEP carboxykinase (PEPCk), PEP
carboxytransphosphorylase and malic enzyme perform the same function in a reversible
manner.The differential occurrence of these enzymes in some of the commonly known

bacteria is as listed in Table 1.6.

Table 1.6: Distribution of enzymes acting at PEP-pyruvate-OAA node in different
bacteria. The numbers indicate the number of isozymes present in a given organism. Zero
means that the organism has been tested for the enzyme or the respective gene however no
activity is found so far. Empty space means that there is lack of evidence for the enzyme or the

functional gene (Sauer and Eikmanns, 2005).

Organism PEPCK | PPC | PYC | ODx | MAE PPS | PDHC
E. coli 1(ATP) |1 0 0 1(NAD),1(NADP) | 1 1
1(NADP)

C. glutamicum 1(ATP) |1 1 1 1 (NADP) 0 1
B. subtilis 1(ATP) |0 1 0 2(NAD) 1(NADP) | O 1
Rhizobium etli 1(ATP) |1 1 1(NAD) 1(NADP) | 1 1
S. meliloti 1(ATP) | O 1 1(NAD) 1(NADP) | 1 1
Rhododpseudomonas | 1(aTP) |1 1 (NAD) 1 1
palustris

P. citronellolis 0 1 1 1 1 1
P.fluorescens 1 1 1 1 (NADP) 1 1
Zymomonas mobilis 1 1 1
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PEP—pyruvate—oxaloacetate node is very critical, still this node is quite flexible
with respect to the metabolite pool and the prevailing biomolecular regulatory circuits. In
certain organisms like E. coli, the regulation at this node is very simple, mediated by
catabolite repression that does not allow gluconeogenic enzymes to express in presence
of sugars. But in certain organisms like Bacillus, Corynebacterium and specific strains of
Pseudomonas, more than one enzyme is responsible for C; carboxylation and C,4
decarboxylation, As a result, much more complex regulation is required at the anaplerotic
node (Sauer and Eikmanns, 2005).

1.2.5.1: PEP-Pyruvate-OAA node in E. coli

The carbon flux at this node in E. coli is much more stringently regulated because
PEP is involved in three major metabolic processes (i) PTS mediated sugar transport, (ii)
PPC mediated anaplerotic reaction and (iii) as a precursor in the biosynthesis of amino
acids (Clark, 1989; Gokarn et al., 2001). The enzymes participating in the PEP-Pyruvate-
OAA interconversion in E. coli are as shown in (Fig. 1.25). PPC is the exclusive Cs
carboxylating enzyme while ATP-dependent PEPCk is primarily involved in C4
decarboxylation and gluconeogenesis (Yang et al., 2003). Other options for C4
decarboxylation are NADP dependent malic enzyme (ME) maeA and maeB whereas
sfcA encodes NAD dependent ME which convert malate to pyruvate under physiological
conditions but upon pyruvate accumulation can also act in reverse but thermodynamically
favorable direction (Stols and Donnelly, 1997). However, malic enzymes are dispensable
because PEP formation can be mediated by malate dehydrogenase and PEPCK.
Interconversion of PEP and pyruvate is mediated by PYK and PEP synthetase (ppsA,
especially during growth on C3 acids like lactate and pyruvate). When grown on acetate,
glyoxylate shunt also contributes to anaplerosis replenishing the essential C,4
intermediates of TCA cycle. Pyruvate apart from being converted to acetyl-CoA by PDH
complex is acted upon by pyruvate oxidase to form acetate in the stationary phase
(Dittrich et al., 2005). Hence, more than one metabolic reactions or enzymes are

competing for the same metabolite to regulate this node.
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Fig. 1.25: The PEP-Pyruvate-OAA node in aerobic E. coli.

1.2.5.2: PEP-Pyruvate-OAA node in B. subtilis and Corynebacterium glutamicum
Bacillus is different from E. coli in being aerobic Gram-positive organism. The
variations in the enzymes catalyzing the metabolic activity at this node in B. subtilis are
as evident in Fig. 1.26a.The major difference is that instead of PPC, PYC acts as the sole
anaplerotic enzyme to synthesize OAA. Due to absence of glyoxylate shunt, the organism
fails to utilize carbon source that are metabolized via acetyl-CoA. PEPCk serves dual
functions, primarily being involved in gluconeogenesis while performs a minor catabolic
role in PYK and certain other mutants, by acting in reverse direction, despite being
thermodynamically unfavorable (Sauer and Eikmanns, 2005). B. subtilis contains four
paralogues mleA, ytsJ, malS and maeA encoding putative ME, of which ytsJ encodes the
major NADP-ME which is expressed constitutively on either glucose or malate (Fig.
1.26a). PYK and ME(s) constitute pyruvate shunt that substantially contributes to glucose
uptake rate on carbon-limited conditions. Under these conditions, PEPCk flux is high
which along with PYC and PYK constitutes an ATP dissipating futile cycle. Under

gluconeogenic conditions PEPCk and MEs play a major role in redirecting the flux
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through PEP Pyruvate-OAA node. Major regulation at this point is brought about by
allosteric mechanisms and not by transcriptional control, unlike E. coli.
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Fig. 1.26: The PEP—pyruvate—OAA node in (a) B. subtilis and (b) C. glutamicum.
Abbreviations denote the gene products that catalyze a given reaction: AceEF, subunits
E1l and E2 of the pyruvate dehydrogenase complex; Lpd, subunit E3 of the pyruvate
dehydrogenase complex; MalE, malic enzyme; Mdh, malate dehydrogenase; Mqo,
malate: quinone oxidoreductase; ODx, oxaloacetate decarboxylase (gene not annotated);
Pck, PEP carboxykinase; PtsIHG, phosphotransferase system; Pgo, pyruvate: quinone
oxidoreductase; Pyc, pyruvate carboxylase; Pyk, pyruvate kinase

C. glutamicum shows some of the major differences in the type of enzyme
occurring at this node as compared to E. coli and B. subtilis (Fig. 1.26b). It has both PPC
and PYC as anaplerotic enzymes for C3 carboxylation, which are regulated by different
allosteric effectors. Additionally, PEPCk, ME or ODx function for C4 decarboxylation
converting OAA or malate to PEP or pyruvate (Fig. 1.26b; Table 1.6) of which PEPCk
(GTP dependent) is the main enzyme with no anaplerotic functions. Unlike E. coli and B.
subtilis, there is only one NADP dependent ME which acts for malate decarboxylation
rather than for the reverse pyruvate carboxylation. In glucose grown cultures of C.
glutamicum, the major anaplerotic role is played by PPC while PYC is the main enzyme
for glutamate and lysine production (Shirai et al., 2007). Under glycolytic conditions,
PYC, PEPCk and PYK are responsible for an energy (ATP/GTP) consuming (futile)
cycle (Fig. 1.26b) but its physiological significance is unclear. The PDH complex is
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exclusively involved in oxidative decarboxylation of pyruvate to acetyl-CoA . The
reaction of the PDH complex may be bypassed by the combined activities of
pyruvate:quinone oxidoreductase (catalyzing the oxidative decarboxylation of pyruvate
with a naphtoquinone as electron acceptor), acetate kinase and phosphotransacetylase
(both constitutively expressed and function to form acetyl-CoA from acetate), but the
bypass will be thermodynamically unfavorable due to ATP requirement of acetate kinase.
On acetate, the glyoxylate cycle was found to be the essential anaplerotic pathway
(Reinscheid et al., 1994; Gerstmeir, R., 2003).

Several other check points are also functional in the cellular metabolism, apart
from the PEP-Pyruvate-OAA branch point, which might be influenced by altered flux
distribution at the anaplerotic node. The direct involvement of the anaplerotic node in the
TCA cycle is evident because the interplay of enzymatic reactions utilizing PEP and
pyruvate at this node supplies the substrates OAA and acetyl-CoA for citrate synthase.CS
is non-redundant enzyme for catalyzing the first step of TCA cycle to form citrate and it
catalyzes a crucial step at the branch-point of oxidative, lipogenic, and anaplerotic
pathways (Walsh and Koshland, 1985a; 1985b). CS activity is regulated in E. coli at the
transcriptional and allosteric level depending on the nature of the available carbon source
(Park et al., 1994). Because of its key position as the first enzyme of the TCA cycle, CS
had been assumed to be an important control point for determining the metabolic rate of
the cell and the carbon flux at the anaplerotic node (PEP levels) which could directly
determine the flux through TCA cycle (Peng et al., 2004).

Another branch point in the central metabolism occurs between TCA cycle and
the glyoxylate shunt which is mainly governed by the two enzymes NADP dependent
ICDH and ICL competing for the common metabolite isocitrate. ICL in E. coli is mainly
regulated at the level of expression depending on the growth conditions (acetate or
glucose as carbon source) while ICDH is regulated by phosphorylation/
dephosphorylation (Walsh and Koshland, 1985b). Low PEP levels increase flux via
glyoxylate cycle (Yang et al., 2003; Peng et al., 2004) and PEP in vitro inhibits ICDH as
well as ICL; however its physiological significance is yet unclear (Ogawa et al., 2007).
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1.2.6: Comparison of Central Carbon metabolism

The ED pathway and the TCA cycle were the almost exclusive pathways in P.
fluorescens and the overall TCA flux was higher in pseudomonads along with very low
acetate overflow metabolism as compared to E. coli, (Fuhrer et al., 2005). The ICL and
ICDH activities at TCA-glyoxylate branch-point in P. fluorescens as well the activities
of malate synthase and CS alter significantly in response to aluminum stress (Hamel and
Appanna, 2001). The gram-positive and gram-negative model bacteria E. coli and B.
subtilis relied primarily on the EMP pathway for glucose catabolism and the relative
TCA cycle flux was much lower than that in the other species because secretion of the
incompletely oxidized overflow product acetate was extensive. (Fig. 1.27). At 38%, the
PP pathway flux in B. subtilis was the highest observed in all species (Fuhrer et al.,
2005).

As a fast-growing rhizobium with a generation time of less than 6 h on complex
medium, S. meliloti converted glucose to gluconate, which then entered metabolism.
Pyruvate carboxylase was assumed to be the anaplerotic reaction by analogy to A.
tumefaciens (Fischer and Sauer, 2003) Both the PP and ED pathways were present, and
glycolysis was absent, in both rhizobia (Arthur et al., 1979; Stowers, 1985), which was
confirmed by METAFoR analysis. In both rhizobia, the ED pathway was basically the
exclusive pathway of glucose degradation, while the pentose-5-P precursors for biomass
were generated through the oxidative and nonoxidative branches of the PP pathway (Fig.
1.27). With a flux well above 100% relative to the glucose uptake rate, Rhizobium species
exhibited higher TCA cycle fluxes than those of Agrobacterium tumefaciens, two
pseudomonads, Sinorhizobium meliloti, Rhodobacter sphaeroides, Zymomonas mobilis,
and Paracoccus versutus investigated here. The E. coli and B. subtilis PP pathway flux
contributed substantially to catabolism (12 and 27%, respectively), Second, the E. coli
and B. subtilis TCA cycle flux was relatively low, metabolism was not fully respiratory,
and there was extensive overflow metabolism that is also referred to as aerobic

fermentation. In addition to the linear ED pathway, which may be inducible in E. coli
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during growth on gluconate or constitutive, as it is in Z. mobilis, cyclic operation of the

ED pathway was

reported for organisms that lack phosphofructokinase, e.g.,

pseudomonads (Lessie et al., 1984) and S. meliloti (Irigoyen et al., 1990).
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Fig. 1.27: In vivo carbon flux distribution in E. coli B. subtilis P. fluorescens and S.
meliloti. All fluxes were normalized to the glucose uptake rate that is given at the top of
each panel, and the widths of the arrows are scaled to the relative percentages of flux.
Fluxes below 2.6% of the glucose uptake rate are represented by non-scaled hairlines.
Under any given condition, the metabolic network and its regulatory circuits

synchronize to balance the catabolic and anabolic reactions to meet the requirements of
energy and biomass. For smooth functioning of the metabolism, there are several check-
points existing in the system at the junction of any two metabolic pathways. These branch
points are sufficiently flexible so as to maintain a tight control over the carbon flux
through a particular path under a particular condition. The following few sections discuss
the importance of these check-points in the metabolism of several organisms and their

role as potential new targets for metabolic engineering.
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1.3: Metabolic engineering

Metabolic engineering is referred to as the “directed improvement of cellular
properties through the modification of specific biochemical reaction(s) or the introduction
of new ones, with the use of recombinant DNA technology” (Stephanopoulos, 1999). It is
explained as the targeted and purposeful alteration of metabolic pathways found in an
organism in order to understand and utilize cellular pathways for chemical
transformation, energy transduction, and supramolecular assembly (Lessard, 1996). This
multidisciplinary field involves implementation of principles from chemical engineering,
biochemistry, mathematical and computational sciences, and owes its existence to fast

developing molecular biology techniques.

Earlier strategies for genetic modifications were based on random chemical
mutagenesis and selection of strains exhibiting desired phenotypes but its success relied
heavily on mutagens and creative selection techniques (Koffas et al., 1999). Studies by
Bailey (1991) and Stephanopoulos and Vallino (1991) pioneered the major transition of
this classical approach to a more systematic and rational approach called Genetic
Engineering involving the use of recombinant DNA technology. The technical
manifestation of genetic engineering involving manipulation of enzymatic, transport and
regulatory functions of the cell by using recombinant DNA technology was better
referred to as “Metabolic Engineering” (Stephanopoulos and Vallino, 1991; Koffas et
al., 1999).

An integrated approach towards engineering of microorganisms into ‘microbial
chemical factories’ (MCFs) that can be used in a ‘biorefinery’ for the conversion of
biomass into both fuels and value added biochemicals. Biosynthesis of high value
chemical compounds from biomass using natural or engineered pathways in
microorganisms also serves as a promising alternative to chemical synthesis processes
that employ expensive, hazardous and non-renewable raw materials and reagents as well

as harsh processing conditions. The evolution of the field of metabolic engineering has
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developed principles and tools that enable construction and optimization of MCFs by
tapping into naturally occurring pathways in specific host organisms, heterologous
expression of non-native pathways in well characterized hosts, or engineering de novo
biosynthetic pathways for synthesis of various natural and non-natural products. De novo
pathway engineering refers to the design and construction of novel pathways (hitherto
unknown in nature in any single organism) by assembling multiple existing partial
pathways from different organisms or using promiscuous or engineered enzymes as
biocatalysts to catalyze a series of biotransformations with non-natural substrates (Prather
and Martin 2008).

The steps involved in the design of novel pathways for MCFs and various tools
and approaches used for their optimization are outlined in Fig. 1.28. Once a pathway has
been designed and selected for experimental exploration (Martin et al., 2009), suitable
pathway enzymes are selected to catalyze the reaction steps. Pathway enzymes are the
tireless machines of the MCFs that sequentially process raw materials into desired value
added products and govern the pathway rates, selectivity, yield and overall productivity.
Whenever possible, enzymes known to specifically catalyze reactions with the respective
pathway intermediates are selected. The selected enzymes are then expressed in a suitable
organism grown in a culture medium supplemented with the required starting materials

for the microbial synthesis of the desired value added product.

—
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Fig. 1.28: Design and engineering of pathways for microbial chemical factories
(MCFs) (Dhamankar et al., 2011).

The first step in engineering novel or natural pathways for MCFs is to identify
potential natural cell metabolites or biomass derived feedstocks that can serve as starting
materials and the series of biochemical reactions required to convert these into the
desired product. Some of the computational tools available for identifying and selecting
from the multiple possible pathways connecting different starting materials to a product
of interest are studied (Martin et al., 2009). Once a pathway is selected, appropriate
natural enzymes expected to catalyze pathway reactions need to be selected using enzyme
information from various databases. In silico approaches such as protein BLAST searches
and molecular docking may help in such enzyme selection. Further pathway optimization
to enhance product titers relies on an integrated approach composed of metabolic
engineering to enhance precursor metabolite availability using gene knockouts and
enzyme expression level manipulation, Protein engineering to enhance pathway enzyme
specificity and activity and cofactor balancing via effective cofactor recycling(Prather
and Martin 2008; Martin et al., 2009).Protein engineering can be used for improving the

selectivity and activity of the pathway enzymes and can effectively complement
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conventional metabolic engineering approaches such as increasing the precursor supply
by varying pathway enzyme expression levels or knocking out competing pathways to

enhance productivity.

This has resulted in the metabolic engineering ‘toolbox’ greatly expanding from
conventional approaches such as rationally deleting and/or over-expressing endogenous
genes and introducing heterologous genes to now include tools capable of controlling
gene expression and modulating regulatory networks throughout the cell (Fig. 1.29)
(Klein-Marcuschamer et al., 2007; Tyo et al., 2007 and 2010; Blazeck and Alper, 2010).
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Fig. 1.29: A holistic view of metabolic and cellular engineering (Yadav et al., 2012)
Methods for manipulating the flux from a substrate towards the product can be grouped
into four categories: (1) enhancement in the rate of substrate uptake, (2)reduction of flux
to undesirable by-products and enhancement of precursor and cofactor
flux,(3)introduction of the heterologous pathway and optimization of the activity of its
constituent enzymes and (4)export of the product to the extracellular medium in order to
shift equilibrium towards product formation.
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1.3.1 Metabolic engineering of organic acids for P solubilization.

Genetic manipulation of PS bacteria can be done to improve their ability to
improve plant growth may include cloning genes involved in both mps and organic P-
solubilization (ops),followed by their expression in selected rhizobacterial strains. For
example, have shown that Mps activity is genetically coded in a gene cluster on plasmids
of microbes endowed with PS activity (Goldstein and Liu, 1987 Rodriguez et al.,
2006).They further transferred this gene cluster to an E. coli strain that did not previously
possess PS activity but could demonstrate that the transferred gene was expressed in the
transgenic E. coli strain. They have also found that the gene expression and mps activity
of bacteria is affected by the presence of soluble P in the medium (feed-back
regulation).Chromosomal insertion of these genes under appropriate promoters is another

interesting approach (Rodriguez and Fraga 1999) (Table 1.7).

Table 1.7 Cloning of genes involved in mineral phosphate solubilization (Zaidi et al.,
2009)

Microorganisms | Gene or | Features Reference
plasmid

Serratia pKG3791 | Produces gluconic acid and Krishnaraj and
Marcescens solubilizes P Goldstein, 2001
Rahnella pKIM10 | produces gluconic acid and | Kimetal., 1998
aquatilis Solubilizes P in E. coli DH5a
Enterobacter pKKY Solubilizes P in E. coli 109; Does Kim et al., 1997
agglomerans not lower pH
Pseudomonas Gab Y Produces gluconic acid and | Babu-Khan et al.,
Cepacia solubilizes 1995

mineral P in E. coli JM109; No

homology with PQQ genes
Erwinia herbicola | Mps Produces gluconic acid and | Goldstein and Liu,

solubilizes mineral P in E. coli | 1987

HB101; Probably

involved in PQQ synthesis

Buch et al., 2009
Buch et al., 2010

E. asburae PSI3 | gad Produces gluconic acid and 2-KGA | Kumar et al., 2012

solubilizes RP

YT citC Produces gluconic acid and citric Adhikary, 2012
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solubilizes RP

Citrobacter Yf citC | Produces citric acid and Yadav 2013
DHRSS and vgb | solubilizes RP
Citrobacter /1] Produces oxalic acid and Yadav 2013
DHRSS solubilizes P

YfcitC Produces citric acid and Wagh, 2013
Herbaspirillum solubilizes P

seropedicae Z67

Herbaspirillum Pgg,gad | Produces gluconic and 2-KGA and | Wagh, 2013
seropedicae Z67 solubilizes P

Gene technologies can be used to enhance specific traits that may increase an
organism’s capacity to mobilize soil P directly, enhance its ability to colonize the
rhizosphere (ie, rhizosphere competence, Lugtenberg et al., 2001), or even to form
specific associations with plant roots (Bowen and Rovia, 1999). Alternatively,
microorganisms may provide a novel source of genes for directly modifying plants. For
example, it has been reported that, when expressed in roots, a bacterial citrate synthase
gene increases the exudation of organic acids and significantly improves plant access to
soil P (Lépez-Bucio et al., 2000).

1.3.2: Genetic manipulations at the anaplerotic node in E. coli, B. subtilis and C.
glutamicum

Anaplerotic node has been manipulated not only for understanding the regulatory
network but also for altering molecular fluxes for improving the bioprocesses. One of the
most successful examples is the case of fermentative and aerobic succinate
overproduction in E. coli (detailed in Section 1.3). Pyruvate overproduction was achieved
in various E. coli mutants having block in conversion of PEP to OAA and pyruvate to
acetyl-CoA, PEP, acetate, lactate and ethanol by deletion of the genes coding for the
PDH complex (aceEF), pyruvate formate lyase (pflB), PEP synthetase (pps), pyruvate:
quinone oxidoreductase (poxB), acetate kinase, lactate dehydrogenase (IdhA), PPC and
alcohol dehydrogenase (Wendisch et al., 2006). Anaplerotic node in E. coli has been
successfully engineered for optimizing the amino acid production as PEP forms a key
precursor molecule (Bongaerts et al., 2001; Kramer et al., 2003). These strategies include

avoiding the drain of PEP to pyruvate by mutation in gene encoding PYK; a non-PTS
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sugar uptake and increasing the gluconeogenic fluxes to PEP (e.g. overexpression of PEP
synthetase), coupled with overexpression of transketolase which increases erythrose-4P
level (Patnaik and Liao, 1994; Flores et al., 1996).

Several mutations in the enzymes acting at this node affect the physiological state
of other relevant enzymes and in vivo pathway fluxes. Deletion of PYK gene developed a
local catabolic loop involving PPC and ME which jointly function for both anapleriosis
and catabolism thereby highlighting a newer function of the two enzymes (Emmerling et
al., 2002) in E. coli but not in B. subtilis. E. coli ppc mutant exhibits auxotrophy for TCA
cycle intermediates like succinate when grown on glucose because glyoxylate bypass that
can theoretically substitute the PPC reaction is inactive due to catabolite repression as
well the competition of isocitrate dehydogenase (ICDH) and isocitrtae lyase (ICL) for the
common substrate isocitrate. The anaplerotic function in ppc mutant could be fully
restored by overexpressing pyruvate carboxylase (pyc) which is otherwise absent in E.
coli (Gokarn et al., 2000; 2001). Similarly ppc gene overexpression in E. coli under
aerobic conditions reduced acetate formation and a significantly increased biosynthetic
efficiency (Farmer and Liao, 1997). Collectively, these results suggest that the
anaplerotic reaction in E. coli is not optimized for unhampered growth on glucose and
that some of the enzymes apart from their classically recognized functions in catabolism,
anaplerosis and gluconeogenesis play novel roles in the metabolism of some bacteria.

Although extensive information on the regulatory mechanisms operating at the
anaplerotic node is available for B. subtilis (Sauer and Eikmanns, 2005), no genetic
manipulations are reported at this node. C. glutamicum is an aerobe industrially important
for production of L-Lysine and L-glutamate (Kiefer et al., 2004). The fact that PEP-
Pyruvate-OAA node is crucial for the supply of precursors for amino acid biosynthesis, a
lot of focus has been there on the enzymes and their regulations involved at this node.
Increase in PYC activity and abolition of PEPCK activity in C. glutamicum independently
resulted in increased production of TCA cycle-derived amino acids like glutamate and
lysine (Sauer and Eikmanns, 2005). The levels of ME activity affected the growth pattern
of C. glutamicum on lactate but not on glucose or acetate (Gourdon et al., 2000). C.

glutamicum overexpressing ME accumulated high levels of pyruvate in the medium. C.
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glutamicum ppc mutant grown under biotin limitation accumulated pyruvate due to which
ME functioned in the reverse direction by utilizing pyruvate to replenish
the TCA cycle intermediates (Gourdon et al., 2000).

All these bacteria, discussed above, metabolize glucose via the traditional EMP
pathway yet exhibit such a diversified anaplerotic node. Pseudomonads, as discussed in
earlier sections, are metabolically distinct with respect to non-PTS glucose uptake, two
glucose catabolic routes ultimately following the ED pathway and exhibiting strain
specific variations in the occurrence of enzymes of central carbon metabolism and hence
are likely to display a completely different interplay between the enzymes at the
anaplerotic node. On account of the agricultural importance of pseudomonads and
metabolic versatility, detailed analysis of prevailing regulations at the PEP-Pyruvate-
OAA node by various genetic perturbations would not only add to fundamental

knowledge but also might discover novel targets for metabolic engineering.

1.3.3: Metabolic engineering of organic acids for P solubilization.

1.3.3.1: Role of citric acid in P solubilization

The secretion of gluconic acid is the major mechanism of P-solubilization by
gram negative bacteria (Goldstein 1995; Kim et al., 1998). The acidification of soil by
organic acids depends on both the nature and quantity of the organic acid for e.g. acetic,
lactic and succinic at 100 mM bring about a drop in pH of a soil solution from around 9.0
to about 6.0; a similar drop is brought about by only 20 mM of gluconic acid, 10 mM of
oxalic acid and even lesser amount of citric and tartaric acids (Gyaneshwar et al. 1998;
Srivastava et al., 2006) (Table 1.8). Addition of organic acids decreases the pH of the
alkaline vertisol soil solution in the order Acetic = Succinic = Lactic < <Gluconic <
<Oxalic < Tartaric = Citric and results in P release in a similar order. Penicillium billai
secretes 10 mM each of citric and oxalic acids (Cunningham and Kuiack, 1992) and has
been shown to be effective in releasing P in the field conditions (Asea et al., 1988). On

the other hand, C. koseri and B. coagulans were found to secrete various organic acids in
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the range 1-5 mM whereas as the concentration of these acids required to reduce the pH
of the soil was 20-50 times more.

Table 1.8: Organic acids for phosphate solubilisation in different soil types
(Srivastava et al., 2006).

Organic acid Alkaline Vertisol Acidic alfisol supplemented
pH >7 With RP pH <7
Citric acid 10 mM 10-20 mM
Oxalic acid 10 mM 5-10 mM
Gluconic acid 20 mM 50 mM
Tartaric acid 10 mM 20 mM

Citric acid has better chelation properties due to presence of its three -COOH
group“ s having pKa values of 3.15, 4.77, and 6.40, respectively. Hence, Rhizobium

strains producing citric acid could be effective as P biofertilizers in alkaline soils
1.3.3.2: Metabolic engineering of rhizobacteria for citric acid secretion.

Rhizobia are well known for nitrogen fixing ability and other PGPR effects.
Genome sequence of several bacteria and metabolic data reveals that there are lot of
interspecies diversity in terms of occurrence and regulation of enzymes at the central
metabolism and PEP-Pyruvate-OAA node. Also Rhizobium has shown P solubilization
ability. This study is an effort to genetically engineer a stable system for phosphate
biofertilizer and to examine its applicability amongst Rhizobium spp. Bradyrhizobium is
very efficient is nitrogen fixation which is more than the plant requirement and releases
ammonia which can be used by other crops. Thus could be useful in intercropping
systems B. japonicum USDA110USDA110 can nodulate several legumes and it has PQQ
but not sufficient to function as cofactor for GDH..M. loti MAFF303099 nodulates lotus
plants and it lacks PQQ. S. fredii NGR 234 is a broad host range Rhizobium .Thus these
three Rhizobium strains were selected for the study. Present study describes improvement
in citric acid secretion in B. japonicum USDA110USDA110, M. loti MAFF303099 and to

the required amount for P release from soils. Additionally, the genetic manipulations
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need be directed to the chromosomal integration as it would lead not only to increased
stability but also decrease the metabolic load caused by the presence of the plasmids in
the bacterial cell (Buch et al., 2010; Sharma et al., 2011).

P-solubilization was improved by overexpression of PEP carboxylase (ppc) and
citrate synthase (cs) genes in fluorescent pseudomonads. Introduction of genetic
perturbations in the glucose metabolic pathway at the anaplerotic node of Pseudomonas
and at citric acid formation from OAA and acetyl-CoA by the overexpression of ppc and
cs genes, respectively, demonstrated a direct correlation of increased CS activity with
citrate accumulation (Buch et al 2010). The resultant ~2-fold increase in CS activity in
the gltA-overexpressing strain Pf (pAB7) enhanced the intracellular and extracellular
citric acid yields. Low extracellular citrate levels as compared to the intracellular levels in
Pf(pAB7) suggested a probable limitation of efficient citrate transport (Buch et al 2009).
Studies done in our laboratory in which overexpression of NADH insensitive cs gene in
P. fluorescens Pf O-1 strains harbouring pY145F led to simultaneous increase in
intracellular and extracellular citric acid level. However, the intracellular increase was
not proportional to the extracellular increase in citric acid. The reason may be the

inefficiency of the native proton dependent citrate transporter.(Adhikary, 2012)

Herbaspirilum seropidecae 267 (pAB7) and (pJNK3) transformants increased CS
activity but citric acid secretion was not significant. Hs (pJNK3) secreted 45 mM acetic acid
while Hs (pJNK4) secreted 2.7mM and 51 mM citric and acetic acids, respectively. Hs
(pJINK3) and (pJNK4) transformants, released ~80 uM and ~110 pM amount of P,
respectively, in buffered medium in both aerobic and microaerobic conditions. These

transformants also showed better growth and colonization parameters (Wagh, 2013).

The 2-hydroxycarboxylate transporter (2HCT) family of secondary transporters
are transporters for citrate, malate and lactate. Na* coupled citrate transporters like CitS
of Klebsiella pneumoniae and CitC of Salmonella enterica are highly specific for citrate
(Lolkema, 2006).Earlier studies in the lab have shown that, among them, Salmonella
typhimurium Na* dependant citrate transporter is a better citrate transporter (Adhikary,
2012).
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Currently there is more interest in modifying the chromosome itself than in
plasmid-based gene manipulation, which necessitates selection pressures such as
antibiotic supplementation and is not feasible in agriculture practices. Plasmids can be
lost from the host cell more easily than genes found on the chromosome by a variety of

mechanisms.

1.4: RATIONALE

Plant /
(D) Is it possible to
reverse this trend
using Inoculants?

Shoot (A) Applied Fertilizer

Roots

(8) 1040% (C) 60-90%

Fig. 1.30: Model for improved plant nutrient use efficiency with inoculants
(Adesemoye et al., 2009).

The part of the applied fertilizer that is lost could be in the range of 60% to 90%
of the original amount of fertilizer or manure applied (Hardy and Eaglesham 1995;
Rowarth 1997; Hood et al. 1999; Gyneshwar et al. 2002; Barlog and Grzebisz 2004;
Kleinman et al. 2005). Examples of the route of nutrient loss include N leaching, P
fixation, and nutrient run-off among others. Then, the question being asked is whether it
is possible to reverse the trend of (i) loosing high percentage of applied fertilizer and (ii)
applying large amounts of fertilizers by supplementing reduced fertilizer with inoculants
while maintaining plant growth and high yield comparative to the use of full

recommended fertilizer rates?

Under any given condition, the metabolic network and its regulatory circuits
synchronize in order to balance the catabolic and anabolic reactions to meet the

requirements of energy and biomass. For smooth functioning of the metabolism, there are
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several check-points existing in the system at the junction of any two metabolic
pathways. These branch points are sufficiently flexible so as to maintain a tight control
over the carbon flux through a particular path under a particular condition .CS had been
assumed to be an important control point for determining the metabolic rate of the cell
and the carbon flux at the anaplerotic node (PEP levels) which could directly determine
the flux through TCA cycle (Peng et al., 2004).

Under diverse soil and agro-climatic conditions, the organisms with phosphate
solubilizing abilities have proved to be an economically sound alternative to the more
expensive superphosphates and possesses a greater agronomic utility (Khan et al., 2007;
Xiao et al., 2009). Emphasis is therefore, being placed onto the possibility of greater
utilization of unavailable phosphorus forms wherein the phosphate solubilizing microbes
could play a pivotal role in making soluble phosphorus available to plants (Khan et al.,
2010).

Key questions —

1. What would be the effect of incorporation of ppc, cs and citrate transporter
genes on the biosynthesis and secretion of citrate in Rhizobia?

2. If citric acid is secreted, whether the amount is sufficient for solubilization of
rock phosphate in media conditions mimicking alkaline vertisols?

3. Can citric acid secretion promote the plant growth promotion and nodulation
efficiencies of Rhizobia?

4. Can metabolic engineering strategy for citric acid be applied to different

Rhizobia?

Thus the present study dealt with monitoring the effect of overexpressing ppc
gene of Synechococcus elongatus PCC 6301, E. coli cs, NADH insensitive Y145F cs
gene and NADH insensitive Y145F cs along with Na* dependant citrate transporter genes
on production of organic acid and mineral phosphate solubilizing ability in two different
Rhizobium strains: Bradyrhizobium japonicum USDA 110 and Mesorhizobium loti

MAFF303099. This transgenic Rhizobium having P solubilizing activity could be
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effective as N and P biofertilizers. Part of the study also dealt with monitoring the effect
of genomic integration of yc operon containing E. coli NADH insensitive cs along with
S. typhimurium citC, vgb and egfp gene on production of organic acid and mineral
phosphate solubilizing ability in Bradyrhizobium japonicum USDA 110, Mesorhizobium
loti MAFF303099 and Sinorhizobium fredii (NGR 234). Preliminary plant experiment
was done to see the effect of S. fredii NGR 234 genomic integrant on growth promotion
of Mung bean plants. The overall strategy of the present study is depicted in Fig. 1.31.

Glu PQQE GluconicAcid *
cit™

eon 7

Transporter

ED

Fig. 1.31: Metabolic basis for designing the genetic modifications in Rhizobium
strains. 3 - Presence of PQQ is species dependent; .

* Shows overexpression of ppc,cs and citC genes

* Shows overexpression of NADH insensitive cs gene

1.5: Objectives of the present study

The objectives of the present study were defined as follows-
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1. Effect of constitutive overexpression of ppc gene of Synechococcus elongatus
PCC 6301 on production of organic acid in B. japonicum USDA110 and M. loti
MAFF030669

2. Effect of constitutive overexpression of E. coli cs gene on production of organic
acid in B. japonicum USDA110 and M. loti MAFF030669

3. Effect of overexpression of E. coli NADH insensitive Y145F cs gene on
production of organic acid in B. japonicum USDA110 and M. loti MAFF030669

4. Effect of overexpression of E. coli NADH insensitive Y145F cs and Salmonella
typhimurium Na* dependant citrate transporter on production of organic acid in B.
japonicum USDA110 and M. loti MAFF030669

5. Effect of genomic integration of E. coli NADH insensitive cs along with
Salmonella typhimurium Na® dependent citrate transporter with vgb, egfp on
production of organic acid in B. japonicum USDA110, M. loti MAFF030669 and
S.fredii NGR 234.

6. Effect of Sinorhizobium fredii NGR 234 genomic integrant containing E. coli
NADH insensitive cs along with S. typhimurium citC, vgb and egfp gene cluster

on growth promotion of Mung bean plants.

—
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Chapter 3 : Effect of constitutive overexpression of ppc gene of Synechococcus elongatus PCC 6301 on
production of organic acid in B. japonicumUSDA110 and M. loti MAFF030669.

3.1: Introduction

PEP carboxylase (PPC) is the principal enzyme found in Escherichia coli for the
key reaction in formation of succinate during mixed-acid fermentation of glucose. It
catalyses the carboxylation of three-carbon intermediates such as phosphoenolpyruvate
(PEP) to four-carbon oxaloacetate. In E. coli, PEP may also be converted to pyruvate
which during anaerobic growth leads to the formation of lactate, formate, acetate, and
ethanol. In other prokaryotes and many eukaryotes during glucose metabolism,
oxaloacetate is synthesized by carboxylation of pyruvate by pyruvate carboxylase, an
enzyme that is absent in E. coli (PYC) (Attwood et al., 1995; Payne et al., 1996; Peters et
al., 1997). PEP is also required for glucose consumption via the PEP-phosphotransferase
system (PEP-PTS) and for the synthesis of aromatic amino acids (Gottschalk et al., 1985;
Clark et al., 1989). PEP partitioning is highly regulated by cellular mechanisms because

of its central position in glucose metabolism.

Increased succinate production has been shown to result from overexpression of
ppc gene in E. coli and pyc gene in Rhizobium etli (Millard et al., 1996; Gokarn et al.,
1998). Similarly, the expression of gene for malic enzyme in E. coli strains lacking the
enzymes pyruvate formate lyase (PFL) and lactate dehydrogenase (LDH) vyielded
succinate as the major fermentation product (Slots et al., 1997). Each of these genetic
perturbations directly affects the central metabolic network and therefore impacts the
carbon flow through the metabolic branches. Flux analysis methodologies are used to
understand succinate production changes in metabolic fluxes. Genetic perturbations
affecting the activities of PPC and PYC was done to improve the understanding of
anaerobic succinate production in E. coli, fermentation patterns suggested that the cell
adapted to these genetic alterations by adjusting the flux to lactate, ethanol and acetate
(Gokarn et al., 2000).

Thus, one of the highly explored junctions in the E. coli carbon metabolism is the
phosphoenolpyruvate (PEP)-Pyruvate-Oxaloacetate (OAA) node which is the critical
branch point between catabolism and anabolism. The carbon flux distribution is regulated
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by dynamic equilibrium between the metabolites at this junction by the activities of the
enzymes which are controlled at both transcriptional and allosteric levels. As compared
to E. coli, the set of enzymes at the node differ in other organisms like Bacillus,
Corynebacterium and Pseudomonas citronellolis. Thus, the flux to and from anaplerotic
node in these organisms is differentially regulated which is evident from the nature of
metabolic responses to a specific genetic manipulation. In E. coli phosphoenolpyruvate
kinase (PEPCK) mutant, the anaplerotic flux through phosphoenolpyruvate carboxylase
(PPC) was reduced while the glyoxylate shunt was activated where as in C. glutamicum it
drastically increased the production of lysine and glutamate (Yang et al., 2003; Sauer and
Eikmanns, 2005).

Overexpression of pyc gene in wild type E. coli reduced acetate overflow and
improved recombinant protein production while in ppc mutant E. coli and alcohol
dehydrogenase (adhE)-lactate dehydrogenase (IdhA) double mutant E. coli resulted in
increased succinic acid production (Gokarn et al., 2000; March et al., 2002; Sanchez et
al., 2005a). On the contrary, pyc overexpression in C. glutamicum resulted in growth
enhancement or lysine overproduction depending on aspartate kinase activity (Koffas et
al., 2002). Similarly, genetic engineering in the form of overexpression of ppc gene
involved in OAA biosynthesis has been a frequent target for altering the flux at PEP-
Pyruvate-OAA node.

3.1.1: Effects of ppc gene overexpression in E. coli and other organisms.

The main goals in recombinant protein production processes with E. coli are high
gene expression levels in high cell density cultures, those two goals can seldom be
obtained simultaneously. This is caused by the excretion of considerable amounts of
acetic acid under the high cell density culture conditions that are useful in industrial
processes ( De Anda et al., 2006). Koo and Park (1999) observed a 60% increase of
recombinant protein production in E. coli after elimination of the acetate production.

Generally, saturation of the tricarboxylic acid cycle (TCA cycle), and/or the electron
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transport chain are considered to be the main causes of this phenomenon (Contiero et al.,
2000).

Elevated acetate concentrations are highly detrimental for growth rate and
recombinant protein yield (De Anda et al., 2006). Since citrate synthase (CS, gltA) and
PPC provide a link between glycolysis and TCA cycle, they are considered to be
important metabolic control points (Park et al., 1994; Sauer and Eikmanns 2005). Both
CS and PPC direct metabolites into the TCA cycle and by diminishing the pool of PEP,
pyruvate and acetyl CoA, they prevent these metabolites to participate in the acetate
production (Fig. 3.1). Moreover, overexpression of gltA gene can increase the flux
through the TCA cycle in glucose medium. Most of the molecular approaches used to
date do not completely eliminate acetate production and have a deleterious effect on

growth rate or lead to undesirable accumulation of byproducts (De Anda et al., 2006).

Expression of gltA gene is tightly regulated since CS combines the requirement of
biomass synthesis and energy production under different culture conditions. CS is an
important control point for the metabolic speed of the cell and the rate of this reaction
limits the turnover of the TCA cycle under certain conditions (Walsh and Koshland,
1985). This leads to the hypothesis that controlled (over-) expression of the enzyme could

decrease acetate accumulation.

PPC plays an anaplerotic role in replenishing oxaloacetate (OAA) and keeping the
TCA cycle intermediates from depletion (Peng et al., 2004). By converting PEP to OAA,
PPC prevents the accumulation of pyruvate and provides OAA, which is further
converted by CS. The accumulation of pyruvate creates, according to Ponce (1999), the
highest flux to acetate and thus is the central cause of acetate production. Thus, these
findings lead to the assumption that over-expression of PPC can lead to less acetate
formation. Lowering the pyruvate pool was also one of the means suggested by others to
reduce acetate production (Chao and Liao 1993; Farmer and Liao 1997; Gokarn et al.,
2001; Lin et al., 2005).
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Maeseneire et al., (2006) demonstrated that over-expression of ppc and gltA genes
in E. coli MC1061 can completely eliminate acetate production and simultaneously
increase the final cell density of the cultures. Knock-out and over-expression mutants
were constructed and characterised at the level of expression, enzyme activity, growth
and metabolite production. Over-expression of ppc gene clearly had a positive effect on
growth to higher cell densities, which is accompanied by the elimination of acetate
formation and thus, with a better pH-profile of the cultures. Over-expression of ppc and
gltA genes can lead to a higher flux through the TCA cycle and thus it can eliminate the

acetate production by eliminating saturation of this cycle (Fig. 3.1).
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Fig. 3.1: Summary of the effects of overexpression of TCA cycle genes in E. coli.

Over-expressed enzymes are indicated with bold arrows (De Maeseneire et al., 2006)

Several metabolic engineering approaches have been proposed to understand the
metabolic rigidity of the biochemical network at the PEP branch point. Under anaerobic
conditions, ppc overexpression in E. coli altered carbon flux towards fermentation
products leading to a significant increase in the yield of succinic acid on glucose which
otherwise is a minor product (Millard et al., 1996). Under aerobic condition
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overexpression of ppc decreased the rates of glucose consumption and organic acid
excretion, but the growth and respiration rates remained unchanged; thereby resulting
into improved growth yield on glucose (Chao and Liao, 1993). This result indicated that
the wild-type level of PPC was not optimal for the most efficient glucose utilization in
batch cultures. Under aerobic conditions in presence of excess glucose, ppc
overexpression in E. coli did not affect the growth and the glucose consumption rates but
reduced the acetate excretion by 60% (Farmer and Liao, 1997; Abdel-Hamid et al.,
2001). Simultaneous overexpression of ppk and pck, or pps alone in the presence of
glucose lead to futile cycling, which did not affect the growth rate significantly (Liao et
al., 1994).

E. coli ppc gene when expressed in Synechococcus PCC 7942 ppc mutant showed
lower PPC activity with reduced growth, chlorophyll-a content and photosynthetic
activity (Luinenburg and Coleman, 1993). Overexpression of ppc gene in combination
with ornithine carbamoyltransferase and carbamoylphosphate synthetase genes triggered
the biosynthesis of cyanophycin in Acinetobacter sp. strain ADP1 (Elbahloul and
Steinbiichel, 2006). Overexpression of ppc gene resulted in lysine overproduction in C.
glutamicum containing feedback-resistant aspartate kinase while it did not contribute

much in glutamate overproduction (Cremer et al., 1991; Shirai et al., 2007).

Synechococcus elongatus PCC 6301 ppc gene was constitutively overexpressed in
fluorescent pseudomonads, to increase the supply of oxaloacetate, a crucial anabolic
precursor and an intermediate in biosynthesis of organic acids implicated in phosphate
(P) solubilization (Buch et al., 2010) (Fig 3.2). Pseudomonas fluorescens ATCC 13525,
transformed with pAB3 plasmid containing the ppc gene showed a 14-fold increase in
PPC activity under P-sufficiency. It also resulted in increased carbon flow through the
direct oxidative pathway and reduced metabolic overflow. Under P-limitation, the direct
oxidative pathway significantly increased in P. fluorescens ATCC 13525; however, ppc
gene overexpression enhanced glucose catabolism through intracellular phosphorylative
pathway. These results showed correlation with gluconic, pyruvic and acetic acid levels

as well as the activities of key glucose catabolic enzymes. Irrespective of the P-status,
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ppc gene overexpression improved biomass yield without altering growth rate, resulting
in improved P- solubilizing abilities of P. fluorescens ATCC 13525 and of the wheat
rhizosphere fluorescent pseudomonads isolates Fp585, P109 and Fp315. This work
presented a feasible genetic engineering approach for developing efficient P-solubilizing

bacteria, illustrated in Fig.3.2.
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Fig. 3.2: Glucose metabolism of P. fluorescens and media dependant alterations due
to S. elongatus PCC 6301 ppc overexpression. Numbers depicted on the arrows
represent the fold change in response to ppc overexpression on M9 and TRP1 minimal
media. Numbers on the arrow heads (D) depict the fold variations in Pf (pAB4) on M9 as
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compared toTRP1 medium. The parameters depicted are organic acid yields, enzyme
activities and physiological parameters while unchanged parameters are not indicated.
The values represented against the arrows depicting two pathways, represent the Mean
amount of glucose distributed in phosphorylative and direct oxidation pathways of the
initial 100 mM supplemented, in Pf (pAB4)/Pf (pAB3). The glucose concentration
remaining unutilized in the spent medium was obtained by subtracting from 100 mM, the
sum of the values of direct oxidation pathway and phosphorylative pathway. The adjacent
% values depict the percentage contribution of each pathway in Pf (pAB4)/Pf pAB3) on
the two media (Buch et al., 2010).

3.1.2.: Why heterologous ppc gene?

PPC, being one of the key enzymes at the critical anaplerotic as discussed earlier,
is highly regulated under physiological conditions. Majority of the PPC enzymes of non-
photosynthetic bacteria including E. coli and P. citronellolis belong to class | which get
allosterically activated by acetyl-CoA and inhibited by L-aspartate (Newaz and Hersh,
1975; O’Brien et al., 1977). In E. coli, additionally PPC is activated by fructose 1,6-
bisphosphate, GTP and long chain fatty acids while is inhibited by L-malate (Morikawa
et al., 1980). On the contrary as rare case, PPC in Pseudomonas AM-1 and Pseudomonas
MA grown on methylamine as sole carbon source belonged to Class Ill as they were
independent of acetyl-CoA and aspartate mediated allosteric regulations (Large et al.,
1962; Newaz and Hersh, 1975). PPC in Pseudomonas MA was also activated by NADH
and inhibited by ADP (Millay et al., 1978).

In order to avoid such allosteric regulations exerted at the anaplerotic node by the
host metabolism, ppc gene from a heterologous host Synechococcus elongatus PCC 6301
(Anacystis nidulans, cyanobacteria) was selected for the present study. This PPC is
known to be non-allosteric and has been demonstrated to be insensitive to the allosteric
effectors including dioxane (non-physiological activator) and L-aspartate (Ishijima et al.,
1985; Kodaki et al.,, 1985). Cyanobacterial PPC is not activated by acetyl-CoA
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(Luinenburg and Coleman, 1993). S. elongatus ppc gene codes for a 1053 amino acid
residue polypeptide with the codon usage not so markedly different from that of the E.
coli ppc (Katagiri et al., 1985). Like most of the known PPCs, this cyanobacterial PPC
functions as a homotetramer of ~95-110-kDa subunits, and is more closely related to
bacterial PPCs due to presence of conserved bacterial type (including E. coli) catalytic
domain and lack of N-terminal phosphorylation domain typical of plant PPC (Sanchez
and Cejudo, 2003; Xu et al., 2006).

Fuhrer et al. (2005) investigated glucose metabolism in seven bacterial species
and found that compared to those of the model bacteria Escherichia coli and Bacillus
subtilis, metabolisms of the investigated species differed significantly in several respects.
Among them, the ED pathway and the TCA cycle were the almost exclusive catabolic
pathways in P. fluorescens and S. meliloti. With a view to increase the flux through the
anaplerotic node for increasing oxaloacetate levels, this chapter dealt with developing
Rhizobium strains expressing S. elongatus PCC 6301 ppc gene and monitoring its effects

on the glucose metabolism.

3.2 EXPERIMENTAL DESIGN
The experimental plan of work includes the following-
3.2.1: Bacterial strains used in this study

All wild type and genetically modified E. coli and Rhizobium strains used in this
study are listed in Table 2.1 and 2.2. The plasmids used in the present study and their
restriction maps are given in Table 2.3 and Fig. 2.1. E. coli JM101 was used for all the
standard molecular biology experiments wherever required. The ppc mutant strain, E. coli
JWK3928, was a generous gift from NARA Institute of Science and Technology (Japan)

due to kind recommendation of Prof. H. Mori.( Table 3.1)
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Table 3.1: List of bacterial strains used. Detailed characteristics of these strains are
given in Section 2.1 Parent strains and the transformants of E. coli and Rhizobium were
respectively grown at 37°C and 30°C with variations in tetracycline and erythromycin
concentrations for rich and minimal media as described in Section 2.2 and 2.3.

Bacterial strains Characteristics Source/Reference

E. coli strains

E. coli IM101 F" traD36 proA+B+ laclq A(lacZ) | Sambrook and
M15/A(lac-proAB) ginV thi Russell, 2001

E. coli JWK3928 ppc- | lacl® rrnBT14 DlacZWJ16 sdR514 | Peng et al., 2004

strain DaraBADAH33,DrhaBADLD78

JM101 (pAB3) E. coli | IM101 with pAB3 plasmid; Amp', | Buch et al., 2008
Tc'

JM101 (pAB4) E. coli | IM101 with pAB4 plasmid; Amp', | Buch et al., 2008
Tc'

Rhizobium strains

Bradyrhizobium NC_004463.1 NCBI

japonicum USDA110

Mesorhizobium loti NC_002678.2 NCBI

MAFF030669

Bj (pPAB4) Bradyrhizobium japonicum This study

USDA110 with pAB4 plasmid,;
Amp', Tc" (control vector)

Bj (PAB3) Bradyrhizobium japonicum This study
USDA110 with pAB3 plasmid,
Amp', Tc" (ppc)

MI (pAB4) M. loti MAFF030669 with pAB4 | This study
plasmid; Amp", Tc" (control
vector)

MI (pAB3) M. loti MAFF030669 with pAB3 | This study

plasmid; Amp', Tc" (ppc)

—
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3.2.2: Development of B. japonicum USDA110 and M. loti MAFF030669 strains
harboring ppc gene of S. elongatus PCC6301.

The recombinant plasmids pAB3 and pAB4 (control) were transformed in
Bradyrhizobium japonicum USDA110 and M. loti MAFF030669 by electroporation
(Section 2.4.2.2). The transformants were selected on tetracycline selection plates and

were confirmed by restriction endonuclease digestion pattern.
3.2.3: Growth and MPS phenotype of transformant strains of Rhizobium

The MPS ability of transformants of Bradyrhizobium japonicum USDA110 and
M. loti MAFF030669 and its transformants were monitored on Pikovaskya’s (PVK) agar
and 100 mM Tris buffered RP (TRP) agar as described in Chapter 2.

3.2.4: Effect of heterologous ppc gene expression on the physiology and glucose

metabolism.

Bradyrhizobium japonicum USDA110 and M. loti MAFF030669 transformants
were subjected to physiological experiments involving growth and organic acid
production profiles on TRP medium with 50 mM glucose as carbon source (Section 2.2.).
The samples withdrawn at regular interval were analyzed for 0.D.600nm, pH,
extracellular glucose, and organic acid (Section 2.9.3). The physiological parameters
were calculated as in Section 2.8. The enzyme assays were performed as described in
Section 2.9; with PPC, PYC, G-6-PDH and GDH being assayed in mid-log to late-log
phase cultures while CS, ICL and ICDH being assayed in the stationary phase cells.

3.3: RESULTS

3.3.1: Heterologous overexpression of S. elongatus PCC 6301 ppc gene in Rhizobium
strains.

The plasmids incorporated in Bradyrhizobium japonicum USDA110 and M. loti
MAFF030669 transformants were isolated from the transformants and were confirmed
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based on restriction digestion pattern (Fig. 3.3) before studying the effect of

overexpression of S. elongatus PCC 6301 ppc gene.

Basa Pairs
23,130 -
9416~
6,557 —
4,361 -
8166 12007
5349
5349
3841
2817 -

230~

2,027 -

Fig. 3.3: Restriction digestion pattern of plasmids containing ppc gene isolated from
transformants of Bradyrhizobium japonicum USDA110 and M. loti MAFF0306609.
Lane 1: pAB4 plasmid Undigested (8166 bp); Lane 2 and 3: pAB4 plasmid digested with
BamHI and HindIll (5349 bp and 2817 bp); Lane 4 : MWM-Lambda DNA cut with
Hindlll; Lane 5 and 6: pAB3 plasmid digested with BamHI and Hindlll (5349 bp, 3841
bp and 2817 bp); Lane 7: pAB3 plasmid Undigested (12007 bp).

The PPC activity in Bradyrhizobium japonicum USDA110 and M. loti
MAFF030669 containing pAB3 {Bj (pAB3)} and {MI (pAB3)} grown on TRP medium
with 50 mM glucose, was 45.55 + 1.68 U and 35.61 £+ 0.59 U, respectively, and the
increase was ~9.2 and ~6.2 fold higher than that in control {Bj (pAB4)} and {Ml
(pAB4)} which possessed very negligible levels of PPC activity (4.98 £ 0.38 U) and
(5.82£0.24 V).

To check MPS ability a zone of clearance and acidification was observed on PVK
and TRP plates respectively and the maximum zone of clearance and acidification was
shown by Bj (pAB3) and MI (pAB3) as compared to the control Bj (pAB4) and Ml
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(pAB4).P-solubilizing ability of wild type Bradyrhizobium japonicum USDA110 and M.
loti MAFF030669 and its transformants varied in the order of Bj (pAB3) = Ml (pAB3) >
Bj (PAB4) = MI (pAB4) >Bj=MI on PVK medium after 3 days of incubation at 30°C
(Fig. 3.4; Table 3.2).

Bj (pAB4) Bj (pAB3)

MI (pAB4)

BJ (pAB4) Bj (PAB3)

MI (pAB3)

MI (PAB4) MI (pAB3)

Fig. 3.4: MPS phenotype of Bradyrhizobium japonicum USDA110 and M. loti
MAFF030669 strains harboring pAB3 plasmid. (A) and (B) on Pikovskaya’s agar and
(C) and (D) Tris rock phosphate agar containing 50 mM glucose and 100 mM Tris HCI
buffer pH 8.0. The results were noted after an incubation of 3 days at 30 °C. Media

composition and other experimental details are as described in Sections 2.2.4 and 2.7.

The pAB3 transformants of Bradyrhizobium japonicum USDA110 and M. loti
MAFF030669 showed maximum enhanced zone of clearance as compared to the control
pAB4 (Table 3.2). Phosphate Solubilizing Index was calculated as described in 2.5. And
it was highest in Bj (pAB3) and MI (pAB3). There was ~1.2-fold increase in PSI of Bj
(pAB3).
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Table 3.2 P solubilization index on Pikovskyas agar of Bradyrhizobium japonicum
USDA110 and M. loti MAFF030669 transformants during 3 days of growth Bj and
MI: wild type strain; Bj (pAB4) : Bradyrhizobium japonicum USDA110 with vector
control and Bj (pAB3) : Bradyrhizobium japonicum USDA110 with ppc gene. The
results were noted after an incubation of 3 days at 30 °C and are given as mean + S.D. of

three independent observations as compared to native Bj and MI.

Rhizobium | Diameter of zone Diameter of Phosphate
Strains of clearance (mm) colony (mm) Solubilizing Index
Bj 12.17 £ 0.29 11.17 £ 0.29 1.09
Bj (pAB4) 13.50 £ 0.50 11.17 +0.29 1.18
Bj (pAB3) 15.17 £ 0. 29 11.50 + 0.50 1.36
MI 12.83 +0.29 11.50 + 0.50 1.09
Ml (pAB4) 13.17+ 0.29 11.17 +0.29 1.18
Ml (pAB3) 14.17 +0.29 11.17 +0.29 1.28

3.3.2: Effect of S. elongatus PCC 6301 ppc overexpression on growth pattern and pH
profile in TRP medium.

The growth profiles and organic acid secretion on TRP medium with 50mM
glucose demonstrated that maximum O.D. was reached in 16 h {Bj (pAB3)} and {MI
(pAB3)} transformants compared to 20 h of the controls {Bj (pAB4)} and {MI (pAB4)}.
Slight pH drop was found within 20 h in native and control vector transformant while pH
drop to 4.7 and 4.2 was seen within 16 h in {Bj (pAB3)} and {MI (pAB3)}, respectively
(Fig. 3.5).
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Fig. 3.5 Effect of ppc overexpression on extracellular pH (o, A, V,) and growth
profile (m, A, V) of (A) Bradyrhizobium japonicum USDA110 and (B) M. loti
MAFF030669, with 50 mM glucose and 100 mM Tris-Cl pH 8, 1mg/ml of rock
phosphate medium. (o, m, Bj, Ml wild type); {A, A, Bj (pAB4), Ml (pAB4)}; {V, ¥, Bj
(pAB3), MI (pAB3)}. A — Bradyrhizobium japonicum USDA110 and B - M. loti
MAFF030669. ODgoo and pH values at each time point are represented as the mean £ SD

of six independent observations
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3.3.5: Physiological effects of ppc overexpression on TRP medium with 50mM
glucose.

In presence of 50 mM glucose, increase in PPC activity significantly affected
growth profile (Table 3.5). The total glucose utilization rate and the total amount of
glucose used at the time of pH drop remained unaffected (Table 3.5). However, the
Specific Glucose Utilization Rate Qg (9.9 dew™.h™) decreased ~1.4 and ~1.2 fold in {Bj
(pAB3)} and {MI (pAB3)}, respectively. Additionally, the increase in PPC activity
increased the specific growth rate by ~2 fold and ~1.7 fold, and improved the biomass
yield by 1.4 and 1.2 fold in the transformants of {Bj (pAB3)} and {Ml (pAB3)},
respectively, compared to control {Bj (pAB4)} and {MI (pAB4)}.

Table 3.3: Physiological variables and metabolic data from of Bradyrhizobium
japonicum USDA110 and M. loti MAFF030669 ppc transformants grown on TRP
medium. The results are expressed as Mean + S.E.M of six independent observations. a
Biomass vyield Y gwoic, Specific growth rate (k) and specific glucose utilization rate
(Qaic) were determined from mid log phase of each experiment. b Total glucose utilized
and glucose consumed were determined at the time of pH drop. The difference between
total glucose utilized and glucose consumed is as explained in Section 2.9.3. * P<0.05
and *** P<0.001.

Rhizobium Specific Total Glucose Biomass Specific
Strains Growth Rate Glucose Consumed Yield Glucose
Khh? Utilized (mM)°® Y dewicle Utilization
(mM) b (9/g)® Rate Qgic
(9.9 dew™.hhy?
Bj 0.19 £ 0.03 46.20+0.20 |38.23+0.33 [1.78+0.14 | 0.14+0.01
Bj (pPAB4) | 0.26 +0.04 4599+ 022 |3656+1.29 |1.67+0.26 | 0.15+0.02
Bj (pAB3) | 0.53+0.05  |[48.18+0.16 |[29.59+239 |2.23+0.29" |0.11+0.01
MI 0.22 +0.03 4591+064 |37.07+055 |1.36+0.26 |0.19+0.04
MI (pAB4) | 0.29 +0.01 46.30+0.12 |[36.09+0.18 | 1.63+0.06 | 0.15+0.01
MI (pAB3) | 0.48+0.09" |48.41+0.17 |3156+1.16 |1.9+0.17* |0.13+0.01
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3.3.6: Biofilm, exopolysaccharide and indole acetic acid production by Bj (pAB3)

and Ml (pAB3) transformants in TRP medium.

Biofilm, exopolysaccharide and indole acetic acid production on an average

showed significant increase by ~1.7 fold in Bj (pAB3) as well as Ml (pAB3)
transformants in TRP medium in comparison to control Bj (pAB4) and Ml (pAB4)
(Table 3.4).

Table 3.4: Biofilm, exopolysaccharide and indole acetic acid production by Bj
(pAB3) and MI (pAB3) transformants in TRP medium. The results are expressed as

Mean £ S.E.M of six independent observations. *** P<0.001.

337 :
and 50mM Glucose containing Rock Phosphate 1mg/ml

0.79

0.6

P Release in mM

0.14

Rhizobium Biofilm EPS IAA
Strains O.D.at 550nm (9/200ml) (ng/ml)

Bj 1.39+ 0.02 11.48+0.1 20.14 +1.33
Bj (pAB4) 1.54 +0.02 12.36 + 0.4 24.87 +1.86
Bj (pAB3) 2.65%0.01*** | 21.30 £ 3.3*** | 41.78 £ 0.53***
MI 1.51 £ 0.06 11.34 £ 0.05 28.17 +£1.35
Ml (pAB4) 1.61+0.10 13.54 +1.60 29.79 + 1.66
Ml (pAB3) 2.74 £0.12*%** | 23.97 £ 0.39*** | 45.74 £ 1.59***
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The values are depicted as Mean + S.E.M of 7-10 independent observations. ***
P<0.001.

There was significant increase in P release by ~7.4 and ~7.9 fold in {Bj (pAB3)}
and {MI (pAB3)}, respectively, compared to control {Bj (pAB4)} and {MI (pAB4)}

respectively.

On TRP medium in presence of 50 mM glucose and 100 mM Tris CI Buffer pH
8.0, the organic acids identified were mainly gluconic, 2-ketogluconic, acetic and citric
acids. Extracellular medium of Bj (pAB3) and Ml (pAB3) contained ~9.3 and ~8.9 folds
higher amounts of citric acid, respectively, with its specific yield (Yc/g) increasing by
~5.6 and ~7.6-fold and it also contained ~2.2 and ~2.1-fold higher amounts of gluconic
acid as compared to Bj (pAB4) and MI (pAB4) with its specific yield (Ygc) increasing by
~1.32 and ~1.75-fold. Levels of 2-ketogluconic and acetic acids were unaltered as
compared to Bj (pAB4) and MI (pAB4) respectively (Fig. 3.7).The intracellular citric
acid level remained unaltered. (Table.3.5)

Table 3.5: Intracellular Citric acid levels of Bj (pAB3) and Ml (pAB3) transformants

in TRP medium.

Rhizobium Intracellular Rhizobium Intracellular
Strains Citric acid in Strains Citric acid in
mM mM
B.japonicum 0.83+0.06 M. loti 0.85+0.04
USDA110 MAFF030669
Bj (pAB4) 0.80+£0.10 Ml (pAB4) 0.83+0.06
Bj (pAB3) 0.93+0.06 MI (pAB3) 1.15+0.13

—
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Fig. 3.7: Organic acid production from Bradyrhizobium japonicum USDA110 and
M. loti MAFF030669 ppc gene: A and C : Gluconic, 2-keto gluconic, acetic and citric
acids levels and B and D: Organic acid Yields (Y g Y 2.keac, Y ac and Y ¢ in Bj,
Bj (pAB4), Bj (pAB3), Ml , MI (pAB4) and Ml (pAB3), All organic acids are estimated
from stationary phase cultures (at the time of pH drop) grown on TRP medium with 50
mM glucose. Results are expressed as Mean £S.E.M of 4-6 independent observations. *
P<0.05, ** P<0.01 and *** P<0.001.

3.3.8: Alterations in enzyme activities in Bj (pAB3) and Ml (pAB3) transformants.

Alterations in physiological variables and organic acid profile investigated with
enzyme activities involved in periplasmic direct oxidation and intracellular
phosphorylative pathways. In response to ~9.2 and ~6.2 fold increase in PPC activity in
Bj (pAB3) and MI (pAB3), GDH activity increased by about ~1.4 and ~1.7 fold,
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respectively, as compared to the control (Fig. 3.8). Additionally, G-6-PDH, representing
phosphorylative pathway increased by ~1.8 and ~2 fold in Bj (pAB3) and Ml (pAB3),
respectively, Also there was ~1.8 and ~2 fold increase in ICDH activity while PYC, and
CS and activities remained unaltered . in Bj (pAB3) and Ml (pAB3), as compared to Bj
(pAB4) and MI (pAB4) .Glyoxylate pathway enzyme ICL showed very low activity in

all transformants. A

* k%

509

ppc Overexpression

40

30

Enzyme activity (Units/mg protein)

=1 Bj =31 Bj (pAB4) [E28 Bj (pAB3)

B

401
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% % ¥

Enzyme Activity (Units/mg protein)

=M Ml (pAB4) [E==1 ML (pAB3)

Fig. 3.8: Activities of enzymes PPC, PYC, GDH, G-6-PDH, ICDH and ICL in (A)
Bradyrhizobium japonicum USDA110 and (B) M. loti MAFF030669 ppc
transformant. The activities have been estimated using cultures grown on TRP medium
with 50mM glucose. All the enzyme activities were estimated from mid log phase to late
log phase cultures except CS, ICDH and ICL which were estimated in stationary phase

(Section 2.10). All the enzyme activities are represented in the units of nmoles/min/mg
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total protein. The values are depicted as Mean +S .E.M of 7-10 independent observations.
* P<0.05, ** P<0.01land *** P<0.001.

3.4: DISCUSSION

PPC at the anaplerotic node has been a common genetic engineering target in
strategies aiming at diverse bioprocesses like reducing acetate secretion in E. coli and
improving glutamate production in C. glutamicum under biotin limitation and by control
of 2-oxoglutarate dehydrogenase complex or by addition of Tween 40. (Farmer and Liao,
1997; Delaunay et al., 1999; Bott 2007; Shirai 2007). Genetic manipulations altering the
carbon flow at the PEP branch-point has been well-studied in E. coli, with PPC being a
frequent target (Sauer and Eikmanns, 2005). Over-expression of acetyl-CoA synthetase
had enhanced recycling of the acetyl-CoA and acetyl-phosphate pools (Renilla et al.,
2012). This chapter presents the consequences of overexpression of S. elongatus PCC
6301 ppc gene on glucose catabolism of Bradyrhizobium japonicum USDA110 and M.
loti MAFF030669. About ~9.1 and ~6.1 fold increase in PPC activity in {Bj (pAB3)}and
{MI (pAB3)}, respectively, was in accordance with about 14 fold increase in PPC
activity in P. fluorescens harboring pAB3 plasmid {Pf (pAB3)} (Buch et al., 2009).

Growth parameters for Bj (pAB3) and MI (pAB3) transformants were carried in
the medium with 50mM glucose while {Pf (pAB3)} transformant had 100 mM glucose
(Buch et al 2009). Additionally, Bj (pAB3) and MI (pAB3) transformants showed
enhanced biomass yield similar to that in {Pf (pAB3)} while increase in specific growth
rate was better in Rhizobium transformants. The growth promotion of Rhizobium
transformants could be attributed to the unique features of central metabolism. Amongst
different bacteria, Bradyrhizobium japonicum USDA110 and M. loti MAFF030669
strains appear belong to the group in which intracellular OAA is mainly supplied by PYC
and contribution of PPC is minimal (Table 1.1; Fuhrer et al., 2005). Hence, heterologous
ppc overexpression in Bradyrhizobium japonicum USDA110 and M. loti MAFF030669
strains enhanced the carbon flow towards oxaloacetate. Additionally, S. elongatus PCC

6301 ppc gene with reduced influence of the allosteric regulation by malate and aspartate
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operates efficiently towards anabolic and catabolic pathways at the PEP/OAA level. Also
there was a significant increase in PYC activity supplying OAA in Bj (pAB3) and Ml
(pPAB3) which was not seen in Pf (pAB3).Increase in PPC activity is associated with
increase in OAA which resulted in increased biomass due to the increased anaplerotic
pathway. While in P. fluorescens increase in PYC is not seen suggesting no increase in

anaplerotic pathway.

Increase in gluconic acid in Bj (pAB3) and MI (pAB3) but not of 2-ketogluconic
acid could be due to the low GAD activity in Rhizobium .Multiple studies suggest that the
periplasmic conversion of glucose to gluconate may be a significant route for carbon flux
in glucose-grown S. meliloti cells (Portais et al., 1997; Bernardelli et al., 2001).
Rhizobium ppc transformants secreted low amounts of acetic acid. Similar levels of acetic
acid secretion was found in Pf (pAB3) transformant (Buch et al., 2009). Similarly,
expression of pyc gene in E. coli resulted in a 56% increase in biomass yield and a 43%
decrease in acetate yield (Gokarn et a., 2001). Aerobic metabolism coupled with absence
of pyruvate oxidase B could account for the low amounts of acetic acid secretion in both
Rhizobium and Pseudomonas transformants. Increase in the gluconic acid yield in TRP
medium could be due the presence of 0.1% yeast extract in the medium which contains 1-

10 nmoles PQQ supporting GDH enzyme activity (Ohsuki et al., 1993).

Reduced glucose consumption of Rhizobium transformants could be a
consequence of decreased intracellular phosphorylative pathway and enhanced direct
oxidation pathway as demonstrated by alterations in activities of enzymes involved in
glucose catabolism and organic acid profile and G-6-PDH, estimated to represent the
contribution of phosphorylative pathway which was increased by ~1.8 and ~2.0-fold,
respectively . Additionally, PYC activity showed slight increase in Bj (pAB3) while
remained unaltered in Ml (pAB3). Comparison of G-6-PDH and GDH activities in
Rhizobium and Pseudomonas transformants suggest that direct oxidative pathway is
enhanced in Pseudomonas while phosphorylative is enhanced in Rhizobium.
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Glucose flux through TCA cycle in S. meliloti is relatively higher than that of E.
coli and P. fluorescens (Fuhrer et al., 2005). Such a metabolic and genetic background
would be expected to allow the enforced increase in PPC activity to affect the flux
distribution at the PEP-Pyruvate-OAA junction and the TCA cycle. In this study, there
was a significant increase in citric acid levels ~9.3 and ~8.9-fold by Bj (pAB3) and Ml
(pAB3), respectively, as compared to Bj (pAB4) and MI (pAB4) with its specific yield
(Ycse) increasing by ~5.6 and ~7.6-fold, respectively. The high level of citric acid
secretion is a consequence of increased PPC enzyme activity in Bj (pAB3) and MI
(pAB3) which results in increased OAA facilitating a higher flow through the TCA cycle.
OAA formation is the net result of PPC and PYC enzyme activities. In both
Pseudomonas and Rhizobium, OAA seems to be higher due to increased PYC activity. In
both these bacteria, normally PPC activity is low and PYC activity is high.

Intracellular levels of citric acid in P. fluorescens 13525 wild type as well as ppc
transformant is high (~16 mM) appear to lesser efficiency of anaplerotic reactions to
divert OAA towards anabolic pathways. On the other hand, Rhizobium strains wild type
and ppc transformant had accumulated very low (less than 1 mM) level of citric acid
which could be due to higher TCA cycle flux in Rhizobium as increase in ICDH activity
in Rhizobium transformant was higher than Pseudomonas transformant. This is also
substantiated by the fact that S. meliloti exhibited higher TCA cycle flux than E. coli, B.
subtilis, C. glutamicum, S. cerevisiae, Paracoccus versutus, R. sphaeroides Z. mobilis P.
fluorescens and A. tumefaciens (Fig.1.21) (Fuhrer et al., 2005).  Additionally,
Rhizobium transformant secreted citrate up to 7 mM while secretion in Pseudomonas was
very low (70 uM) which indicates that Rhizobium possesses efficient efflux for citrate as

compared to Pseudomonas.

P solubilization net result of higher levels of gluconic and citric acid secretion
significantly increased by ~7.4 and ~7.9 fold by overexpression of ppc gene in {Bj
(pAB3)} and {MI (pAB3)} compared to control {Bj (pAB4)} and {MIl (pAB4)}
respectively. Moreover this phenotype is under stringent condition, 50 mM glucose

compared to 100 mM glucose in Pseudomonas. Though gluconic acid is more in
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Pseudomonas compared to Rhizobium but increased citric acid secretion gives better
phenotype. The enhanced di-calcium phosphate solubilizing ability in ppc transformants
of inherently poor/moderate P-solubilizing isolates Fp585 and P109 as well as improved
rock-phosphate solubilization by ppc transformant of inherently efficient P-solubilizer
Fp315 suggested that ppc overexpression unambiguously improved the phosphate
solubilizing ability on glucose and xylose (Buch et al., 2009). This suggests that ppc

overexpression is giving better results in Rhizobium compared to Pseudomonas.

Meseniere’s et al., (2006) found that overexpression of ppc and gItA genes in E.
coli leads to a higher flux through the TCA cycle and thus it eliminated the acetate
production by eliminating saturation of this cycle. The dry cell weight (dcw) was almost
twice as high in cultures of the over-expression mutant as in cultures of the wild type or
the knock-out strain. This confirmed that a higher PPC activity is associated with a higher
flow through the TCA cycle a higher NADH availability and more ATP, resulting in a
higher biomass production. Similar results were obtained in this study also where
overexpression of ppc doubled the dcw in Bj (pAB3) compared to Bj (pAB4).

In addition to P solubilization, plant growth promoting activities are also
enhanced by ppc transformants of both Rhizobium species. Biofilm, exopolysaccharide
and indole acetic acid production on an average all showed a significant increase by ~1.7
fold in Bj (pAB3) as well as Ml (pAB3) transformants. As a consequence of more
biomass going for increased biomass, more amount of EPS was produced, which

increased colonization and gave better P solubilization.

Biofilm formation in Rhizobium—legume N,-fixing symbiosis contributes to
effective root colonization by rhizobia and provides an effective mode for defense and
helping rhizobia to survive under harsh and nutrient-limiting environments (Jebara et al.,
2006). Diverse forms of the fungal bacterial biofilms (FBBs)/fungal rhizobial biofilms
(FRBs) have been shown to improve nodulation and N, fixation in Rhizobium—legume
symbiosis, colonize nonlegume plant roots, improve growth, increase soil nitrogen and

phosphorus availabilities, solubilize rock phosphate, produce higher acidity and plant
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growth-promoting hormones (Bandara et al.,2006; Seneviratne et al., 2009). Rhizobium
leguminosarum bv. viciae and Sinorhizobium meliloti establish biofilms on both roots of
its legume hosts, Medicago sativa L. and Melilotus alba Desr. and abiotic surfaces in the
soil (Fujishige et al. 2006). In addition, bacterial surface polysaccharides e.g.,
exopolysaccharides are involved in the attachment process and production of EPS is
characteristic to biofilmed form of bacteria including rhizobia (Pueppke et al., 1980;
Kijne et al., 1988; Williams et al., 2008). Thus increase in biofilm and exopolysaccharide
in this study suggests it to be a better P solubilizer.

IAA production was also increased by both the transformants. In spite of the
direct effects of biofilm lifestyle of rhizobia in Rhizobium—legume symbiosis, some
indirect effects could also affect the symbiosis. Increased production of IAA by an
inoculated biofilm of Penicillium spp.—Bradyrhizobium spp. increased root growth of

soybean (Glycine max) (Jayasinghearachchi and Seneviratne 2004a).

The Rhizobium— Arbuscular mycorrhizal (RAM) symbiosis, possibly forming
FRB improved the nutrient availability where AM fungi supplied P while rhizobia
provides N which together lead to increase in photosynthetic rates and concurrently the
plant growth and thus plays an important role in Rhizobium-legume symbiosis and
improved the performance and yields of legumes compared to nonsymbiotic plants (Lum
and Hirsch 2003; Chalk et al. 2006; Seneviratne et al. 2008a; Kaschuk et al. 2009). So
increase in IAA by the ppc gene transformants of Bradyrhizobium japonicum USDA110
and M. loti MAFF030669 may help to improve its performance.

The growth and physiological effects of overexpression of ppc are similar to as
observed in P. fluorescens ATCC 13525 but Rhizobium strains seem to be better P
solubilizer due to secretion of gluconic and citric acid by its ppc gene transformants
(Buch et al., 2009 and Adhikary, 2012).
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Chapter 4 : Effect of overexpression of E. coli ¢cs gene on production of organic acid in B.
japonicumUSDA110 and M. loti MAFF030669

4.1 INTRODUCTION

Legumes are well known in their ability to enter into symbiotic associations with
soil bacteria, which are collectively called rhizobia. This interaction leads to the
formation of novel structures, the nodules, on the roots and, in certain cases, on the stems.
The rhizobia inside the nodules are able to reduce atmospheric dinitrogen to ammonia,
which is utilized by the plant for growth and development. The plant, in turn, provides
the bacteria with a protective environment and carbon compounds necessary to generate
the energy required to reduce atmospheric nitrogen. High concentrations of the
dicarboxylic acids, malate and succinate, are found in the nodules (Streeter et al., 1987;
Rosendahl et al., 1990; Fougere et al., 1991). These tricarboxylic acid (TCA) cycle
intermediate compounds are believed to play an important role in determining the

effectiveness of symbiosis.

Citrate synthase (CS) catalyzes the condensation of acetyl coenzyme A and
oxaloacetate to produce citrate and is considered the limiting step in the Krebs cycle
(Weitzman et al., 1976). Hence, it is the key enzyme governing the carbon flux into the
TCA cycle which plays a dual function in the production of cellular energy and
biosynthetic precursors under aerobic conditions and only latter under anaerobic
conditions, respectively. CS is a non-redundant enzyme indispensable in the carbon

metabolism under aerobic as well as anaerobic conditions (Park et al., 1994).

In organisms like Bacillus subtilis and E. coli, two cs genes are localized in the
chromosome while in Rhizobium tropici, of the two cs genes one is chromosomally
localized and another is found in the symbiotic plasmid (Patton et al., 1993; Jin and
Sonenshein, 1994; Hernandez-Lucas et al., 1995). The plasmid-borne gene (pcsA) has
homology to the citrate synthase genes of proteobacteria, and mutants of pcsA show a 30
to 50% decrease in nodule number compared with the wild-type strain (Pardo et al.,
1994).
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Rhizobia with mutations in the genes encoding TCA cycle enzymes form nodules
that are unable to fix nitrogen. Sinorhizobium meliloti mutants lacking isocitrate
dehydrogenase initiate nodules on alfalfa that are ineffective in nitrogen fixation
(McDermott et al., 1992). Similarly, rhizobia with mutations in genes encoding other
TCA cycle enzymes, such as succinate dehydrogenase and a-ketoglutarate
dehydrogenase, also induce ineffective nodules (Duncan et al., 1979; Gardiol et al., 1982;
Walshaw et al., 1997). Mutations affecting bacterial surface components (particularly
EPS and LPS), and mutations affecting TCA cycle enzymes and amino acid metabolism
have been reported (McDermott and Khan 1992; Walshaw et al., 1997; Fraysse et al.,
2003; Krishnan et al., 2003; Dymov et al. 2004). PQQ linked glucose dehydrogenase is
required by S. meliloti for optimal nodulation efficiency and competitiveness on alfalfa
roots (Bernardelli et al., 2008).

Sinorhizobium fredii USDA257 is a fast-growing bacterium that forms nitrogen-
fixing nodules on soybeans and other legumes (Keyser et al., 1982; Heronet al., 1984;
Pueppke et al., 1999). Most of the nodulation (nod) and nitrogen fixation (nif) genes of
this strain are located on a sym plasmid. Even though this strain forms nitrogen-fixing
nodules on soybeans, the effectiveness of nitrogen fixation is considerably less than the
effectiveness of nitrogen fixation by the classical soybean symbiont, B. japonicum
USDA110 (DeTeau et al., 1986). Inactivation of the citrate synthase gene significantly
reduced the ability of S. fredii USDA257 to initiate nodules on soybean. In addition, the
citrate synthase mutant produced ineffective nodules on soybean, and the nodules had an
aberrant ultrastructure. This confirmed that a functional citrate synthase gene is essential

for efficient soybean nodulation and nitrogen fixation (Krishnan et al., 2003).

However, despite its key position, no direct correlation has been demonstrated
between CS activity and bacterial citric acid accumulation. Genetic modifications leading
to citric acid accumulation in bacteria include isocitrate dehydrogenase (ICDH) mutation
in E. coli (K and B strains) and Bacillus subtilis (in early stationary phase) as well as
aconitase mutation in Streptomyces coelicolor (Lakshmi and Helling, 1976; Matsuno et
al., 1999; Viollier et al., 2001; Aoshima et al., 2003; Kabir and Shimizu, 2004).
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Most phosphate-solubilizing bacteria (PSB) solubilize mineral phosphates by
secreting a variety of organic acids, principally gluconic acid. However, the nature and
amount of organic acids limit the efficacy of PSB in soils and in field conditions (Kucey
et al., 1989; Gyaneshwar et al., 2002; Srivastava et al., 2006; Khan et al., 2007). Organic
acids at concentrations ranging from 10 to 100 mM are required to release phosphate
from alkaline soils, citric acid being the most effective (Gyaneshwar et al., 1998;
Srivastava et al., 2006). Of the known PSB, several strains of Bacillus sp. and
Citrobacter koseri have been reported to secrete citric acid along with various other
organic acids (Gyaneshwar et al., 1998). Apart from mineral phosphate solubilization,
citric acid secretion by PSB could also implicated in mediating aluminium tolerance in
P. fluorescens ATCC 13525 (Mailloux et al., 2008), and as a siderophore in
Bradyrhizobium and Pseudomonas aeruginosa (Guerinot et al., 1990; Carson et al., 1992;
Marshall et al., 2009).

4.1.1: Biochemical basis of citric acid accumulation in bacteria

Citric acid is an industrially important metabolic product and hence physiological
and biochemical conditions allowing citrate accumulation have been extensively studied
and reviewed (Berovic and Legisa, 2007; Legisa and Mattey 2007; Papagianni, 2007).
Microbial citric acid production and secretion are distinct yet interdependent processes
and its biochemical basis is not very clear. Several mutants of coryneform bacteria like
Corynebacterium, Arthrobacter and Brevibacterium produce citric acid from n-paraffin
and related substrates (Rohr et al., 1996). Many other bacteria mainly including Bacillus
sp., Bradyrhizobium strain and Citrobacter koseri are known to secrete low levels of
citric acid but the biochemical basis of its formation is not well understood (Carson et al.,
1992; Gyaneshwar et al., 1998; Khan et al., 2006).

4.1.2: Genetic manipulations for citric acid overproduction

Amongst bacteria, E. coli K and B isocitrate dehydrogenase (icd) mutants
accumulated high levels of citrate when grown on glucose with a concomitant increase in
CS activity up to more than 2 fold (Lakshmi and Helling, 1976; Aoshima et al., 2003).
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Similarly, B. subtilis icd mutant in early stationary phase accumulated ~15 fold higher
intracellular citrate levels as compared to the wild type (Matsuno et al., 1999). Metabolic
studies on citric acid producing fungi, yeasts and E. coli demonstrated that high citric
acid yields could be attained on glucose and depending on the host metabolism; glucose
transport, flux though catabolic pathways and the regulatory mechanisms influenced by
intracellular metabolite pools appear to facilitate the citrate accumulation. However, role

of CS in citrate accumulation is unclear.

4.1.3: Effects of cs gene overexpression in E. coli and other microorganisms

Despite the key position of CS, less information is available regarding the effects
of cs gene manipulations on cellular metabolism and their role in citric acid
overproduction. E. coli lacking functional cs gene failed to utilize glucose unless
supplemented with glutamate (or other TCA cycle intermediates) and had reduced growth
as compared to the wild type (Gruer et al., 1997; Vandedrinck et al., 2001; De
Maeseneire et al., 2006). On the other hand, cs gene overexpression or under expression
in E. coli had no effect on growth on glucose while on acetate as sole carbon source; CS
levels strongly affected the growth rate (Walsh and Koshland, 1985a; VVandedrinck et al.,
2001). gltA gene overexpression in E. coli increased the maximum cell dry weight by

23% and reduced acetate secretion (De Maeseneire et al., 2006).

P-solubilization was improved by overexpression of PEP carboxylase (ppc) and
citrate synthase (cs) genes in fluorescent pseudomonads. CS activity was directly
correlated with citrate accumulation. Remarkably, only ~2-fold increase in CS activity in
Pf (pAB7) elevated extracellular and intracellular citric acid levels by about 15- and 2-
fold, respectively, which suggested that CS activity was probably limiting for citrate
accumulation in P. fluorescens ATCC 13525 utilizing glucose (Fig.4.1, 4.2, 4.3; Buch et
al., 2009).
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Fig. 4.1: Effect of E. coli gltA gene overexpression on organic acid secretion by P.
fluorescens ATCC 13525. Yields are expressed as g citric or other organic acid (g
glucose)™ (g dew)™ (Buch et al., 2009).
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Fig. 4.2: Activities of key carbon utilization enzymes in P. fluorescens ATCC 13525
overexpressing E. coli gltA gene (Buch et al., 2009).
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Fig.4.3: Activities of key enzymes of carbon utilization in P. fluorescens 13525 co-
expressing the ppc and gltA genes (Buch et al., 2009).

Enhanced phosphate solubilization by Pf (pAB7) suggested that increasing CS activity
could be an interesting strategy in developing efficient phosphate-solubilizing P.
fluorescens (Buch et al., 2009).

4.1.4: Rationale for cs gene overexpression in Rhizobium spp.

Glucose metabolism in E. coli and Bacillus respectively, occurs via traditional
EMP pathway whereas Rhizobium utilizes glucose by ED pathway (Keele et al., 1970;
Stowers et al., 1984). In addition, glucose flux through TCA cycle in Rhizobium is high
resulting in lower acetate overflow (Fuhrer et al., 2005). Increase in CS activity was
postulated to be a better strategy for citric acid production in E. coli rather than isocitrate
dehydrogenase (icd) mutation which reduces biomass and growth (Aoshima et al., 2003).
Overexpression of E. coli cs gene in P. fluorescens ATCC 13525 yielded millimolar
levels of intracellular and extracellular citric acid (Buch et al., 2009). The amount of
citric acid produced by P. fluorescens overexpressing E. coli cs gene was similar to that
secreted by the phosphate solubilizing Bacillus coagulans and Citrobacter koseri on
glucose (Gyaneshwar et al., 1998). However, the levels were insufficient for releasing P
from soils (Gyaneshwar et al., 1998; Srivastava et al., 2006). With a view to increase the
flux through the anaplerotic node for increasing oxaloacetate levels, ppc gene of
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Synechococcus elongatus was over-expressed in fluorescent pseudomonads. ppc
overexpression enhanced cellular biomass, glucose catabolism through intracellular
phosphorylative pathway and resulted in increased secretion of gluconic, pyruvic and
acetic acids while citric acid secretion was not increased. (Buch et al., 2010). When ppc
and gltA genes were overexpressed, the biomass yield was increased but citric acid

secretion was not observed (Buch et al., 2009).

To increase the flux through the anaplerotic node for increasing oxaloacetate
levels, phosphoenolpyruvate carboxylase (ppc) gene of Synechococcus elongatus was
over-expressed in Rhizobium strains. ppc gene overexpression enhanced cellular biomass,
glucose catabolism through intracellular phosphorylative pathway and resulted in
increased gluconic and citric acids secretion but this high citric acid was due to increased
activities of both PYC and PPC. So in this chapter the experiment was designed to
increase the citric acid secretion by increasing CS activity. The present work describes
the effect of overexpression of NADH sensitive cs gene of E. coli on glucose metabolism
and its role in altering the citrate levels in B. japonicum USDA110 and M. loti
MAFF030669.

4.2 EXPERIMENTAL DESIGN
The experimental plan of work includes the following-
4.2.1: Bacterial strains and plasmids used in this study

Table 4.1: List of bacterial strains used. Detailed characteristics of these strains and
plasmids are given in Section 2.1. Parent strains and the transformants of E. coli S17.1
and Rhizobium were respectively grown at 37°C and 30°C with ampicillin and kanamycin
as and when required, at final concentrations varying for rich and minimal media as

described in Section 2.2.
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Bacterial strains Characteristics Source/Reference
E. coli strains
E. coli IM101 F* traD36 proA+B+ laclq A(lacZ) | Sambrook and
M15/A(lac-proAB) gInV thi Russell, 2001
E. coli S17.1 thi pro hsdR recA RP4-2 (Tet::Mu) | Simon et al.,
(Km::Tn7); Tmpr 1983

S 17.1 (pAB7) E. coli

S 17.1 with pAB7 plasmid; Amp',
Km'

Buch et al, 2008

S17.1 (pAB8)E. coli

S 17.1 with pAB8 plasmid; Amp',
Km'

Buch et al, 2008

Rhizobium strains

Bradyrhizobium NC_004463.1 NCBI
japonicum USDA110
Mesorhizobium loti NC_002678.2 NCBI
MAFF030669
Bj (pPAB7) B. japonicum USDA110 with This study
r r
pAB7 plasmid; Ap, Km (cs wild
type)
Bj (pAB8) B. japonicum USDA110 with pAB8 | This study
r r
plasmid; Ap, Km  (control
vector)
MI (pAB7) M. loti MAFF030669 with pAB7 This study
r r
plasmid; Ap, Km (cs wild type)
MI (pAB8) M. loti MAFF030669 with pAB8 This study

r r
plasmid; Ap, Km (control vector)

pUCPM18 plasmid containing kanamycin resistance gene named as pAB8 and

pUCPM18 plasmid containing wild type E. coli citrate synthase gene, Km" named as

pAB7 were used in this chapter (Fig. 4.4; Buch et al., 2008).
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pPAB7

6971bp 8265bp

Fig. 4.4: Restriction maps of the plasmids used in this chapter (Buch et al., 2008).

4.2.2: Development of B. japonicum USDA110 and M. loti MAFF030669 harboring
E. coli cs gene

The recombinant plasmids pAB7 and pAB8 were transformed in B. japonicum
USDA110 and M. loti MAFF030669 by electroporation (Section 2.4.2). The
transformants were selected on kanamycin selection plates and were confirmed by

restriction endonuclease digestion. (Section 2.3).

4.2.3: Effect of E. coli cs gene expression on the physiology and glucose metabolism
of B. japonicum USDA110 and M. loti MAFF030669.

B. japonicum USDA110 and M. loti MAFF030669 cs transformants were
subjected to physiological experiments involving growth and organic acid production
profiles on TRP medium with 50 mM glucose as carbon source. The samples withdrawn
at regular interval were analyzed for O.D.goonm, pH, and extracellular glucose (Section
2.9). Stationary phase culture harvested at the time of pH drop was subjected for organic
acid estimation (Section 2.9.3; 2.11). The physiological parameters were calculated as in
section 2.9.3. The enzyme assays were performed as described in Section 2.10, with PPC,
PYC, G-6-PDH and GDH being assayed in mid-log to late-log phase cultures while CS,
ICL and ICDH being assayed in the stationary phase cells.
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4.3: RESULTS

4.3.1: Heterologous overexpression of E. coli cs gene in B. japonicum USDA110 and
M. loti MAFF030669.

The plasmids incorporated in B. japonicum USDA110 and M. loti MAFF030669
transformants were isolated from the transformants and were confirmed based on
restriction digestion pattern (Fig. 4.5, 4.6) before studying the effect of overexpression of

E. coli cs gene.

bp

21226

5148

4973
4268

3530*
6971

8265 2027

/
5334 — 1904
5334 1584
1375
1637 1637 o
1264

564

1% Agarose

Fig. 4.5: Restriction Digestion pattern of plasmids containing cs gene isolated from
transformants of B. japonicum USDA110 and M. loti MAFF030669: Lane 1: pAB8
plasmid Undigested (6971 bp); Lane 2 and 3:pAB8 plasmid digested with Xbal and
Hindlll (5334 bp and 1637 bp); Lane 4 : MWM-Lambda DNA cut with Hindlll ; Lane 5
and 6: pAB7 plasmid digested with Xbal and Hindlll (5334 bp, 1637 bp and 1264 bp);
Lane 7 : pAB7 plasmid Undigested (8265 bp).
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Fig. 4.6: Restriction digestion pattern of plasmids containing cs gene isolated from
transformants of analysis of M. loti MAFF030669: Lane 1: Molecular Weight Marker
(MWM)- Lambda DNA cut with BstEll; Lane 2: pAB8 linearised with EcoR 1(8.26
kbp); Lane 3: pAB8 digested with EcoRI-Hindlll (5,298bp, 1,673bp);Lane 1: pAB7
linearised with EcoR 1(8.26 kbp); Lane 2: (MWM)-Lambda DNA cut with BstEll; Lane
3: pABT7 digested with EcoRI-Hindlll (5,298bp, 2,967bp).

The citrate synthase activity in Bj (pAB7) and Ml (pAB7) transformants grown on
TRP medium with 50 mM glucose, was ~3 fold higher (56.69 +.1.55 U and 42.07 +0.81
U) in both the strains compared to control levels of CS activity (18.64 + 1.26 U) and
(13.89 £ 0.83 U).

To check MPS ability a zone of clearance and acidification was observed on PVK
and TRP plates respectively and the maximum zone of clearance and acidification was
shown by Bj (pAB7) and MI (pAB7) as compared to the control Bj (pAB8) and Ml
(pAB8). P-solubilizing ability of wild type B. japonicum USDA110 and M. loti
MAFF030669 and its transformants varied in the order of Bj (pAB7) = Ml (pAB7) > Bj
(pAB8) = MI (pAB8) >Bj=MI on PVK medium after 3 days of incubation at 30°C (Fig.
4.7).

Development of mineral phosphate solubilization ability in Rhizobium spp. by metabolic engineering of tricarboxylic acid cycle

Page 129



Chapter 4 : Effect of overexpression of E. coli ¢cs gene on production of organic acid in B.
japonicumUSDA110 and M. loti MAFF030669

A Bj Bj (PABS) Bj (PAB7)

R

B MI MI (pABS) MI (pABT)

__! '; ‘

Bj (pABS) Bj (pAB7)

MI (pABS) MI pA )

Fig. 4.7: MPS phenotype of (A),(C) B. japonicum USDA110 and (B),(D) M. loti
MAFF030669 harboring pAB7 plasmid expressing E. coli cs gene. Zone of clearance
formed by the transformants on Pikovskyas agar and TRP agar containing 50mM glucose

was monitored noted after an incubation of 3 days at 30 °C.
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Table 4.2: P solubilization index on Pikovskyas agar of B. japonicum USDA110 and
M. loti MAFF030669 transformants during 3 days of growth, Bj and MI: wild type
strain; Bj (pAB8) and MI (pAB8) : B. japonicum USDA110 and M. loti MAFF030669
with vector control and Bj (pAB7) and Ml (pAB7) : B. japonicum USDA110 and M. loti
MAFF030669 with cs gene. The results were noted after an incubation of 3 days at 30 °C
and are given as mean £ S.D. of three independent observations as compared to native Bj
and M.

Rhizobium | Diameter of zone | Diameter of | Phosphate Solubilizing
Strains of clearance (mm) | colony (mm) Index
Bj 12.17 +0.29 11.17 £ 0.29 1.09
Bj (pABS) 11.17+0.29 9.50 + 0.50 1.22
Bj (0DAB7) 13.05 + 0.50 10.17 £ 0.29 1.30
MI 12.83 +0.29 11.50 + 0.50 1.09
Ml (pAB8) 12.17 +0.29 10.17 +0.29 1.22
MI (pAB7) 12.50 + 0.50 9.17 +0.29 1.33

The pAB?7 transformants of B. japonicum USDA110 and M. loti MAFF030669
showed maximum enhanced zone of clearance as compared to the control pABS.
Phosphate Solubilizing Index was calculated as described in 2. And it was highest in Bj
(pAB7) and MI (pAB7) (Table 4.2).

4.3.2: Effect of E. coli cs gene overexpression on growth pattern and pH profile in

presence of 50 mM glucose concentrations

The growth profiles and organic acid secretion of Bj (pAB7), Bj (pAB8), Ml
(pPAB7) and MI (pAB8) along with native, on TRP medium with 50 mM glucose
demonstrated that maximum O.D. was reached faster in transformants (12 h) compared to
20 h of {Bj (pAB8)} and{MI (pAB8)}. pH decreased ~ 6.8 and 6.6 within 20 h in the
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native and control vector, respectively, while pH decreased to 4.40 and 4.15 in {Bj

(pAB7)} and {MI (pAB7)} within 12 h (Fig. 4.8).
A

2.0q -10

0.D.600nm
Hd

Time (h)

2.09 10

0.D.600nm
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0 4 8 12 16 20 24
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Fig. 4.8: Effect of cs gene overexpression on extracellular pH (o, A, V,) and growth
profile (m, A, V) of (A) B. japonicum USDA110 and (B) M. loti MAFF030669, with
50 mM glucose and 100 mM Tris-Cl pH 8, Img/ml of rock phosphate medium. (o, m, Bj,
MI wild type); {A, A, Bj (DABS), MI (pAB8)}; {V/, V¥, Bj (pPAB7), MI (pAB7)}. ODgoo
and pH values at each time point are represented as the mean + SD of six independent

observations.
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4.3.3: Physiological effects of E. coli cs overexpression on TRP medium

Specific growth rate was increased by ~1.5 and ~1.3 fold in Bj (pAB7) and Ml
(pPAB7) The total glucose utilization rate showed no change and the total amount of
glucose consumed showed ~1.4 fold decrease at the time of pH drop. CS activity
increased biomass yield by ~1.4 fold and ~1.4 fold decrease was seen in specific glucose
utilization rate in the transformant of B. japonicum USDA110 (Table 4.3). However
biomass yield and specific glucose utilization rate remain unaffected in the transformant
of M. loti MAFF030669.

Table 4.3: Physiological variables and metabolic data from of B. japonicum
USDA110 and M. loti MAFF030669 cs transformants grown on TRP medium. The
results are expressed as Mean = S.E.M of 6 independent observations. a Biomass yield Y
dowicle,  Specific growth rate (k) and specific glucose utilization rate (Qgic) were
determined from mid log phase of each experiment. b Total glucose utilized and glucose
consumed were determined at the time of pH drop. The difference between total glucose
utilized and glucose consumed is as explained in Section 2.9.3. * P<0.05,** P<0.01 and
*** P<0.001.

Rhizobium Specific Total Glucose Glucose Biomass Specific
Strains Growth Rate Utilized Consumed Yield Glucose
k(h?)? (mM)® (mM)°® Y dewicic Utilization
(9/9)° Rate Qgic
(g.g dew™.h™)?
Bj 0.186 +0.03 46.20+0.20 | 38.23+1.33 | 1.78 +0.14 0.14 +0.01
Bj (pPAB8) | 0.229 +0.02 46.01+0.31 |37.110.33 | 1.57 +0.29 0.17 +0.04
Bj (pPAB7) | 0.332+0.04" |48.29+0.16 |36.36+0.51 |2.19+0.16  |0.12+0.01
Ml 0.221 +£0.03 4591 +0.64 |37.07055 | 1.36+0.26 0.19 £0.04
MI (pAB8) | 0.258 +0.02 46.01+0.51 | 37.07%0.71 | 1.06 +0.07 0.24 +0.02
MI (pAB7) | 0.333+0.02”" |48.31+0.09 |36.24+1.02 |1.08+0.11 0.23 £0.02
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4.3.4: Biofilm, exopolysaccharide and indole acetic acid production by in Bj (pAB7)
and Ml (pAB7) transformants in TRP medium.

Biofilm formation showed significant increase by ~1.67 and ~2.04 fold in Bj
(pPAB7) and MI (pAB7) transformants, respectively, compared to control (Table 4.4).
Exopolysaccharide production was increased by ~1.74 fold in Bj (pAB7) compared to Bj
(pAB8) while there was no significant increase in M. loti MAFF030669 transformants.
Indole acetic acid production was increased by ~1.23 fold in Bj (pAB7) (Table 4.4).

Table 4.4: Biofilm, exopolysaccharide and indole acetic acid production by Bj
(pABT7) and MI (pAB7) transformants in TRP medium. The results are expressed as
Mean + S.E.M of 6-10 independent observations. * P<0.05, ** P<0.01and *** P<0.001,

Rhizobium Biofilm O.D.at EPS (g/100ml) IAA (ug/ml)
Strains 550nm
Bj 1.96 £0.03 12.48 +0.24 20.14 £1.33
Bj (pAB8) 2.08 £0.03 13.41 +0.63 25.54 +0.81
Bj (pAB7) 3.48 +0.11*** 23.33 £1.58*** 31.42 £0.37**
MI 1.51 £0.06 13.55 +2.78 30.16 +2.34
MI (pABS) 1.54 +0.06 15.65 +0.51 26.65 +2.18
Ml (pAB7) 3.14 +0.02*** 18.14 +0.47** 31.23 £1.08**

4.3.5: P Solubilization and Organic acid secretion by Bj (pAB7) and M| (pAB7)

transformants in TRP medium

Release of P by Bj (pAB7) and MI (pAB7) transformants increased by ~7.4 (0.37
mM) and ~8.3 fold (0.36 mM) as compared to 0.05 mM and 0.04 mM by Bj (pAB8) and
MI (pABS8) transformants in TRP medium containing 50 mM glucose (Fig. 4.9).
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Fig. 4.9: P solubilization by (A) B. japonicum USDA110 , (B) M. loti MAFF030669
transformants on TRP medium. (==, Bj, Ml wild type); {e=m, Bj (pPAB8), Ml (pAB8)};
{e===, Bj (pAB7), MI (pAB7)}; the values are depicted as Mean + S.E.M of 7-10

independent observations. *** P<0.001.

Extracellular medium of Bj (pAB7) and MI (pAB7) contained ~1.44 and ~1.47
fold higher amount of gluconic acid, respectively, as compared to Bj (pAB8) and Ml
(pABB8). Additionally, ~9.94 and ~7.94 fold increase was found in citric acid secretion
with corresponding increase in yield (Y¢s) by ~7.36 and ~5.31 fold in Bj (pAB7) and M
(pAB7) transformants, respectively (Fig. 4.10). Intracellular citric acid levels remained
unchanged(Table 4.5).
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Fig. 4.10 : Organic acid production from B. japonicum USDA110 and M. loti
MAFF030669 cs gene (A), (C) organic acids in mM (Gluconic, 2-keto gluconic,
acetic and citric acids); (B ), (D) Organic acid Yields (Y cic Y 2-kcac, Y acand Y ¢
in Bj, Bj (pAB8), Bj (pAB7), Ml , Ml (pAB8) and MI (pAB7). All organic acids are
estimated from stationary phase cultures (at the time of pH drop) grown on TRP medium
with 50 mM glucose. Results are expressed as Mean +S.E.M of 4-6 independent
observations. * P<0.05, and *** P<0.001.
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Table 4.5: Intracellular citric acid production by Bj (pAB7) and Ml (pAB7)

transformants in TRP medium.

Rhizobium Intracellular Rhizobium Intracellular
Strains Citric acid in Strains Citric acid in
mM mM
B.japonicum 0.83+0.06 M. loti 0.85+0.04
USDA110 MAFF030669
Bj (pAB8) 0.75£0.05 Ml (pABS) 1.15+0.06
Bj (pAB7) 1.15+0.06 Ml (pAB7) 0.90 £ 0.04

4.3.6: Alterations in enzyme activities in Bj (pAB7) and Ml (pAB7) transformants.

In order to correlate the alterations in physiological variables and organic acid

profile, enzymes involved periplasmic direct oxidation and intracellular phosphorylative

were estimated. GDH activity increased by about ~1.5 and ~1.2 fold as compared to the

control PYC showed ~2.0 and ~2.4 fold increase in the transformants. In response to cs

gene overexpression, about ~ 3 fold increase is seen in CS activity in both Bj (pAB7) and
MI (pAB7). The activity of G-6-PDH, PPC and ICDH, in Bj (pAB7) and Ml (pAB7) did

not alter significantly as compared to the control. Glyoxylate pathway enzyme ICL,

showed slight increase in activity in Bj (pAB7) and remain unaltered in Ml (pAB7) (Fig.

4.11).
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Fig. 4.11: Activities of enzymes. A- B. japonicum USDA110; B- M. loti MAFF0306609.
PPC, PYC, GDH, G-6-PDH, ICDH and ICL in and cs transformant. (A): B.
japonicum USDA110 and (B): M. loti MAFF030669: The activities have been
estimated using cultures grown on TRP medium with 50mM glucose. All the enzyme
activities were estimated from mid log phase to late log phase cultures except CS, ICDH
and ICL which were estimated in stationary phase (Section 2.10). All the enzyme
activities are represented in the units of nmoles/min/mg total protein. The values are
depicted as Mean £ S.E.M of 7-10 independent observations. * P<0.05, ** P<0.0land
*** P<0.001,
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4.4: DISCUSSION

The TCA cycle is used to generate energy and also produce precursors for the
biosynthesis of amino acids, purines, pyrimidines and vitamins. The cycle has been
intensively studied in Escherichia coli and Bacillus subtilis and a complex network of
genetic and metabolic controls have been elucidated in these organisms. TCA cycle
enzyme activities have been measured in bacteroids of many rhizobia and have been

tentatively correlated with symbiotic efficiency (Dunn 1998).

Genetic and molecular mechanisms of organic acid secretion by MPS bacteria are
confined to involvement of genes responsible for gluconic acid and 2-ketogluconic acid
biosynthesis in bacteria like Enterobacter intermedium, Pseudomonas cepacia and
several Bacillus spp. The PQQ-GDH and gluconate dehydrogenase (GAD) catalyzes the
formation of gluconic and 2-ketogluconic acids and are localized in the periplasm
Multiple studies suggest that the periplasmic conversion of glucose to gluconate may be a
significant route for carbon flux in glucose-grown S. meliloti (Portais et al., 1997;
Bernardelli et al., 2001) On the other hand, other commonly secreted organic acids
including citric, succinic, oxalic, tartaric, lactic, fumaric, glyoxylic, acetic and malic
acids, are metabolites of intracellular catabolic pathways. Yet very few efforts have been
made to genetically manipulate the central metabolic pathways for MPS ability in
Pseudomonas (Buch et al., 2010). The present work describes the effect of heterologous
overexpression of E. coli cs gene on MPS ability of B. japonicum USDA110 and M. loti
MAFF030669 strains.

In the last chapter, increase in citric acid was seen in response to overexpression
of ppc gene. On the other hand, the overexpression of E. coli ¢s gene resulted in ~3 fold
increase in the CS activity of both the transformants which is in accordance to ~3-fold
and ~2-fold increase in Pf (pAB7) and Pf O1 (pAB7), respectively. This increase in CS
activity resulted in secretion of higher citric acid i.e. 7.1 mM and 6.8 mM by Bj (pAB7)
and MI (pABT7), respectively, which is ~9.9 and ~7.9-f old higher as compared to Bj
(pAB8) and MI (pAB8), respectively. Pf (pAB7) and Pf O1 (pAB7) transformants could
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only secrete 1.3 mM and 2 mM citric acid (Buch et al., 2009). In addition, glt gene
overexpression did not increase intracellular citric acid levels in Bj (pAB7) and Ml
(pAB7) but showed ~2-fold increase in Pf (pAB7) compared to Pf (pAB8). Accumulation
of intracellular citric acid in Pf (pAB7) was similar to that of E. coli K and B icd mutants
in which citrate accumulation was accompanied by ~3.8 and 2.5 fold increase in CS
activity (Aoshima et al., 2003; Kabir and Shimizu, 2004). This suggested higher flux
through TCA in Rhizobium transformants supported by increased activity of ICDH.
Interestingly PYC activity increased with PPC and CS. Thus, the enzymes at the
anplerotic node appear to be regulated in a coordinated manner. Similar observation was

seen in Pseudomonas transformants (Buch et al., 2008; 2009).

Growth of Bj (pAB7) and Ml (pAB7) transformants showed much better growth
performance as they grew in TRP medium containing 100 mM Tris, pH 8.0 and 50 mM
glucose while {Pf (pAB7)} and Pf O1 (pAB7) transformants required 100 mM glucose to
grow in this buffered medium (Buch et al., 2009; Adhikary’s thesis, 2012). Bj (pAB7)
transformants showed enhanced biomass yield similar to that in Pf O1 (pAB7) while
specific growth rate was better in Rhizobium transformants compared to Pseudomonas
transformants. The growth promotion of Rhizobium transformants could be attributed to
the unique features of central metabolism directed towards anabolism. There was ~2 and
~2.4-fold increase in PYC activity supplying OAA in Bj (pAB7) and Ml (pAB7),
respectively, which was similar to ~2 fold increase seen in Pf O-1 (pAB7) and ~1.4-fold
increase seen in Pf (pAB7). Increase in PYC activity is associated with increase in OAA
which resulted in increased biomass in Bj (pAB7) and Pf O1 (pAB7) due to the increased
anaplerotic pathway. While in Pf (pAB7) and MI (pAB7) increase in PYC is not seen
suggesting no change in anaplerotic pathway.

Increase in gluconic acid by Bj (pAB7) and Ml (pAB7) was ~1.4 and ~1.5 fold,
respectively which was comparatively lower than the ~2.7 fold increase in gluconic acid
by Pseudomonas transformants. This indicates that direct oxidative pathway showed an
enhancement in Pseudomonas while remains unaltered in Rhizobium transformants.

However, Rhizobium transformants secreted higher amount of citric acid could be
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attributed to the increase in CS and PYC activities. As already mentioned, efficient TCA
cycle flux in Rhizobium strains coupled with good efflux system account for extracellular
levels of citric acid higher than in Pseudomonas. Increase in GDH activity and no change
in G-6-PDH activity suggests increase in oxidative pathway but not in phosphorylative
pathway occurs in Rhizobium transformants. Similar observations were seen in Pf (pAB7)
while there was an increase in both the enzyme activities in Pf O1 (pAB7), suggesting
increase in oxidative pathway as well as in phosphorylative pathway (Buch et al., 2010;
Adhikary, 2012).

Reduction in CS activity by mutation in S. meliloti decreased growth rate in the
free-living conditions (Grzemski et al., 2005). Mutants with approximately 3% of normal
CS activity formed nodules with lower nitrogenase activity and a mutant with less than
0.5% of normal CS activity formed Fix™ nodules. Thus, CS activity was essential for
nodule maintenance. In R. tropici there are two gItA genes, one on the chromosome and
the other on a symbiotic plasmid. Loss of either gene lowered nodulation ability and loss
of both resulted in ineffective, empty nodules (Hernandez-Lucas et al. 1995). Inactivation
of an aconitase in Bradyrhizobium japonicum decreased enzyme activity by 70% and
inhibited free-living growth but leads to nodules with normal fixation (Thony-Meyer and
Kunzler 1996). A B. japonicum USDA110 mutant lacking 2-oxoglutarate dehydrogenase
had some free-living and nodule development problems but the specific activity of
bacteroids was near normal, a capability that was associated with a 2-oxoglutarate
decarboxylase activity that bypassed 2-oxoglutarate dehydrogenase (Green et al., 2000).
In S. meliloti, mutants in two TCA cycle genes, isocitrate dehydrogenase (icd) and gltA,
differed in their nodulation phenotypes (McDermott and Kahn 1992; Mortimer et al.,
1999). Mutations affecting bacterial surface components (particularly EPS and LPS), and
mutations affecting TCA cycle enzymes and amino acid metabolism have been reported
(Walshaw et al., 1997; Fraysse et al. 2003; Dymov et al. 2004)The icd mutants formed
ineffective but normal-looking nodules that had abundant bacteroids within the infected
cells, whereas gltA mutants formed empty nodules, completely lacking intracellular
bacteria. S. fredii gltA mutants had a similar ineffective phenotype, although some

bacteroids were present (Krishnan et al. 2003).
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P solubilization was increased by B. japonicum USDA110 and M. loti
MAFF030669 strains containing pAB7 plasmids due to increase in the production of
gluconic acid and citric acid. Similar observation is also reported in Pf (pAB7) and Pf O-
1 (pYF) as compared to their respective controls (Buch et al., 2010; Adhikary, 2012). P
solubilization by Rhizobium transformants was less compared to overexpression by ppc

gene due to lesser amount of gluconic acid while citric acid levels were similar.

Both Rhizobium transformants had enhanced growth promoting activities such as
biofilm formation, exopolysaccharide and indole acetic acid production.
Exopolysaccharide | (EPSI) biosynthesis is enhanced by succinate levels which in turn
related to the CS activity in Corynebacterium glutamicum (Zhu et al., 2013). It is not
clear whether EPS synthesis in Rhizobium transformants is related to CS activity.
Increase in biofilm formation and IAA production could be a consequence of improved

metabolism in TRP medium.
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Fig. 4.12: Key metabolic fluctuations in B. japonicum USDA110 and M. loti
MAFF030669 overexpressing E. coli cs gene.*
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Chapter 5 : Effect of overexpression of E. coli NADH insensitive Y145F cs gene on production of
organic acid in B. japonicum USDA110 and M. loti MAFF030669

5.1 INTRODUCTION

Citrate synthase (CS) is a ubiquitous enzyme that catalyzes the first committed
step of tricarboxylic acid (TCA) cycle involving condensation of oxaloacetate (OAA) and
acetyl-CoA to form citrate. Hence it is the key enzyme governing the carbon flux into the
TCA cycle which plays a dual function in the production of cellular energy and
biosynthetic precursors under aerobic conditions and only latter under anaerobic
conditions, respectively (Park et al., 1994).

5.1.1 CS and NADH sensitivity

E. coli CS and the CS from other Gram-negative bacteria are allosteric enzymes
was recognized almost 50 years ago. The CS of Gram-negative bacteria differ from those
of Gram-positive bacteria and eukaryotes in that they are subjected to allosteric inhibition
by NADH. NADH inhibition of E. coli CS is weakened by conditions, such as high salt
or alkaline pH, which favor activity (Weitzman, 1966; Weitzman and Danson, 1976).
Gram negative bacteria produce a 'large’ homo-hexamer of identical subunits with
monomer size of ~48kDa, contains 427 amino acid encoded by gltA gene, and is strongly
and allosterically inhibited by NADH and, in the facultative anaerobes such as E. coli,
also by 2-oxoglutarate (Weitzman 1981; Nguyen et al., 2001). On the other hand, gram-
positive bacteria and all eukaryotes produce a 'small’ (dimeric) also known as type | CS

which is insensitive to NADH.

Pseudomonas CS is also allosteric and its Kinetic properties suggest as an
intermediate between E. coli and Acinetobacter anitratum enzymes (Massarini et al.,
1975; Higa et al., 1978). Two forms of CS (EC 4.1.3.7) have been found in several
species of Pseudomonas, a large form (Mr ~ 1: 250000) which is generally inhibited by
NADH and a small form (Mr ~ 1: 100000) which is insensitive to these nucleotide
effectors. Hence, the NADH sensitivity of gram negative bacterial CS is attributed to
subunit size. A mutant of Pseudomonas aeruginosa PAC514 has been found to contain
both a large (CSI) and a small (CSII) isozyme (Solomon and Weitzman, 1983; Mitchell
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et al., 1995). The CS of gram-negative bacteria is an allosteric enzyme designated as type
Il. E. coli and .A. anitratum CS are strongly homologous in amino acid sequence and
more distantly resemble the non-allosteric Type | CS of eukaryotes (Bhayana et al., 1984;
Donald et al., 1987; Francois et al., 2006).

5.1.2: NADH insensitive CS

The distinctness of the NADH binding sites from the active sites is established by
structural studies on a CS-NADH complex. E. coli CS exists in two conformational
states, one of which (the R state) binds acetyl-CoA selectively, whereas the other (the T
state) binds NADH selectively. NADH inhibition is competitive with respect to acetyl-
CoA and noncompetitive with respect to the other substrate, OAA (Wright and Sanwal,
1971). NADH binding is competitively inhibited by acetyl-CoA (Duckworth and Tong
1976).

Type | dimers were altered by a series of mutations to generate NADH sites. Site-
directed mutagenesis was used to prepare variant CS proteins in which the nine putative
hydrogen-bonding residues in the NADH site, identified through the structural studies,
were replaced by nonbonding residues (Maurus et al ., 2003). In addition, one particularly
intriguing variant has been crystallized in the presence and absence of NADH, and the
three-dimensional structures have been determined using x-ray diffraction methods
(Duckworth et al., 2003.). The structure of the CS-NADH complex allows the prediction
of a number of hydrogen bonds between NADH and the protein, including nine involving
amino acid side chains. These variants are listed in Table 5.1, along with the effects of
the amino acid substitutions on NADH binding and inhibition. Each variant protein was
active and appeared to be stable. These three variants, Y145F, R163L, and K167A, all
involve residues that are believed to take part in a complex hydrogen bonding network
with the pyrophosphate moiety of NADH (Fig.5.1). All of the variants show some
changes in NADH binding and inhibition and small but significant changes in kinetic
parameters for catalysis. In three cases, Y145F, R163L, and K167A, NADH inhibition

has become extremely weak.
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MADTRARLTL NGDTAVELDV LEGTLGQDVI DIRTLGSRGV
FTFDPEFTST ASCESRKRITFI DGDEGILLHE GFPIDQLATD
SHNYLEVCYIL LNGERPTQEQ IYDEFRTTVIR HTMIHEQITR

145pyrophosphate (HADH)
LFHAFRRDSH PMAVMCGITG ALAAFYHDSL DVNNPRHREI
163 and 167 pyrophosphate (HADH)

LS MP TMAAMCYRYS IGQPFVYPRN DLSYAGNFLN
207/208 HADH

MMFSTPCEPY EVNPILERAM DRILILHADH EQNASTSTVR
TAGSSGANPF ACIAAGIASL WGPAHGGANE ARTLIMLEEIS

IDsactive=sits
SEVEHIPEFVE RALRDENDSFER LMGFGHEVIE NYDPRATVME

ETCHEVLEEL GTERDDLLEVA MELEMNIALND PYFIEERERLYP
363 active =ite
NVDEFYSGIIL BRAMGIPSSMF TVIFAMARTYV GWIAHWSEMH

SDGEMERIARPE QLYTGYERRD FERSDIRR 427

Fig. 5.1: E. coli CS protein sequence showing the regulatory variant (Duckworth et
al., 2003.).

Table 5.1: NADH binding and inhibition by variant CSs (Stokell et al., 2003)

Variant Kd(@M) Ki(uM)  Maximum
inhibition(%)
Wild type 1.6:0.1 2804 10010
K167A 4.1£0.2  630+130 10010
Q128A

N189A 6.9+0.8 24226 06+5

T204A
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Subunit A
Subunit B

Subunit A
Subunit B

Helical linker

Fig. 5.2: Route of communication between NADH binding sites and active sites in
wild type hexameric E. coli CS (Stokell et al., 2003).

Examination of the hexameric structure of E. coli CS as a whole showed that the
helical linker region (residues 316-342) structurally links the refolded active site region
polypeptide chain segment (residues 262-298) to an NADH binding site. However, the
NADH binding site involved is not from the same subunit, instead being located across
the dimer-dimer interface on an adjacent subunit (Fig. 5.2. A and B) (Stokell et al.,
2003).
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5.1.3: Increase in production of Citric acid

Isocitrate lyase (icl) gene overexpression in Yarrowia lipolytica altered
citrate/isocitrate ratio towards citric acid (Forster et al., 2007a). Additionally, invertase
gene expression enabled Y. lipolytica to secrete high levels of citric acid in presence of
sucrose. Similarly, B. subtilis mutant in early stationary phase accumulated ~15 fold
higher intracellular citrate levels as compared to the wild type (Matsuno et al., 1999).
Metabolic studies on citric acid producing fungi, yeasts, and E. coli demonstrated that
high citric acid levels could be attained on glucose and depending on the host
metabolism. Disruption of icd gene of E. coli has been reported to secrete citric acid
levels up to 3.4 mM (Aoshima et al., 2003; Kabir and Shimizu, 2004). Although citric
acid was increased, the mutant showed glutamate auxotrophy. However, citric acid
secretion is difficult to explain as E. coli K strain does not possess citrate transporter
(Hall, 1982). Citric acid secretion was also found in Bacillus subtilis icd and
Streptomyces coelicolor aconitase mutants (Matsuno et al., 1999; Viollier et al., 2001).

Increase in CS activity was postulated to be a better strategy for citric acid
production in E. coli rather than isocitrate dehydrogenase (icd) mutation which reduces
biomass and growth (Aoshima et al., 2003). Overexpression of E. coli ¢s gene in
Pseudomonas fluorescens ATCC 13525 yielded millimolar levels of intracellular and
extracellular citric acid (Buch et al., 2009). The amount of citric acid produced by P.
fluorescens overexpressing E. coli ¢s gene was similar to that secreted by the phosphate
solubilizing Bacillus coagulans and Citrobacter koseri on glucose but the levels were

insufficient for releasing P from soils (Gyaneshwar et al., 1998; Srivastava et al., 2006).

Metabolic studies in E. coli demonstrated that high citric acid yields could be
attained on glucose and depending on the host metabolism; glucose transport, flux though
catabolic pathways and the regulatory mechanisms influenced by intracellular metabolite
pools appear to facilitate the citrate accumulation (Elias, 2009). To increase the flux
through the anaplerotic node for increasing oxaloacetate levels, ppc gene of S. elongatus
was over-expressed in P. fluorescens 13525. ppc gene overexpression enhanced cellular

biomass, glucose catabolism through intracellular phosphorylative pathway and resulted
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in increased gluconic, pyruvic and acetic acids and intracellular citric acid but citric acid
was not secreted. Overexpression of either of ppc and cs genes enhanced MPS ability of
P. fluorescens 13525 on Pikovskya’s agar; but ppc-cs co-expression neither altered P.
fluorescens ATCC 13525 metabolism nor affected the citrate production (Buch et al.,
2010). Overexpression of E. coli CS gltA gene in Pseudomonas fluorescens ATCC 13525
yielded intracellular and extracellular citric acid levels during the stationary phase,
respectively (Buch et al., 2009). Hence further strategies are required to increase the

citrate level.

Among the three CS variants studied, Y145F showed maximum inhibition,
highest Ki and Kd values (Stokell et al., 2003) Also Pf (pY145F) showed the highest CS
activity amongst all the other variants which is 2 fold,1.7 fold and 1.96 fold higher as
compared to the wild type cs bearing strain Pf ( pAB7) and other two NADH insensitive
cs bearing strain Pf (pR163L) and Pf (K167A) respectively in the mid log phase, so
pY 145F was used for further study (Adhikary, 2012).

Partial sequencing of pY145F plasmid

Partial sequencing of the PCR product amplified from pY145F plasmid when
analysed using NCBI BLAST (Basic Local Alignment Search Tool) and Ribososmal
Database Project (RDP) II, online homology search programs, revealed maximum
identity (99%) to E. coli CS (GenBank Accession number AAA23892) (Fig. 5.3 and
5.4).

|
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>YFPCRPRODUCT_YFFOR_S702

CNCNNANCGGCACCCTGAACGGGGATACAGCTGTTGAACTGGATGTGCTGAA
AGGCACGC TGGGTCAAGATGTTATTGATATCCGTACTCTCGGTTCAAAAGGT
GTGTTCACCTTTGACCCAGGCTTCACTTCAACCGCATCCTGCGAATCTAAAAT
TACTTTTATTGATGGTGATGAAGGTATTTTGCTGCACCGCGGTTTCCCGATCG
ATCAGCTGGCGACCGATTCTAACTACCTGGAAGTTTGTTACATCCTGCTGAAT
GGTGAAAAACCGACTCAGGAACAGTATGACGAATTTAAAACTACGGTGACCC
GTCATACCATGATCCACGAGCAGATTACCCGTCTGTTCCATGCTTTCCGTCGC
GACTCGCATCCAATGGCAGTCATGTGTGGTATTACCGGCGCGCTGGCGGCGT
TCTTTCACGACTCGCTGGATGTTAACAATCCTCGTCACCGTGAAATTGCCGCG
TTCCGCCTGCTGTCGAAAATGCCGACCATGGCCGCGATGTGTTACAAGTATTC
CATTGGTCAGCCATTTGTTTACCAGCGCAACGATCTCTCCTACGCCGGTAACT
TCCTGAATATGATGTTCTCCACGCCGTGCGAACCGTATGAAGTTAATCCGATT
CTGGAACGTGCTATGGACCGTATTCTGATCCTGCACGCTGACCATGAACAGA
ACGCCTCTACCTCCACCGTGCGTACCGCTGGCTCTTCGGGTGCGAACCCGTTT
GCCTGTATCGCAGCAGGTATTGCTTCACTGTGGGGACCTGCGCACGGCGGTG
CTAACGAAGCGGCGCTGAAAATGCTGGAAGAAATCAGCTCCGTTAAACACA
TTCCGGAATTTGTTCGTCGTGCGAAAGACAAAAATGATTCTTTCCGCCTGATG
GGCTTCGGTCACCGCGTGTACAAAATTACGACCCGCGCGCCACCGTAATGCG
TGAAACCTGCCATGAAGTGCTGAAAGAGCTGGGCACGAANNTGACCTGCTGN
AGT

Fig. 5.3: Partial sequence of E. coli NADH insensitive cs gene.
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>C]gb|000096.21 E/ D Escherichia coli str. K-12 substr. MG1655, complete genome
Length=4

Features in this part of subject seguence:
citrate synthase

Score = 1777 bits (962), E. ct =
Identities = 971/975 (99%) aps = 1/975 (0%)
Strand=Plus/Minus
Query 4 CACCCIGAACGGGGATACAGCTIGTITGAACTGGATGTIGCTIGARAGGCACGCTIGGGICAAGA 63
FEREEE rrrervnrrenrrvenr b r e e n b e e b rerntd
Sbjct 753668 CACCCICAACGGGGATACAGCIGITIGAACIGGATGTIGCTGAAAGGCACGCTGGGTCAAGA 753609
Query 64 TIGTITATTIGATATCCGTACICICGGTIICAAAAGGTIGIGTITCACCTTTGACCCAGGCTICAC 123
PR e e v e errnel
Sbjct 753608 TIGITATIGATATCCGTIACICICGGITICAAAAGGIGIGITCACCITIGACCCAGGCTITCAC 753549
Query 124 TICAACCGCATCCIGCGAATCTAAAATTACTITIITATIGATGGTGATGAAGGTATITIGCT 183

PRRLRER R R r e n e e e el
Sbjct 753548 TTICAACCGCATCCIGCGAATCTAAAATTACTITITATIGATGGIGATGAAGGTATIITIGCT 753489

Query 184 GCACCGCGGTITTICCCGATCGATCAGCTGGCGACCGATTICTAACTACCIGGAAGTITIGITA 243
N NNy
Sbjct 753488 GCACCGCGGITICCCGATCGATCAGCTIGGCGACCGATTICTARCTACCTGGAAGTIIGTITA 753429

Query 244 CATCCIGCTGRATGGIGAARRACCGACTCAGGAACAGTATGACGAATTITAARACTACGGT 303
N N N N NNy
Sbjct 753428 CATCCIGCTIGAATGGTGAAAAACCGACTCAGGAACAGTATGACGAATTTAAAACTACGGT 753369

Query 304 GACCCGICATACCATGATCCACGAGCAGATTACCCGICTIGITICCATGCTITCCGICGCGA 363
EORERER bbb bbb bbb errrinntl
Sbjct 753368 GACCCGICATACCATGATCCACGAGCAGATTACCCGICIGITCCATGCITICCGICGCGA 753309

Query 364 CICGCATCCAATGGCAGTCATGTIGTIGGTATTACCGGCGCGCIGGCGGCGTIICITICACGA 423
PEOLERE R e e e e e e e e e el

Sbjct 753308 CICGCATCCAATGGCAGTICATGIGIGGTATTACCGGCGCGCIGGCGGCGTITCTATCACGA 753249

Query 424 CICGCIGGATGTITAACAATCCICGICACCGTIGARAATTIGCCGCGITCCGCCIGCTIGICGAA 483
Prerrrre e e errererrebrrrernnnl

Sbjct 753248 CICGCIGGATGTITAACAATCCICGTICACCGTGAAATIGCCGCGTICCGCCIGCTIGICGAR 753189

Query 484 AATGCCGACCATGGCCGCGATGTIGITACAAGTATICCATIGGTICAGCCATTITIGTITTACCA 543
lllllllllllllllllllllllIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Sbjct 753188 AATGCCGACCATGGCCGCGATGIGITACAAGTATTICCATIGGICAGCCATTIGITIACCC 753129

Query 544 GCGCAACGATCICICCTACGCCGGTAACTTICCTIGAATATGATGTIICICCACGCCGIGCGA 603

S N N N N NN
Sbjct 753128 GCGCAACGATCICICCTACGCCGGTAACTTICCIGAATATGATGITCICCACGCCGIGCGA 753069

Query 604 ACCGTATGAAGTTAATCCGATICIGGAACGIGCTATGGACCGTATICIGATCCTIGCACGC 663
llllllllllIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIlllllIIIIII
Sbjct 753068 GIATGAAGTTAATCCGATTICIGGAACGTGCTATGGACCGTATICIGATCCIGCACGC 753009

Fig. 5.4: NCBI BLAST analysis of partial cs sequence.

Pair wise alignment of the sequence with original E. coli K12 NADH sensitive cs
sequence from database using EBI pair wise alignment tool, revealed a mutation of
tyrosine residues in 146 amino acid position to phenylalanine (Fig. 5.5).
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PCR l ————— CNCNNANCGGCACCCTGAACGGGGATACAGCTGTTG 3¢
eelealal «LEIPEE<FERRRRRTTTIRNRRERTT]

ORIGINAL 1 atggctgatacaaaagcaaaac-tcacccectcaacggggatacagetgttg 49

PCR 37 AACTGGATGTGCTGAAAGGCACGCTGGGTCAAGATGTTATTGATATCCGT 86
PEEREEETT e e et et e b el

ORIGINAL 50 aactggatgtgctgaaaggcacgctgggtcaagatgttattgatatecgt 99

PCR 87 ACTCTCGGTTCAAARAGGTGTGTTCACCTTTGACCCAGGCTTCACTTCAAC 136
Peerererrerrr et e erererrer et re e e

ORIGINAL 100 actectcggttcaaaaggtgtgttcacctttgacccaggetteacttcaac 149

PCR 137 CGCATCCTGC LJ.F-.F-'.TC’I‘P.E.A.I‘«.TTE‘:CTTTTP_TTGATGGI‘GATG.\'&.L.GGTATTT 18¢
PEELEEErrrrrrtnd FEErrrrr el [l

ORIGINAL 150 cgcatcctgcgaat (.,tmauat..autttl’.c‘u’.tg&tggtgatgaaggtattt 199

PCR 187 TGCTGCACCGCGGTTTCCCGATCGATCAGCTGGCGACCCGATTCTAACTAC 236
PEEERERTEErrr et et e e e b e et

ORIGINAL 200 tgctgcaccgcecggttteccgatcgatcagectggegaccgattctaactac 249

PCR 237 CTGGAAGTTTGTTACATCCTGCTGAATGCTGAARARACCGACTCAGGAACA 286
PEereeerrerre e e et e e e e eer et et

ORIGINAL 250 ctggaagtttgttacatcctgctgaatggtgaaaaaccgactcaggaaca 299

PCR 287 C”ATuﬂCC%A”TTRRAACTZ?GCTGPCCZCTFaTﬁCCETP‘T“‘ZCG“CC 336
LEEEEEErrrrrr el fEErrrrrrrer ettt [l

ORIGINAL 300 gtatgacgaatttaaaactacggtgacccgtcata:catgatccacgagc 349

PCR 337 AGATTACCCGTCTGTTCCATGCTTTCCGTCGCGACTCGCATCCAATGGCA 386
Perrrrrerrr et rerr e e et e e e e el

ORIGINAL 350 agattacccgtctgttccatgcotttecgtecgegactogeateoocaatggea 399

PCR 387 GTCATGTGTGGTATTACCGGCGCGCTGGCGECETTCTTTCACGACTCGCT 436
PETLLEEREE R et e et ettt e ettt

ORIGINAL 400 gtcatgtgtggtattaccggcgogectggoggegttotatcacgacteget 449

Fig. 5.5: EBI pair wise alignment of NADH insensitive and wild type cs gene
showing the position of mutation.

To increase the flux through the anaplerotic node for increasing oxaloacetate
levels, NADH insensitive cs gene was over-expressed in fluorescent P. fluorescens PfO-1
which resulted in significant increase in CS activity and citric acid levels as compared to
the wild type NADH sensitive CS P. fluorescens PfO-1 harboring pY145F showed
maximum CS activity of 333.4+8.5U on M9 minimal medium in the presence of 100 mM
glucose which is ~ 5.6 fold higher than that in the control Pf (pAB8) (Adhikary, 2012).
The NADH insensitive cs gene overexpression caused significant alterations in both
intracellular and extracellular citric acid levels and yields. Intracellular citric acid levels
in Pf (pY145F) increased by 5.7, 6.9 and 2.6 fold while there is a 5, 7.9 and 2.9 fold
increase in intracellular citrate yield as compared to wild type strain, Pf (pAB8 )and Pf

(pABT), respectively. Corresponding extracellular citrate levels increased by 57, 51.6 and
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1.9 fold with an increase of extracellular citrate yield by 39.8, 29.9 and 2.39 fold
compared to respective controls (Fig. 5.6; Adhikary et al., 2012).
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Fig. 5.6: Citric acid levels and yields in P. fluorescens PfO-1 wild type and plasmid
bearing strains Km, AB7 and YF. Intracellular citrate levels (a) and yields (b) are
represented in black bars and extracellular citrate levels (a) and yields (b) are represented

in grey bars.
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Fig. 5.7: Key metabolic fluctuations in P. fluorescens PfO-1 overexpressing NADH

insensitive E. coli CS.

5.1.4 Rational of the present study

Overexpression of ppc gene of S. elongatus in B. japonicum USDA110 and M.
loti MAFF030669 enhanced cellular biomass, glucose catabolism through intracellular
phosphorylative pathway and resulted in increased gluconic and citric acids secretion,

this high citric acid was due to increased activities of both PYC and PPC. Similarly,
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overexpression of gItA gene of E. coli in the last chapter also resulted in significant

increase in citric acid secretion upto 7 mM due to significant increase in the activity of

CS. However, P solubilization was better in ppc gene overexpression as compared to glt

gene overexpression which could be attributed to the lower levels of gluconic acid in the

latter case. In order to further increase citric acid secretion, this chapter dealt with

developing Rhizobium strains expressing E. coli NADH insensitive cs gene and

monitoring its effects on citric acid accumulation and secretion and glucose metabolism.

5.2: Experimental design
The experimental plan of work includes the following-

5.2.1: List of bacterial strains used

All wild type and genetically modified E. coli and Rhizobium strains used in this

study are listed in Table 2.1 and 2.2. The plasmids used in the present study and their

restriction maps are given in Table 2.3 and Fig. 2.1. E. coli JIM101 was used for all the

standard molecular biology experiments wherever required

Table 5.2 list of bacterial strains

galK30 LAM-pyrD36 relAl rpsL129 thi-
1; Str'

Bacterial strains Characteristics Source/Reference
E. coli strains
E. coli IM101 Used for molecular biology experiments | Sambrook and
Russell, 2001
E. coli W620 cs mutant strain exhibiting glutamate E. coli Genetic
auxotrophy, CGSC 4278 - gIlnV44 gltA6 | Stock Center

S17.1 (PAB7) E. coli | S17.1 with pAB7 plasmid; Amp', Km'

Buch et al, 2008

S$17.1 (pAB8) E.coli |S17.1 with pABS plasmid; Amp", Km'

Buch et al, 2008

Rhizobium strains

Bradyrhizobium NC_004463.1 NCBI
japonicum USDA110
Mesorhizobium loti NC_002678.2 NCBI
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MAFF030669
Bj (pPINK3) B. japonicum USDA110 with pJNK3 | This study
r r
plasmid; Ap, Km (E. coli NADH
insensitive cs)
Bj (pPAB8) B. japonicum USDA110 with pAB8 This study
r r
plasmid; Ap, Km (control vector)
MI (pJNK3) M. loti MAFF030669 with pJNK3 This study
r r
plasmid; Ap, Km (E. coli NADH
insensitive cs)
MI (pAB8) M. loti MAFF030669 with pAB8 This study
r r
plasmid; Ap, Km (control vector)

5.2.2: Details of Plasmid used

pUCPM18 with E. coli NADH insensitive cs* gene under Plac ,

named as pJNK3 was used in this chapter.

HindIIl

Ap" and km' gene,

Fig. 5.8: Restriction map of the plasmid used in this chapter (Wagh et al., 2013).
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5.3: RESULTS

5.3.1: Heterologous overexpression of E. coli NADH insensitive cs* gene in
Rhizobium spp.

The plasmids incorporated in B. japonicum USDA110 and M. loti MAFF030669
transformants were isolated from the transformants and were confirmed based on
restriction digestion pattern before studying the effect of overexpression of E. coli NADH

insensitive cs* gene (Fig. 5.9).

Fig. 5.9 : Restriction Digestion pattern of plasmids containing pJNK3 isolated from
transformants of (A) B. japonicum USDA110 and (B) M. loti MAFF030669 Lane 1:
pJNK3 linear with Hindlll (8.26 kbp); Lane 2: Molecular Weight Marker (MWM)-
Lambda DNA cut with ECORV/ HIND III; Lane 3: pJNK3 digested with EcoRI-HindlIII
(5,298bp, 2,967bp); Lane 1: pJNK3 digested with EcoRI-Hindlll (5,298bp, 2,967bp);
Lane 2: Molecular Weight Marker (MWM)-Lambda DNA cut with EcoRV/ Hind I11.

The CS activity estimated in B. japonicum USDA110 and M. loti MAFF030669.
harboring E. coli NADH insensitive cs gene {Bj (pJNK3)} and{ MI (pJNK3)} grown on
TRP medium with 50mM glucose, was 3.4 and 4.8 fold higher (62.41 £.0.48 U and 67.02

Development of mineral phosphate solubilization ability in Rhizobium spp. by metabolic engineering of tricarboxylic acid cycle

Page 157



Chapter 5 : Effect of overexpression of E. coli NADH insensitive Y145F c¢s gene on production of
organic acid in B. japonicum USDA110 and M. loti MAFF030669

+ 1.98 U) in both the strains compared to control which possessed very low levels of CS
activity (18.64 £ 1.26 U) and ( 13.89 + 0.83 U).

To check MPS ability a zone of clearance and acidification was observed on PVK
and TRP plates respectively and the maximum zone of clearance and acidification was
shown by Bj (pJNK3) and Ml (pJNK3) as compared to the control Bj (pAB8) and Ml
(pABB8).P-solubilizing ability of wild type B. japonicum USDA110 and M. loti
MAFF030669 and its transformants varied in the order of Bj (p JNK3) = MI (p JNK3) >
Bj (PAB8) = MI (pAB8) >Bj=MI on PVK medium after 3 days of incubation at 30°C
(Fig. 5.10).

MI (pINK3)

Bj (pINK3)

D Ml MI (pABS) MI (pINK3)
Fig. 5.10: MPS phenotype of B.japonicum USDA110(a), (c) and M. loti MAFF030669

(b),(d) harboring pJNK3 plasmid expressing cs gene. Zone of clearance formed by

Rhizobium transformants on Pikovskaya’s agar and Tris rock phosphate agar containing
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50mM glucose The results were noted after an incubation of 3days at 30 °C. Media

composition and other experimental details are as described in Sections 2.2.4 and 2.7.

Table 5.3: P solubilization index on Pikovskyas agar of B.japonicum USDA110 and
M. loti MAFF030669 transformants during 3 days of growth Bj and MI: wild type
strain; Bj (pAB8): B.japonicum with vector control and Bj (pJNK3) : B.japonicum with
NADH insensitive cs gene. The results were noted after an incubation of 3 days at 30 °C
and are given as mean £ S.D. of three independent observations as compared to native Bj
and M.

Rhizobium | Diameter of zone | Diameter of | Phosphate Solubilizing
Strains of clearance (mm) | colony (mm) Index
Bj 12.17 £ 0.29 11.17 £ 0.29 1.09
Bj (PABS) 11.17 £0.29 9.50 + 0.50 1.22
Bj (pINK?3) 14.50 + 0.50 10.17 £ 0.29 1.44
Ml 12.83 £0.29 11.50 + 0.50 1.09
MI (pAB8) 12.17 £ 0.29 10.17 £ 0.29 1.22
MI (pINK3) 16.83 £ 0.29 10.17 £0.29 1.60

The pJNK3 transformants of B. japonicum USDA110 and M. loti MAFF030669
showed maximum enhanced zone of clearance as compared to the control pABS.
Phosphate Solubilizing Index was calculated as described in 2. And it was highest in Bj
(pJNK3) and MI (pJNK3) (Table 5.3).

5.3.5: Effect of E. coli NADH insensitive cs gene overexpression on growth pattern
and pH profile in presence of 50mM glucose concentrations.

The growth profiles and organic acid secretion of Bj (pAB8) , Bj (pJNK3), Ml
(pJNK3) and MI (pAB8) along with native, on TRP medium with 50 mM glucose
demonstrated that maximum O.D. was reached faster in transformants (12h compared to
20h of the control Bj (pAB8) and MI (pAB8). Acid production was monitored and it was
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found that there was slight pH drop within 20 h in the native and control vector while pH
drop to 4.3 and 4.2 was seen in Bj (pJNK3) and MI (pJNK3). Significant media
acidification was seen within 12 h in both the cases. Both Bj (pJNK3) and M| (pJNK3)

acidified the medium when grown on TRP medium (Fig. 5.11).
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Fig. 5.11: Effect of E. coli NADH insensitive cs gene overexpression on extracellular
pH (o, A, V,) and growth profile (m, A, V) of (A) B. japonicum USDA110 and (B)
M. loti MAFF030669, on TRP medium with 50 mM glucose .(o, =, Bj, Ml wild type);
{A, A, Bj (pAB8), MI (pAB8)}; {V, V¥, Bj (pINK3), MI (pJNK3)}. ODgy and pH
values at each time point are represented as the mean £ SD of six independent

observations.
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5.3.7: Physiological effects of E. coli NADH insensitive cs gene overexpression on

TRP medium with 50 mM glucose.

In presence of 50 mM glucose, increase in CS activity significantly affected
growth profile in transformants of both the strains (Fig. 5.11). The total glucose
utilization rate showed negligible increase and the total amount of glucose consumed
showed ~1.9 fold and ~1.8 fold decrease in Bj (pJNK3) and MI (pJNK3) respectively at
the time of pH drop. The increase in CS activity increased biomass yield by ~1.6 fold and
also ~1.7 fold decrease was seen in specific glucose utilization rate in the transformants
of both the Rhizobium strains (Table 5.4).

Table 5.4: Physiological variables and metabolic data from of B. japonicum
USDA110 and M. loti MAFF030669 cs* transformants grown on TRP medium. The
results are expressed as Mean = S.E.M of 6 independent observations. a Biomass yield Y
dewicle, Specific growth rate (k) and specific glucose utilization rate (Qgic) were
determined from mid log phase of each experiment. b Total glucose utilized and glucose

consumed were determined at the time of pH drop. The difference between total glucose

utilized and glucose consumed is as explained in Section 2.9.3. *** P<0.001.

Rhizobium Specific Total Glucose Biomass Specific Glucose

Strains Growth Rate Glucose Consumed Yield Utilization Rate
k(h™)? Utilized (mM)°® Y dewic Qo
(mM)° (0/g)* (9.9 dew™.h)?

Bj 0.186+0.03 46.20 £0.2 38.23+1.33 1.78 £0.14 0.14 £0.01

Bj (DAB8) | 0.229+0.02 46.01+0.31 | 37.11+0.33 1.57 +0.29 0.17 +0.04

Bj 0.259+0.01 48.07 +0.10 19.61+0.48" 254+0.117 | 0.10%0.017

(PINK3)

Ml 0.221+0.03 45.91 +0.64 37.07+0.55 1.36 £0.26 0.19 £0.04

Ml (pAB8) | 0.258+0.02 46.01 +0.51 37.07+£0.71 1.06 £0.07 0.24 £0.02

MI 0.381+0.03 48.15+0.30 | 20.91+1.507 [ 1.73+0.09" | 0.14+0.01"

(PINK3)
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5.3.6: Biofilm, exopolysaccharide and indole acetic acid production by Bj (pJNK3)
and Ml (pJNK3) transformants in TRP medium.

Biofilm showed significant increase by ~2.2 and ~2.75 fold in Bj (pJNK3) and Ml

(pJNK3) respectively, compared to control, exopolysaccharide production was increased

by ~1.6 fold in both the transformants compared to control vectors. Indole acetic acid
production was increased by ~1.5 fold in Bj (pJNK3) and ~1.3 fold in Ml (pJNK3). This
increase helped in phosphorus release by overexpression of ¢s gene when grown in TRP
medium 100mM Tris-Cl Buffer pH 8 and 50mM Glucose containing Rock Phosphate
1mg/ml in comparison to control (Table 5.5).

Table 5.5: Biofilm, exopolysaccharide and indole acetic acid production by Bj
(pPINK3) and MI (pIJNK3) transformants in TRP medium.The results are expressed as
Mean £ S.E.M of 6-10 independent observations *** P<0.001.

Rhizobium Biofilm O.D.at EPS (g/100ml) I1AA (ug/ml)
Strains 550nm

Bj 1.96 +0.03 12.48 +0.24 20.14 +1.33
Bj (pPAB8) 2.08 +0.03 13.41 +0.63 25.54 +0.81
Bj (pJNK3) 453 £0.22" 21.95 +0.717 38.03 =1.06"
Ml 1.51 +0.06 13.55 +2.78 30.16 +2.34
MI (pAB8) 1.54 +0.06 15.65 +0.51 26.65 +2.18
MI (pINK?3) 424 0.1 2431 + 1.837 34.66 =0.55"

5.3.5: P Solubilization and Organic acid secretion by Bj (pJNK3) and Ml (pJNK?3)

transformants in TRP medium.

There was significant increase in release of P by ~13 fold in both the
transformants compared to control vectors when grown in TRP medium containing 50
mM glucose (Fig. 5.12).
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Fig. 5.12: P solubilization by (A) B. japonicum USDA110, (B) M. loti MAFF030669
transformants on TRP medium. (&=, Bj, Ml wild type); {&=, Bj (pAB8), Ml (pAB8)};
{==, Bj (pJNK3), MI (pJNK3)}; the values are depicted as Mean + S.E.M of 7-10

independent observations. *** P<0.001.

On TRP medium in presence of 50 mM glucose, the organic acids identified were
mainly gluconic, 2-ketogluconic, acetic and citric acids. As a result of E. coli NADH
insensitive cs gene overexpression, there was only quantitative change in two organic
acids secreted. Due to overexpression of cs* gene, there was ~10.8 and~11.1 fold
increase in citric acid with their corresponding increase in yield (Y¢sc) by ~5.7 and ~4.9
fold in B. japonicum USDA110 and M. loti MAFF030669 E. coli NADH insensitive cs
gene transformants, respectively. Also extracellular medium of Bj (pJNK3) and Ml
(pJNK3) contained ~4 and ~3.7 fold higher amount of gluconic acid, and~2.3 and~1.8
fold increase in its yield was seen respectively as compared to Bj (pAB8) and MI (pAB8)

(Fig. 5.13).Intracellular citric acid levels remained unchanged (Table 5.6).

—
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Table 5.6: Intracellular citric acid production by Bj (pJNK3) and Ml (pJNK3)

transformants in TRP medium.

Rhizobium Intracellular Rhizobium Intracellular
Strains Citric acid in mM Strains Citric acid in mM
B.japonicum 0.83 +0.06 M. loti 0.85+0.04
USDA110 MAFF030669
Bj (pPAB8) 0.75+0.05 Ml (pAB8) 1.15+0.06
Bj (pIJNK3) 0.73+£0.06 MI (pIJNK3) 0.81+0.03

Results are expressed as Mean + S.E.M of 4-6 independent observations. * P<0.05, **

P<0.01 and *** P<0.001.
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Fig. 5.13: Organic acid production {(a) and (c)} and Yield {(b) and (d)} from B.
japonicum USDA110 and M. loti MAFF030669 cs gene transformants, respectively.
All organic acids are estimated from stationary phase cultures (at the time of pH drop)
grown on TRP medium with 50mM glucose. Results are expressed as Mean + S.E.M of
4-6 independent observations *** P<0.001.(ii) Alterations in enzyme activities in Bj

(pAB3) and MI (pINK3)
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In order to correlate the alterations in physiological variables and organic acid
profile, enzymes involved periplasmic direct oxidation and intracellular phosphorylative
were estimated. In response to cs* gene overexpression, about ~ 3.4 and ~ 4.8 fold
increase is seen in CS activity in Bj (pJNK3) and Ml (pJNK3), respectively. GDH activity
increased by about ~1.5 and ~1.3 fold, respectively, as compared to the control, PYC
showed ~2.3 and ~3.2 fold increase, respectively, in the transformants. The activity of G-
6-PDH showed ~1.5 and ~1.4 fold increase in the transformants and also there was ~1.5
and ~1.9 fold increase in ICDH activity. The activity of PPC in Bj (pJNK3) and Ml
(pPJNK3) did not alter significantly as compared to the control. Glyoxylate pathway
enzyme ICL also remained unaltered in Bj (pJNK3) and Ml (pJNK3) (Fig. 5.14).

YF NADH insensetive
(cs)

Enzyme activity (Unitsimg protein)
'Y
¢

YEF NADH insensetive
(cs)

Enzime activity (Unitsimg protein)

S
—
&

Fig. 5.14: Activities of enzymes PPC, PYC, GDH, G-6-PDH, ICDH and ICL in B.
japonicum USDA110 and M. loti MAFF030669 ppc transformants. The activities
have been estimated using cultures grown on TRP medium with 50mM glucose. All the
enzyme activities were estimated from mid log phase to late log phase cultures except
CS, ICDH and ICL which were estimated in stationary phase (Section 2.10). All the
enzyme activities are represented in the units of nmoles/min/mg total protein. The values
are depicted as Mean+S.E.M of 7-10 independent observations. * P<0.05, ** P<0.0land
*** p<0.001.
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5.4: DISCUSSION

Present study demonstrates the effect of overexpression of NADH insensitive E.
coli cs gene in B. japonicum USDA110 and M. loti MAFF030669. CS activity showed
~3.4 fold and ~4.8 fold increase in Bj (pJNK3) and MI (pJNK3), respectively, as
compared to the control and 1.1 and ~1.6 fold increase compared to the strain bearing the
wild type cs gene. In earlier work when NADH insensitive E. coli cs was constitutively
overexpressed under lac promoter in Pf O1 a maximum of 5.6 fold and 2 fold
overexpression was obtained in Pf (Y145F) as compared to the control and strain bearing
the wild type cs gene (Adhikary., 2012). In other earlier work when E. coli wild type cs
gene was constitutively overexpressed under lac promoter in P. fluorescens ATCC
13525, 2 fold enhanced activity was observed compared to the control strain (Buch et al.,
2009).

In the present study, as a consequence of increase in CS activity in Bj (pJNK3)
and MI (pJNK3) there is a ~11 fold elevated extracellular citrate level in both and ~5.7
and 4.9 fold increase, respectively in the yield .But there is no change in the intracellular
levels of citrate. While an increase of ~6.9 fold and ~2 fold in intracellular citrate and
~51.6 fold increase and ~26 fold increase in extracellular citrate was seen in Pf O1
overexpressing NADH insensitive E. coli cs gene and P. fluorescens ATCC13525
overexpressing E. coli wild type cs gene, respectively (Buch et al 2009; Adhikary 2012).
In another study icd mutant of E. coli K and B strains resulted in an increase of ~3.8 and
2.5 fold CS activities and enhanced citrate accumulation but unlike our study, in this case
citrate accumulation had a negative effect on growth of the E. coli strains (Aoshima et al.,
2003). Overexpression of mitochondrial CS genes also resulted in increased citrate efflux
in cultured carrot cells (Koyama et al. 1999), Arabidopsis (Koyama et al. 2000), and
canola plants (Anoop et al. 2003).

Increase in extracellular citrate levels by ~11 fold in both the strains compared to
the control suggests an efficient flux system in Rhizobium, which is not seen in P.
fluorescens. Increase in intracellular citrate level and yield by 1.9 and 2.39 fold,
respectively, in Pf (pY145F) compared to Pf (pAB7) does not lead to similar increase in
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extracellular citrate levels. Citric acid being the substrate of central carbon metabolism
must be transported into and out of the cell for efficient bioactivity. Therefore low level
of extracellular citrate can be attributed to weak efflux transport mechanism in P.
fluorescens (Buch et al 2009; Adhikary, 2012).

Increased gluconic acid levels could be explained by increased PYC activity in Bj
(pINK3) and MI (pJNK3), which could probably diverts pyruvate flux towards increased
OAA biosynthesis to meet the increased CS activity. Even in A. niger, the enhancement
of anaplerotic reactions replenishing TCA cycle intermediates predisposes the cells to
form high amounts of citric acid (Legisa and Mattey, 2007). However, cs overexpression
in A. niger did not affect PYC activity (Ruijter et al., 2000). Enhancement of biosynthetic
reactions due to shortage of TCA cycle intermediates was also observed in citric acid
accumulating E. coli K and B strains in the form of increased glyoxylate pathway
(Aoshima et al., 2003; Kabir and Shimizu, 2004).

ICL activity remained unaltered in both the strains, which was similar to studies
done in Pf O1 overexpressing NADH insensitive E. coli cs gene and P. fluorescens
ATCC13525 overexpressing E. coli wild type cs gene, respectively (Buch et al 2009;
Adhikary 2012). Low ICL activity was consistent with earlier reports in P. fluorescens
ATCC13525 and P. indigofera in which ICL contributed negligibly to glucose
metabolism (Buch et al., 2009; Diaz-Perez et al., 2007).

GDH and G-6-PDH activities increased by ~1.5 and ~1.3 fold in Bj (pJNK3) and
MI (pJNK3), respectively, suggesting an increase in periplasmic glucose oxidation and
phosphorylative pathway. Enhanced CS activity in Pf (pY145F) also increased the
periplasmic glucose oxidation which is reflected by increase in GDH activity and
gluconic acid production. Moreover, significant decrease in glucose consumption without
affecting the glucose utilization suggested the involvement of direct oxidation pathway
for carbon flux distribution in P. fluorescens. The increased carbon flow through
glycolysis led to increased protein synthesis that is reflected to increased biomass
(Adhikary et al., 2012). The citrate induced oligosaccharide synthesis was reported in
Agrobacterium sp. ATCC 31749 (Ruffing et al., 2011).
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The central carbon metabolism network gets to the heterologous overexpression
of NADH insensitive E. coli cs in B. japonicum USDA110 and M. loti MAFF030669
(Fig. 5.15). The conditions created in the present work include: improvement of glucose
uptake, improvement of CS activity and citrate production compared to the earlier report
by Buch et al. (2009) and Adhikary et al (2012) (Fig. 5.16). increased direct oxidation of

glucose leading to more gluconate production and increased phosphorylative pathway.
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Fig. 5.15: Key metabolic fluctuations in B. japonicum USDA110 and M. loti

w

MAFF030669 overexpressing NADH insensitive E. coli cs gene.

P solubilization was increased by B. japonicum USDA110 and M. loti
MAFF030669 strains containing pJNK3 plasmids due to increase in the production of
gluconic acid and citric acid. Similar observation is also reported in Pf (pAB7) and Pf O-
1 (pY145F) as compared to their respective controls (Fig. 5.16) (Buch et al., 2010;
Adhikary, 2012).
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Fig. 5.16: Key metabolic fluctuations in Pseudomonas overexpressing NADH
insensitive E. coli ¢s gene (Adhikary, 2012

P solubilization by Rhizobium transformants was better compared to
overexpression of wild type cs gene due to increased amount of gluconic acid as well as

citric acid levels.

Both Rhizobium transformants had enhanced growth promoting activities such as
biofilm formation, exopolysaccharide and indole acetic acid production. It is not clear
whether EPS synthesis in Rhizobium transformants is related to CS activity. Increase in
biofilm formation and IAA production could be a consequence of improved metabolism
in TRP medium.
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6.1 INTRODUCTION

MPS ability of rhizobacteria is mainly due to secretion of low molecular weight
organic acids such as citric, oxalic, gluconic, 2-ketogluconic, lactic, malic, succinic,
tartaric and acetic (Hazen et al., 1991; Srivastava et al., 2006; Archana et al., 2012).
Strategy of increasing the activities of GDH and GAD enzymes has been successful in
enhancing the secretion of GA and 2KGA (Zaidi et al., 2009; Kumar et al., 2013).
Citrobacter sp. DHRSS has been isolated from the rhizosphere of sugar cane which
demonstrated MPS ability on a variety of aldosugars and ketosugars like glucose,
fructose and sucrose by secreting organic acids such as gluconic, acetic and pyruvic acids
(Patel et al., 2008). With a view to increase the flux through the anaplerotic node for
increasing oxaloacetate levels, ppc gene of S. elongatus was over-expressed in
fluorescent pseudomonads leading to increase in cellular biomass, glucose catabolism
through intracellular phosphorylative pathway and resulted in increased gluconic, pyruvic
and acetic acids but citric acid was not secreted (Buch et al., 2009). Overexpression of
either of ppc and cs genes enhanced MPS ability of P. fluorescens 13525 on Pikovskya’s
agar; but ppc-cs co-expression neither alter P. fluorescens ATCC 13525 metabolism nor
influenced citrate production (Buch et al., 2010). NADH insensitive cs overexpression in
Pf-O1 increased both intracellular and extracellular citric acid levels upto 52 mM and 3.2
mM, respectively with concomitant increase in gluconic acid secretion (Adhikary, 2012).
Similarly, Citrobacter DHRSS had intracellular accumulation of citric acid (~26 mM) but
lacked secretion (Yadav, 2013). Thus intracellular accumulation of citric acid in spite of
these bacteria ability grow on citrate as sole carbon source suggests that the citrate
transporter is effective in up take but not in the efflux of citrate.

6.1.1 Citrate transporters in fungi and bacteria

Secretion of microbial metabolites including organic acids across the plasma
membrane requires specific transporter proteins. The efflux of organic anions e.g.,
malate, citrate, or oxalate is an important mechanism for Al resistance in cereal and non-

cereal species. Overexpression of gene, encoding a transporter reported to enhance citrate
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efflux and Al tolerance in several plant species (Table 6.1) (Ryan et al., 2011). Members

of the multidrug and toxin compound extrusion (MATE) family of proteins control Al-

activated citrate efflux from barley (Hordeum vulgare) and sorghum (Sorghum bicolor).

MATE proteins are widely present in bacteria, fungi, plants, and mammals (Omote et al.

2006), but there is no apparent consensus sequence conserved in all MATE proteins.

MATE proteins are proposed to transport small, organic compounds (Omote et al., 2006).

In contrast to MATE genes in the bacterial and animal kingdom, plants contain more

MATE-type transporters (Furukawa et al., 2007). These proteins are characterized by

having 400 to 700 amino acids with 12 transmembrane helices.

Table 6.1: Enhanced organic acid efflux by transporter gene expression (Ryan et al.,

2011)

Transporter gene

Transgenic Strategy

Proposed mechanism

APl
transporter(Ta LMT1)

activated malate

Arabidopsis gene expressed in
Arabidopsis, wheat gene gene
and

expressed in  wheat

Arabidopsis

Enhanced malate efflux

Multidrug and toxic
compound efflux gene

(MATE) called Frd®

Arabidopsis gene expressed in

Arabidopsis

Enhanced citrate efflux

Multidrug and toxic
compound efflux gene

(MATE) HVAACT1

Barley gene expressed in

tobacco plant

Enhanced citrate efflux

H+
AVP1

pyrophosphatase

Over expression of endogenous

in Arabidopsis, wheat and rice

Enhanced organic acid

efflux

Multidrug and toxic
compound efflux gene

(SbMATE)

Sorghum gene expressed in

Arabidopsis Atalmt mutant

Enhanced citrate efflux

A" activated malate
transporter(HVALMT1)
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Multidrug and toxic | Maize gene expressed in | Enhanced citrate efflux
compound efflux gene | Arabidopsis
(ZMMATEL)

The excretion of intermediates of the TCA cycle (organic acids; for instance
citrate, oxalate or succinate) is a characteristic feature of many anamorphic fungal
species, such as Aspergillus spp. and Penicillium spp. Excretion of organic acids is
observed in natural habitats (Gadd, 1999) and during growth on solid/liquid media in the
laboratory (Foster,1949). Excretion of citrate by A. niger is exploited in biotechnological
processes for commercial citric acid production (Roehr et al., 1996). Citrate secretion is a
common characteristic feature of many anamorphic fungal species like Aspergillus and
Penicillium (Burgstaller, W., 1993; 2005). Total intracellular citrate level in A. niger is
between 2 - 30 mM. In P. simplicissimum, citrate levels are between 10 - 50 mM during
the growth in batch cultures and between 20 mM and 60 mM in chemostat cultures
(Gallmetzer and Burgstaller, 2001). More than 1 M citrate secretion is achieved in A.
niger in improved biotechnological production processes (Netik et al., 1997; Ruijter et
al., 2002). Citrate overflow mechanism in A. niger is very different from bacteria and is
pH dependent (must be < 3). In addition to pH, other factors viz carbon source type and
concentration, N source and P concentration, excessive aeration and Mn?* limiting
condition are contribute towards citrate secretion in fungus (Mlakar and Legisa, 2006).
An efflux of protons was postulated as the main charge-balancing ion flow in Penicillium
cyclopium (Roos and Slavik, 1987). Transport of dicarboxylates plays an important role
in cell metabolism. In particular, they are intermediates of the citrate Cycle.
Plasmalemmal dicarboxylate transporter is also involved in citrate influx and is
modulated by pH and cations. Citrate and succinate influx is mediated by a common
plasma membrane transporter in Saccharomyces cerevisiae. This is not typical for fungi.
(Fig.6.1, 6.2) (Aliverdieva et al., 2006, 2008, 2010).
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cells (Aliverdieva et al., 2006)
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Fig. 6.2 Oxidation of substrates of plasma membrane dicarboxylate transporter in S.

cerevisiae (Aliverdieva et al., 2008)

Very few bacterial species like Corynebacterium, Arthrobacter, Brevibacterium,
Bacillus sp., Bradyrhizobium japonicum, and Citrobacter koseri are known to secrete or
accumulate citrate at levels much lower than fungi (Gyaneshwar et al., 1998; Khan et al.,
2006). A proton efflux could either be coupled directly to citrate secretion via a
citrate/proton symport similar to the secretion of lactate together with protons in
Escherichia coli and Lactobacillus lactis (van der Rest et al., 1992). The membrane
potential generating secondary transporters involved in malolactic (MelP) and citrolactic
(citP) fermentation process are well reported in several lactic acid bacteria. The nature of
transporters differ from “usual” secondary transporters in two aspects: (i) they translocate
net negative charge across the membrane, and (ii) they catalyze efficient heterologous
exchange of two structurally related substrates (Bandell et al., 1997). The electrochemical
gradient of protons across the cytoplasmic membrane is a major store of free energy in
the bacterial cell. Usually, the proton motive force (pmf) is generated by translocation of

protons against the gradient across the cell membrane which results in the two
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components of the pmf, a membrane potential and a pH gradient. Proton pumping is
catalyzed by primary transport systems at the expense of some source of chemical energy
or light.

E. coli cannot utilize citrate as a sole source of carbon and energy (Dimroth, 1987;
Kastner 2000). On the other hand, the facultative anaerobic bacteria Klebsiella
pneumoniae and Salmonella typhimurium and many other species of the
Enterobacteriacaea can grow aerobically or anaerobically, utilizing citrate as the sole
carbon source. Most of the bacteria have transport proteins in the cytoplasmic membrane
that mediate the transport of citrate. The carriers belong to the class of secondary
transporters that use the free energy stored in transmembrane electrochemical gradients
of ions to drive the transport of the substrates. The citrate transporter CitH of K.
pneumoniae is driven by the proton motive force (van de Rest et al., 1992)) while the
transporters CitS and CitC of K. pneumoniae and Salmonella serovars are driven by both
pmf and sodium, respectively. CitM of Bacillus subtilis is driven by magnesium ion
motive force (Ishiguro et al., 1992; Lolkema, 1994; Boorsma et al., 1996). Klebsiella
pneumoniae citS gene is expressed during anaerobic growth on citrate (Bott et al., 1995;
Dimroth and Thomer, 1986).

Mechanistically these transporters catalyze coupled translocation of citrate and H*
and/or Na* and Mg** (symport). A special case is the citrate carriers of lactic acid
bacteria that take up citrate by an electrogenic uniport mechanism or by exchange with
lactate, a product of citrate metabolism (citrolactic fermentation) (Marty-Teysset et al.,
1996, Ramos et al., 1994). These citrate transporters are involved in secondary metabolic
energy generation (Konings et al., 1995). In contrast with most citrate transporters, a
member of the CitMHS family characterized from the soil bacterium Bacillus subtilis,
transport citrate in complex with a bivalent metal ion. This facilitates the utilization of
citrate which is available in the metal-ion-complexed state. The best-characterized
members of the family are BsCitM and BsCitH. The former transports citrate in complex
with Mg?* and is the major citrate-uptake system during growth on citrate under aerobic
conditions (Yamamoto et al., 2000; Li et al., 2002: Warner et al., 2002).
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These Secondary transporters of the bacterial CitMHS family fall under the group
of 2-hydroxycarboxylate transporter (2HCT) family. The 2HCT family of secondary
transporters contains 54 unique members that are all found in the bacterial kingdom. The
well characterized members of the family are transporters for citrate, malate and lactate,
substrates that contain the 2-hydroxycarboxylate motif, hence the name of the family.
The transporters are either H" or Na* symporters or they catalyze exchange between two
substrates. Na* coupled citrate transporters like CitS of Klebsiella pneumoniae and CitC
of Salmonella enterica found in the y subdivision of the phylum Proteobacteria are
involved in the fermentative degradation of citrate to acetate and carbon dioxide yielding
ATP. Citrate is cleaved by citrate lyase yielding acetate and oxaloactetate, which is
decarboxylated yielding pyruvate. The latter step results in the transmembrane pH
gradient. Secondary transporters are widely distributed in nature and they come in a great
genetic and structural diversity, probably reflecting many different translocation
mechanisms (Table 6.2) (Lolkema, 2006).

Table 6.2: Characterized members of the 2HCT family (Lolkema, 2006).

Transporter Bacterium Substrates Transport mode Function
CitS Klebsiella citrate Na+ symport Citrate
pneumoniae fermentation
CitC Salmonella citrate Na+ symport Citrate
typhimurium fermentation
Citw Klebsiella Citrate, exchange Citrate
pneumoniae acetate fermentation
MleP Lactococcus Malate, exchange Malolactic
lactis lactate fermentation
CitP Leuconostoc Citrate, exchange Citrolactic
mesenteroides lactate Fermentation
CimH Bacillus subtilis | Citrate, malate | H" symport Unknown
MalP Streptococcus malate H" symport Malate
bovis Fermentation
MaeN Bacillus subtilis | malate Na+ symport Growth on
malate
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6.1.2 Structural Model of 2-HCT transporters

The transporters in the 2HCT family are integral membrane proteins consisting of
about 440 amino acid residues (Lolkema, 2006). The core of the structure is formed by
two homologous domains that are connected by a large hydrophilic loop that resides in
the cytoplasm. The domains contain 5 transmembrane segments (TMSs) each and they
have opposite orientations in the membrane. They are likely to originate from a
duplication of an internal gene fragment coding for an odd number of TMSs. In the
structural model of the transporters in the 2HCT family, the loops between the 4th and
5th TMSs in each domain fold back in between the TMSs and form so called re-entrant
or pore loops (Fig. 6.3). The pore loop in the N-terminal domain (region VB) enters the
membrane-embedded part from the periplasmic side of the membrane, the one in the C-
terminal domain (region XA) from the cytoplasmic side (trans pore loops). The two re-
entrant loops are believed to be in close vicinity in the 3D structure and to form the
translocation pathway for co-ions and substrates. The binding site is believed to be
positioned at the membrane-cytoplasm interface where an arginine residue interacts
directly with the bound substrate. Different families may have additional TMSs at the N-
or C-termini or in between the two domains. The transporters of the 2HCT family have
one additional TMS at the N-terminus locating the latter in the cytoplasm. The odd
number of TMSs in each domain forces the orientation of the two domains in the
membrane to be opposite; the N-terminus of the N-terminal and C-terminal domains
resides in the periplasm and cytoplasm, respectively. The pore loops contain an
extraordinarily high fraction of residues with small side chains (glycine, serine, and
alanine) which may reflect a compact packing of the loops in between the TMSs. The
regions containing the pore loops are among the best conserved regions in the
transporter families. The two pore loops would be in close contact in the 3D structure in
a single pore that alternately would be opened to either side of the membrane during the

catalytic cycle.
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Fig. 6.3: Structural model for 2HCT family transporters (Lolkema, 2006).

The substrate-binding site is located at the membrane-cytoplasmic interface,
which positions it deep down in the pore when opened to the external face of the
membrane. The cytoplasmic pore loop (XA) extends into the pore beyond the binding
site, making cysteine residues in the loop accessible from the periplasmic side even when
substrate is bound. Opening and closing of the pore to either site of the membrane would
be controlled by binding of the substrate and co-ions. The accessibility of cysteine
residues in the cytoplasmic pore loop was shown to be different in different catalytic

states of the transporter by experiment.

Citric acid secretion could be stabilized if there were a mechanism whereby the
cells could secrete elevated levels (Delhaize et al. 2004). Na® dependent citrate
transporters are highly specific for citrate. The major species transported across the cell is
HCit*. It accumulates citrate at the expense of Na* concentration gradient generated by
various sodium ion pumps. Mainly these transporters function in citrate uptake inside the
cells (Fig. 6.4).
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CitH® Na' H CitH® Hak H

Fig. 6.4: Na* efflux mechanisms in bacteria. (A). Aerobic and (B). Anaerobic
conditions (Lolkema, 1994).

All bacterial cells although maintain an intracellular Na* concentration lower than
the extracellular, intracellular concentration above 20 mM is harmful to E. coli and in
halophiles is above 3 M (Lolkema, 1994). Bacterial cells protect from the adverse effects
of Na* by primary and secondary Na" extrusion system. NhaA, the Na'/H" antiporter is
the system responsible for adaptation to Na+ and alkaline pH (Fig. 6.4 and 6.5). All
bacterial cells maintain the optimum intracellular Na* levels by (i) Symport with
metabolites and antiport against H* are widely used mechanisms in almost all bacteria for
Na® influx and efflux; (ii) Decarboxylases and ATPases function in anaerobic bacteria.
Decarboxylases act as Na* pumps for efflux and ATPases use the energy obtained by
influx of Na* down its concentration gradient for ATP synthesis; (iii) Marine organisms
have respiratory chain mechanism for efflux of Na* to maintain sodium motive force
(smf) and flagella motors which use energy derived from influx of Na* down the

concentration gradient.
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Fig. 6.5: Bacterial stress responses and Na* homeostasis (Storz et al., 1996).

Many pseudomonads possess PYC as well as PPC involved at the anaplerotic
node. Unlike E. coli, pseudomonads possess a citrate transporter which would facilitate
the growth on citric acid (Stover et al., 2000; Nelson et al., 2002). Reversibility is
recognized as a fundamental feature of coupled vectorial transport systems. Therefore,
the decarboxylase systems could also function in reversible manner wherein the direction
of operation depends on the cation gradient and free energy change under the conditions
of the physiological steady state. Heterologous overexpression of citrate symporter
coupled to Na* and Mg** may play an important function as an alternative pump for
efflux of Na* and/or Mg®* along with citrate (Fig. 6.4 and 6.5).

Citrate transport in Enterobacteriaceae family is mainly mediated by cation
dependent or ATP dependent transporters (Lolkema., 2006). The Na'-dependent citrate
carriers CitS of Klebsiella pneumoniae and CitC of Salmonella typhimurium serovars, are
citrate specific Na* coupled symporter, belonging to 2-hydroxycarboxylate family, and
are driven by both the proton motive force and sodium ion motive force (Ishiguro et al.,
1992; Lolkema., 2006). The citrate transporter CitH of K. pneumoniae is driven by the
proton motive force (Lolkema., 2006). In other bacteria such as B. subtilis, Streptococcus
bovis, Lactococcus lactis the citrate transporters are Mg*? or proton dependent.
Heterologous overexpression of NADH insensitive cs gene along with S. typhimurium

Na* dependent and B. subtilis Mg®* dependent citrate transporter in P. fluorescens PfO-1
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showed significant changes in citric acid levels and yields. citM does not cause any
significant difference in citric acid levels and yields when compared to Pf (pY145F)
without any external citrate transporter (Fig. 6.6; Adhikary, 2012).
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Fig. 6.6: Citric acid levels and yields in P. fluorescens PfO-1 overexpressing citrate
transporter. Intracellular and extracellular citrate levels (a) are represented in green
and orange bars respectively. Intracellular and extracellular citrate yields are
represented in blue and magenta bars respectively. Organic acid yields were estimated
from stationary phase cultures grown on M9 medium with 100mM glucose and are

expressed as g/g of glucose utilized/g dry cell mass.
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Extracellular citric acid levels in Pf (pYFCitC) and Pf (pYC) increase by 1.88
and 2.3 fold as compared to Pf (pY146F) which is 92.6 and 84.6 fold higher as
compared to vector control strain, respectively. Corresponding extracellular citrate yield
increased by 1.79 and 2.07 fold with an increase of 103.4 and 76 fold compared to
respective vector controls (Fig. 6.6). Although there is an approximately 1.26 fold
decrease intracellular citrate yield amongst the citrate transporter bearing strain this is
not statistically significant. All experiments were further continued with Pf (pYC) and

Pf (pGm) as control.

In Pf (pYC) the periplasmic GDH activity increased by 1.46 fold as compared to
the Pf (pGm) in late log to stationary phase of growth. Similarly a significant increase in
G6PDH, PYC and CS activities by 1.46, 4.74 and 4.5 fold, respectively, were observed as
compared to the controls. However, ICL and ICDH activities in the stationary phase

cultures remained unaltered (Fig. 6.7).
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Fig. 6.7: Activities of enzymes G-6-PDH, ICDH, ICL, PYC, and GDH in P.

fluorescens PfO-1 overexpressing citrate transporter.

Overexpression of NADH insensitive CS on Citrobacter sp. DHRSS resulted in
intracellular accumulation of 26 mM of citric acid and incorporation of citrate operon

containing Na*-dependent CitC transporter in addition to NADH insensitive CS increased

the efflux of citrate up to 7 mM in TRP medium indicating that the native transporter was
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the limiting factor for citrate secretion, without affecting gluconic acid secretion which in

turn improved phosphate solubilization under aerobic conditions (Fig. 6.8) (Yadav (2013).
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Fig. 6.8: Schematic representation of citric acid secretion in Citrobacter sp. DHRSS
containing artificial citrate operon (Yadav,2013).

H. seropedicae Z67 and Hs (pAB7) had 12.9 U and 14.98 U of CS activity,
respectively, in M9 medium while Hs (pJNK3) and Hs (pJNK4) showed ~1.8 and ~1.9
folds increase in CS activity, respectively. Similar extent of increase in CS activity was

found in HRP medium. Citric acid secretion was not found in native culture and Hs
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(pAB7) while 0.39 mM and 2.79 mM citric acid secretion was observed with Hs (pJNK3)
and Hs (pJNK4) (Fig. 6.9) (Wagh et al ., 2013).
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Fig. 6.9: Organic acid production from H. seropedicae Z67 transformants (Wagh,
2013).

6.1.3 Rationale of the present work

Obijective of the present study was to secrete high levels of citric acid for efficient
MPS ability of Rhizobium spp. in field conditions, which is hindered by low availability
of carbon sources, high buffering capacity of soils. Previous results in this study showed
significant increase in extracellular citrate levels by overexpression of ppc, cs and cs*
genes. Further improvement in citric acid secretion was investigated by overexpression of
NADH insensitive citrate synthase (cs*) of E. coli along with S. typhimurium Na*
dependent citrate transporter (citC) gene in B. japonicum USDA110 and M. loti

MAFF030669 and monitored its effects on citric acid secretion and glucose metabolism.
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6.2 EXPERIMENTAL DESIGN
The experimental plan of work includes the following-
6.2.1: Bacterial strains used in this study

Table 6.3: Bacterial strains used in this study

Bacterial strains Characteristics Source/Reference
E. coli strains
E. coli IM101 Used for molecular biology experiments Sambrook and
Russell, 2001
E. coli W620 E. coli W620-deletion mutant of cs gene E. coli Genetic
Stock Center
Salmonella typhimurium | Sewage isolate Kumar, 2012
Rhizobium strains

Bradyrhizobium NC_004463.1

japonicum USDA110

Mesorhizobium loti NC_002678.2

MAFF030669

Bj (pPAB8) B. japonicum USDA110 with pAB8 plasmid; | This study
Apr, Kmr (control vector)

Bj (pJNK4) B. japonicum USDA110 with pJNK4 This study
plasmid; Apr, Kmr(cs NADH insensitive and
CitC transporter )

MI (pAB8) M. loti MAFF030669 with pAB8 plasmid, This study
Apr, Kmr (control vector)

MI (pJNK4) M. loti MAFF030669 with pJNK4 plasmid; This study
Ap', Km' (cs NADH insensitive and CitC
transporter )
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Details of Plasmid used:

pUCPM18 with E. coli NADH insensitive cs* gene along with citrate transporter
citC gene of Salmonella typhimorium under plac having Ap" and km" gene, named as
pJNK4 of 9.1 kb was used in this chapter.

Sta

HindIII

Fig. 6.10: Restriction map of the plasmid used in this chapter (Wagh et al., 2013).

6.3: RESULTS

6.3.1: Heterologous overexpression of E. coli NADH insensitive cs* gene and citrate

transporter citC gene of S. typhimorium in Rhizobium spp.

The plasmids incorporated in B. japonicum USDA110 and M. loti MAFF030669
transformants were isolated from the transformants and were confirmed based on
restriction digestion pattern (Fig. 6.11, 6.12) before studying the effect of overexpression

of E. coli NADH insensitive cs* gene and citrate transporter citC gene of S. typhimorium.
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Fig. 6.11: Restriction digestion analysis of (A) B. japonicum USDA110 containing
pJNK4 plasmid. Lane 1: pJNK4 digested with EcoRI-HindIll (5,298bp, 3,967bp); Lane
2: pJNK4 digested with Xbal (6.6 kbp, 2.6 kbp); Lane 3: Molecular Weight Marker
(MWM)-Lambda DNA cut with EcoRV/ Hind I1l. (B) M. loti MAFF030669 containing
pJNK4 plasmid. Lane 1: Molecular Weight Marker (MWM)-Lambda DNA cut with
BstEIl; Lane 2: pJNK3 digested with EcoRI-Hindlll (5,298bp, 2,967bp); Lane 3: pJNK4
digested with EcoRI-Hindlll (5,298bp, 3,967bp).

The CS activity of B. japonicum USDA110 and M. loti MAFF030669
transformants {Bj (pJNK4)} and{MI (pJNK4)} grown on TRP medium with 50 mM
glucose, was 3.9 and 4.7 fold higher (72.34 + 0.80 U and 64.63 £ 1.32 U) in both the
strains compared to control which possessed very low levels of CS activity (18.64 + 1.26
U) and (13.89 + 0.83 U). To check MPS ability, a zone of clearance and acidification was
observed on PVK and TRP plates respectively and the maximum zone of clearance and
acidification was shown by Bj (pJNK4) and MI (pJNK4) as compared to the control Bj
(pAB8) and MI (pAB8). P-solubilizing ability of wild type B. japonicum USDA110
USDA110 and M. loti MAFF030669 and its transformants varied in the order of Bj
(pINK4) = Ml (pJNK4) > Bj (pAB8) = MI (pAB8) > Bj=MI on PVK medium after 3 days
of incubation at 30°C (Fig. 6.12).
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Bj (pABS)

(B) MI MI (pABS) MI (pINK4)

(C) Bj Bj (pINK4)

(D) MI MI (pABS) MI (pINK4)

Fig. 6.12: MPS phenotype of B. japonicum USDA110 and M. loti MAFF030669
strains harboring pJNK4 plasmid. (A) and (B) on Pikovskaya’s agar and (C) and (D)
Tris rock phosphate agar containing 50 mM glucose and 100 mM Tris HCI buffer pH 8.0.
The results were noted after an incubation of 3 days at 30 °C. Media composition and
other experimental details are as described in Sections 2.2.4 and 2.7.
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Table 6.4 : P solubilization index on Pikovskyas agar of B. japonicum USDA110 and
M. loti MAFF030669 transformants during 3 days of growth Bj and MI: wild type
strain; Bj (pAB8) : B. japonicum USDA110 with vector control and Bj (pJNK4) : B.
japonicum USDA110 with cs* and citrate transporter citC gene of S. typhimorium gene.
The results were noted after an incubation of 3 days at 30 °C and are given as mean +
S.D. of three independent observations as compared to native Bj and MI strains. ***
P<0.001.

Rhizobium | Diameter of zone | Diameter of Phosphate
Strains of clearance (mm) | colony (mm) | Solubilizing Index
Bj 12.17 +0.29 11.17 £ 0.29 1.09
Bj (PABS) 11.17+0.29 9.50 + 0.50 1.22
Bj (pINK4) 18.50 + 0.50 6.17 + 0.29 3.0%**
MI 12.83 +0.29 11.50 + 0.50 1.09
Ml (pAB8) 12.17 +0.29 10.17 +0.29 1.22
MI (pINK4) 20.17+£0.29 7.50 + 0.50 2.86***

The pJNK4 transformants of B. japonicum USDA110 and M. loti MAFF030669
showed maximum enhanced zone of clearance as compared to the control pABS.
Phosphate Solubilizing Index was calculated as described in Section 2.5. And it was
highest in Bj (pJNK4) and MI (pJNK4) (Table 6.4).

6.3.6: Effect of E. coli NADH insensitive cs* gene and citrate transporter citC gene
of S. typhimorium gene overexpression on growth pattern and pH profile in presence

of 50 mM glucose concentrations.

The growth profiles and organic acid secretion of Bj (pAB8) , Bj (pJNK4), Ml
(pJNK4) and MI (pAB8) along with native, on TRP medium with 50 mM glucose
demonstrated that maximum O.D. was reached faster within 12 h transformants

compared to 20 h of the control Bj (pAB8) and MI (pAB8). Acid production was
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monitored and it was found that there was slight pH drop within 20 h in the native and
control vector while pH drop to 4.3 and 4.2 was seen in Bj (pJNK4) and MI (pJNK4).
Significant media acidification was seen within 12 h in both the cases. Both Bj (pJNK4)
and MI (pJNK4) acidified the medium when grown on TRP medium (Fig. 6.13).

0.D.600nm
Hd
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Time (h)
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Hd
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Fig. 6.13 : Effect of E. coli NADH insensitive cs gene and citrate transporter citC
gene of S. typhimorium gene overexpression on extracellular pH (o, A, V,) and
growth profile (m, A, V) of (A) B. japonicum USDA110 and (B) M. loti, on TRP
medium with 50 mM glucose .(o, m, Bj, Ml wild type); {A, A, Bj (pPAB8), Ml (pAB8)};
{V, ¥, Bj (pJNK4), Ml (pJNK4)}. ODgo and pH values at each time point are
represented as the mean £ SD of six independent observations.
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6.3.7: Physiological effects of E. coli NADH insensitive cs* gene and citrate
transporter citC gene of S. typhimurium gene overexpression on M9 minimal

medium with 50 mM glucose.

In presence of 50 mM glucose, increase in CS activity significantly affected
growth profile in transformants of both the strains (Fig. 6.13). The total glucose
utilization rate remained unaltered and the total amount of glucose consumed showed
~1.9 fold and ~2.0 fold decrease in Bj (pJNK4) and MI (pJNK4), respectively at the time
of pH drop. The increase in CS activity increased biomass yield by ~1.6 fold and also
~2.2 fold decrease was seen in specific glucose utilization rate in the transformants of
both the Rhizobium strains (Table 6.5).

Rhizobium Specific Total Glucose Biomass Specific Glucose
Strains Growth Rate Glucose Consumed Yield Utilization Rate
k(h™)? Utilized (mM)°® Y gowiclc Qi
(mM)° (9/9)® (9.9 dew™.h )
Bj 0.186 +0.03 46.20 0.2 38.23 +1.33 1.78 £0.14 0.14 £0.01
Bj (PABS8) 0.229 +0.02 46.01+0.31 | 37.11+0.33 1.57 +0.29 0.17 +0.04
Bj (pJNK4) | 0.337 +£0.02 48.34+0.21 | 19.64+3.09° | 250+0.23" | 0.10+0.01
MI 0.221 +0.03 4591 +0.64 | 37.07 +0.55 1.36 +0.26 0.19 +0.04
MI (pPAB8) | 0.258 +0.02 46.01 £0.51 | 37.07 £0.71 1.06 +0.07 0.24 +0.02
MI (pJNK4) | 0.323 +0.03 48.29+0.29 | 18.49+1.63" | 2.350.17 | 0.11+0.01"

Table 6.5: Physiological variables and metabolic data from of B. japonicum
USDA110 and M. loti MAFF030669 ppc transformants grown on TRP medium
100mM Tris-Cl buffer pH 8 and 50mM Glucose containing Rock Phosphate
1mg/ml. The results are expressed as Mean+S.E.M of 6-10 independent observations. a
Biomass vyield Y gwaic, Specific growth rate (k) and specific glucose utilization rate
(Qaic) were determined from mid log phase of each experiment. b Total glucose utilized
and glucose consumed were determined at the time of pH drop. The difference between

total glucose utilized and glucose consumed is as explained in Section 2.6 *** P<0.001.
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6.3.6: Biofilm, exopolysaccharide and indole acetic acid production by Bj (pJNK4)
and Ml (pJNK4) transformants in TRP medium.

Biofilm and exopolysaccharide production showed significant increase by ~2.6 and ~3.4
fold and ~2.4 and ~1.3 fold in Bj (pJNK4) and MI (pJNK4), respectively, compared to
control.  Indole acetic acid production was increased by ~1.3 fold in both the
transformants compared to control vectors. This increase further enhanced P

solubilization by the transformants (Table 6.6).

Table 6.6: Biofilm, exopolysaccharide and indole acetic acid production by Bj
(pINK4) and MI (pJNK4) transformants in TRP medium. The results are expressed
as MeanzS.E.M of 6-10 independent observations *** P<0.001.

Rhizobium Strains | Biofilm O.D. at 550nm EPS (g/100ml) I1AA (ug/ml)
Bj 1.96 £0.03 12.48 +0.24 20.14 +1.33
Bj (0ABS) 2.08 +0.03 13.41 +0.63 25.54 +0.81
Bj (pIJNK4) 5.31 £0.20*** 32.48 £0.51*** 33.38 £1.44
MI 1.51 +0.06 13.55 +2.78 30.16 +2.34
Ml (pAB8) 1.54 +0.06 15.65 +0.51 26.65 +2.18
Ml (pIJNK4) 5.29 +0.36*** 20.03 £1.07 32.92 +0.55

6.3.7: P Solubilization and organic acid secretion by Bj (pJNK4) and Ml (pJNK4)

transformants in TRP medium.

There was significant increase in release of P by ~14.7 and ~17 fold in Bj
(pJNK4) and MI (pJNK4) respectively, compared to control vectors when grown in TRP
medium containing 50 mM glucose (Fig. 6.14).
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Fig. 6.14: P release by (A) B. japonicum USDA110 and (B) M. loti MAFF030669
transformants on TRP medium. The values are depicted as Mean = S.E.M of 7-10

independent observations. *** P<0.001.

On TRP medium in presence of 50 mM glucose, the organic acids identified were
mainly gluconic, 2-ketogluconic, acetic and citric acids. As a result of E. coli NADH
insensitive cs gene and citrate transporter citC gene of S. typhimorium gene
overexpression, there was only quantitative change in two organic acids secreted. there
was ~14 and ~14.2 fold increase in extracellular citric acid with their corresponding
increase in yield (Yc¢ig) by ~7.4 and ~7.5 fold in B. japonicum USDA110 and M. loti
MAFF030669 transformants, respectively. Also extracellular medium of Bj (pJNK4) and
MI (pJNK4) contained ~4 fold higher amount of gluconic acid, and ~2.3 and ~2.1 fold
increase in its yield was seen respectively as compared to Bj (pAB8) and MI (pAB8) (Fig.
6.15). There was no change in the intracellular levels of citric acid (Table 6.7).
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Fig. 6.15: Organic acid production {(a) and (c)} and Yield {(b ) and (d)} from B.
japonicum USDA110 and M. loti MAFF030669 cs gene transformants, respectively.
All organic acids are estimated from stationary phase cultures (at the time of pH drop)
grown on TRP medium with 50mM glucose. Results are expressed as Mean + S.E.M of

4-6 independent observations *** P<0.001.
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Table 6.7: Intracellular citric acid production by Bj (pJNK4) and MI (pJNK4)

transformants in TRP medium

Rhizobium Intracellular Rhizobium Intracellular
Strains Citric acid in Strains Citric acid in
mM mM
B.japonicum 0.83+0.06 M. loti 0.85+0.04
USDA110 MAFF030669
Bj (pABS) 0.75 £ 0.05 MI (pAB8) 1.15+0.06
Bj (pIJNK4) 0.85 £ 0.05 MI (pIJNK4) 0.82 +0.04

(i) Alterations in enzyme activities in Bj (pAB3) and M| (pJNK3)

In order to correlate the alterations in physiological variables and organic acid
profile, enzymes involved periplasmic direct oxidation and intracellular phosphorylative
were estimated. In response to cs* gene and citrate transporter citC gene of S.
typhimorium gene overexpression, about ~ 3.9 and ~ 4.7 fold increase is seen in CS
activity in Bj (pJNK4) and MI (pJNK4), respectively. GDH activity increased by about
~1.4 and ~1.2 fold, respectively, as compared to the control, PYC showed ~2.2 and ~3.3
fold increase, respectively, in the transformants. The activity of G-6-PDH showed ~1.8
and ~1.3 fold increase in both the transformants and also there was ~1.9 and ~1.5 fold
increase, respectively, in ICDH activity. The activity of PPC in Bj (pJNK4) and Ml
(pJNK4) increased by ~1.4 and ~1.3 fold, respectively, as compared to the control.
Glyoxylate pathway enzyme ICL also increased by ~1.5 and 1.2 fold in Bj (pJNK3) and
MI (pJNK3), respectively (Fig. 6.16).
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Fig. 6.16: Activities of enzymes PPC, PYC, GDH, G-6-PDH, ICDH and ICL in B.
japonicum USDA110 and M. loti MAFF030669 ppc transformant. The activities have
been estimated using cultures grown on TRP medium with 50mM glucose. All the
enzyme activities were estimated from mid log phase to late log phase cultures except
CS, ICDH and ICL which were estimated in stationary phase . All the enzyme activities
are represented in the units of nmoles/min/mg total protein. The values are depicted as
MeanS.E.M of 7-10 independent observations ** P<0.01and *** P<0.001.
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6.4: DISCUSSION

The present study demonstrates heterologous overexpression E. coli NADH
insensitive cs gene along with citrate transporter citC gene of S. typhimorium in citric acid
secretion by B. japonicum USDA110 and M. loti MAFF030669. Approximately ~14 fold
increase in extracellular citrate level (10.3 mM and 10.8 mM) compared to vector control
Bj (pPAB8) and MI (pAB8) and ~1.3 fold increase as compared to Bj (pJNK3) and Ml
(pIJNK3) i.e. transformants containing NADH insensitive ¢s and ~1.4 and ~1.8 fold
increase compared to wild type cs, Bj (pAB7) and MI (pAB7), respectively. Increase in
extracellular citrate levels are in accordance with the increased levels of extracellular
citrate 6 mM, 7 mM and 2.8 mM seen in P. fluorescens PfO-1, Citrobacter sp. DHRSS
and H. seropedicae Z67 transformants containing citC transporter gene along with NADH
insensitive cs gene, respectively (Adhikary, 2012; Yadav, 2013; Wagh, 2013). Increased
amount of citric acid is due to ~3.9 and ~4.7 fold increase in CS activity in Bj (pJNK4)
and MI (pJNK4), respectively. The increase in CS activity is also similar to ~5.6 , ~5 fold
and~1.9 folds increase seen in P. fluorescens PfO-1, Citrobacter sp. DHRSS and H.
seropedicae  Z67 transformants containing citC transporter gene along with NADH
insensitive cs gene, respectively (Adhikary, 2012; Yadav, 2013; Wagh, 2013).

The higher flux through TCA in Rhizobium strains is supported by ~1.9 and 1.5
fold increase in ICDH activity in Bj (pJNK4) and MI (pJNK4), respectively, which is
identical to increase seen in transformants containing NADH insensitive cs gene. No such
change was seen in P. fluorescens PfO-1, Citrobacter sp. DHRSS and H. seropedicae Z67
transformants (Adhikary, 2012; Yadav, 2013; Wagh, 2013).

Enhanced CS activity in Bj (pJNK4) and MI (pJNK4) also increased the
periplasmic glucose oxidation which is reflected by increase in GDH activity and
gluconic acid production. Significant increase in GDH and G6PDH activity in Bj
(pJNK4) and MI (pJNK4) suggests an increase in periplasmic glucose oxidation and
phosphorylative pathway. Increased gluconic acid levels could be explained by increased
PYC and PPC activity, which could probably divert pyruvate flux towards increased

OAA biosynthesis to meet the increased CS activity. Even in A. niger the enhancement of

Development of mineral phosphate solubilization ability in Rhizobium spp. by metabolic engineering of tricarboxylic acid cycle

Page 197



Chapter 6:

Effect of overexpression of E. coli NADH insensitive Y145F cs along with Na+ dependant

citrate transporter citC gene in B. japonicum USDA110 and M. loti MAFF030669

anaplerotic reactions replenishing TCA cycle intermediates predisposes the cells to form

high amounts of citric acid (Legisa and Mattey, 2007). Similar increase in flux through

glyoxylate shunt was evident from ~1.5 and ~1.2 fold increase in ICL activity detected in
Bj (pJNK4) and MI (pJNK4), respectively.
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Fig. 6.17: Key metabolic fluctuations in B. japonicum USDA110 and M. loti

MAFF030669 overexpressing NADH insensitive E. coli cs gene along with citrate

transporter citC gene of S. typhimorium gene

P solubilization by Rhizobium transformants increased by ~14.6 and ~17 fold
(0.73 mM and 0.73 mM) compared to vector control Bj (pAB8) and Ml (pAB8) and
~1.12 and ~1.3 fold increase as compared to Bj (pJNK3) and MI (pJNK3) i.e.

transformants containing NADH insensitive c¢s and ~2 fold increase compared to wild

type cs, Bj (pAB7) and Ml (pAB7), respectively, due to increased amount of gluconic
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acid as well as citric acid levels. Similar observation is also reported in P. fluorescens
PfO-1, Citrobacter sp. DHRSS and H. seropedicae Z67 transformants containing citC
transporter gene along with NADH insensitive cs gene (Adhikary, 2012; Yadav, 2013;
Wagh, 2013).

Both Rhizobium transformants had further enhanced growth promoting activities
such as biofilm formation, exopolysaccharide, and indole acetic acid production. It is not
clear whether EPS synthesis in Rhizobium transformants is related to CS activity.
Increase in biofilm formation and IAA production could be a consequence of improved

metabolism in TRP medium.
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Chapter 7 : Genomic integration of E. coli NADH insensitive cs and Salmonella typhimurium Na+
dependent citrate transporter with vgb, egfp in B. japonicum USDA110 M. loti MAFF030669 and S.
fredii NGR 234

7.1 Introduction

Inoculation of microbial consortium of P solublizing Bacillus megaterium and N
fixing free bacteria like Azotobacter have been found to be more effective than individual
members (Aditya et al., 2009). In field experiments, Penicillium bilaii and Bacillus
megatherium are known to be most effective phosphate solubilizing microorganisms
(PSMs) (Asea et al., 1988; Kucey, 1988).

Overexpression of ppc gene of S. elongatus in B. japonicum USDA110 and M.
loti MAFF030669 enhanced cellular biomass, glucose catabolism through intracellular
phosphorylative pathway and resulted in increase in gluconic acid and citric acid
secretion, which was due to increased activities of both PYC and PPC. Similar levels of
citric acid secretion was seen upon overexpression of wild type cs gene but there was a
decrease in P solubilization compared to ppc gene overexpression which may be
attributed to lower levels of gluconic acid secretion in cs overexpression. Additionally,
overexpression of E. coli NADH insensitive cs gene in B. japonicum USDAZ110 and M.
loti MAFF030669 strains also resulted in minor increase in secretion of citric acid but P
solubilization showed a significant improved phenotype which is correlated with ~ 2.6
fold increase in gluconic acid secretion. The gluconic acid secretion was more than even
ppc overexpression. Interestingly, overexpression of citrate transporter along with NADH
insensitive cs gene increased citric secretion upto ~10 mM citric acid and gluconic acid
level remained high which further enhanced MPS phenotype. Earlier studies showed that
10 mM citric and 20 mM gluconic acids released 0.7 mM and 0.5 mM P from alkaline
vertisols, respectively (Gyaneshwar et al., 1998). Thus, the B. japonicum USDA110 and
M. loti MAFF030669 transformants containing NADH insensitive cs and citC genes
could be effective PSMs in alkaline vertisols.
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Presence of plasmids adversely affected the growth and gluconic acid secretion of
phosphate solubilizing Enterobacter asburiae PSI3 under phosphorus limited condition
(Sharma et al. 2011). Similarly, Azotobacter vinelandii, Azospirillum brasilense, and
Pseudomonas putida GR12-2 also showed impaired growth, phosphate solubilization,
nitrogen fixation, siderophore production, and indole acetic acid biosynthesis, under
various experimental conditions (Glick 1995). The maintenance of plasmid DNA in E.
coli has been demonstrated to have diverse effects on the physiology and cellular
metabolism including alteration in ATP biosynthesis as well as perturbations in host
DNA replication, transcription, and translation (Rozkov et al. 2004; Wang et al. 2006;
Chou 2007; Ow et al. 2006; 2009). Presence of colE1l based plasmid has been
demonstrated to significantly alter several metabolic pathways in E. coli depending on
the growth conditions. Additionally, plasmids are not very stable in natural soil isolates
and presence of antibiotic marker also impose problem in field conditions ( De Gelder,
2007; Buch et al., 2010). Presence of plasmid affects the host metabolism adversely
which results in different metabolic perturbations including alterations of several
metabolic pathways in E. coli depending on the growth conditions due the presence of
colE1 based plasmid (Wang et al. 2006). Variable stability of P. fluorescens WCS365
and reduction in competitiveness of P. putida GR12-2 were found under rhizospheric
conditions (Simons et al. 1996; Schmidt-Eisenlohr et al., 2003).

Previous reports from our laboratory showed that presence of plasmids and
overexpression of genes in plasmids exerted greater metabolic alterations on P.
fluorescens ATCC 13525 metabolism despite of low copy number (Buch et al., 2010).
Thus to minimize the plasmid load, instability and antibiotic marker free genetic
manipulation an artificial citrate gene cluster consisting NADH insensitive citrate
synthase (cs*), sodium dependent citrate transporter (citC), Vitreoscilla hemoglobin (vgb)
and egfp were integrated into the genome of B. japonicum USDA110, M. loti
MAFF030669 and S. fredii NGR234 by miniTn7 based integration system at att site and

characterized the biochemical, growth and MPS abilities.
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The mini-Tn7 transposon is very effective for single copy tagging of bacteria in a
site-specific manner at a unique and neutral site without any deleterious effects. The Tn7
transposon was originally discovered by Barth et al. (1976) on the plasmid R483 (Incla)
as an element carrying the resistance genes trimethoprim (TmR) and streptomycin/
spectinomycin (SmR/ SpR), which could be transposed to other replicons. These genes
are flanked by the ends of the transposon, named the left (Tn7L) and the right (Tn7R) end
(Lichtenstein and Brenner, 1982; Rogers et al., 1986). The Tn7 transposition process has
been studied intensively in E. coli in which Tn7 inserts with high efficiency and unique
orientation into one specific location named the attTn7 site (Peters et al., 2001). This site
of insertion is located just downstream of the coding region, in the transcriptional
terminator, of the glmS gene and thereby does not disrupt the gene (Gringauz, et al.,
1988). The glmS gene encodes a glucosamine synthetase, which is required for cell wall
synthesis (Vogler et al., 1989). It is conserved among many bacteria and therefore Tn7 is
likely to have the same specific insertion site in many different bacteria, some have
already been tested. The transposon genes required for specific insertion into the attTn7
site, are tnsABCD, and they function in trans. Thus, sequences located in the 3“end of the
coding region of glmS are recognised by transposase proteins directing the actual
insertion into the attTn7 site, down-stream of the glmS gene. However, if this site is

unavailable the transposon can insert into other sites with low frequency.

The mini-Tn7-based gene integration system has been used for gene
complementation, gene expression analysis, strain construction, and reporter gene-
tagging of Pseudomonas aeruginosa and Yersinia pestis, particularly in biofilm and
animal models. Heterologous genes including lacZ (B-galactosidase), est (esterase), and
gfp (green fluorescent protein) under the control of the methanol dehydrogenase promoter
have been integrated into the intergenic region between glmS and dhaT via the delivery
of mini-Tn7 in Methylobacterium extorquens. A gene encoding for different fluorescent
protein and luciferase protein along with promoter was integrated into the chromosomes
of Erwinia chrysanthemi, P. fluorescens, Pseudomonas syringae, P. putida and many

gram negative bacteria by the Tn7-based delivery system (Koch et al., 2001, Lambersten
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et al., 2004; Choi et al.,2008). This gene delivery system was also applied to other
organisms, such as Burkholderia spp. and Proteus mirabilis, which were determined to
have multiple glmS-linked attTn7 sites and secondary, non-glmS-linked attTn7 site,
respectively. Thus mini Tn7 transposition is a powerful technique for the integration or
excision of a gene of interest at a single-copy on the chromosomal level, which makes it
possible to conduct a variety of experiments, including insertional random mutagenesis,
gene expression analysis, protein functional studies, or the gene-tagging of bacteria in

living organisms.

MPS ability of the bacterial transformants in field conditions could be affected by
various parameters. In addition to the nutrient availability and soil properties, oxygen
limitation could be a significant factor. Oxygen is present in limited amounts in the
rhizosphere which could limit the colonization and survival of rhizobacteria (Ramirez et
al., 1999). Genetically modified Rhizobium with vgb overexpression has enhanced the
growth of Rhizobium and also increased nitrogen content in bean plants (Ramirez et al.,
1999).

The present study describes the genomic integration of E. coli NADH insensitive
cs Y145F along with S. typhimurium sodium citrate transporter citC gene, vhb gene and
egfp into Rhizobium genome of B. japonicum USDA110, M. loti MAFF030669 and S.
fredii NGR234 and compare its effect to plasmid based expression on glucose

catabolism and citric acid secretion.

—
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7.2 Experimental design

7.2.1: Bacterial strains used in this study

Table 7.1: Bacterial strains used in this study. The details of the plasmids and the

concentration of the antibiotics used are given in the Table 2.2 and 2.3.

Plasmid/Strains Characteristics Source or
Reference
pGRG36 Intergration vector (Tn7) Gregory et al.,
2006
pUCPM18 pUC18 derived Broad-Host-Range vector; Ap' Hester et al.,
2000
E.coli DH10B | Str" F endAl recAl galE15 galK16 nupG rpsL | (Invitrogen)
AlacX74 @80lacZ AM15 araD139 A(ara,leu)7697 | USA
mcrA A(mrr-hsdRMS-mcerBC) 2
pJNK4 pUCPM18 with E. coli NADH insensitive cs* | Wagh, 2013
gene citrate transporter citC of Salmonella
typhimurium under Plac and km" gene; Ap’, Km'
pJIYC pGRG36 with with E. coli NADH insensitive ¢s* | This study
gene citrate transporter citC of Salmonella
typhimurium under Plac, vgb gene and egf gene
Ap'
Bj intYc Genomic integrant of B. japonicum USDAL10 | This study
containing lac-YF citC, vgb, egfp Ap'
MI intYc Genomic integrant of M. loti MAFF030669 | This study
containing lac-YF citC, vgb, egfp Ap'
Sf intYc Genomic integrant of S. fredii NGR234 | This study
containing lac-YF citC, vgb, egfp Ap'
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7.2.2: Cloning of artificial citrate operon in integration vector.

Construction of artificial citrate operon containing constitutive lac promoter,
NADH insensitive citrate synthase (cs*), Na” dependent citrate trasporter (citC), vhb gene
and gfp was done as per the following strategy. XT-20 polymerase was used for PCR
amplification (Bangalore Genei, India) from plasmid pJNK4. Sequence of forward (lac)
primer 5° TCCGAAATGTGAAATACGAAGGCCGAGCATACAACACACAGGAGG
ACGCATGATGGCTGATACAAAAGC 3 and reverse primer of citC gene 5’
TTACACCATCATGCTGAACACGATGC 3* was used to amplify artificial citrate
operon. Plasmid pGRG36-mini-Tn7-Amp-egfp was digested with Smal, gel purified and
ligated with 2.9 kb amplicon containing artificial citrate operon was ligated with
pGRG36 containing vgb and egfp (Fig. 7.1). Clone was confirmed by restriction
digestion and PCR amplification. Resultant construct of 17.9 kb, named as pJIYC
consisted of artificial citrate operon.

THIESLY mPBAD
TTTTITITITITT auC_!” ' 8

TTTTITTITITIT >
bl AL LLLLL pSC101 ori
PCR fragment with Digested with Smal pGRG36

bluntends ~ DEEEEEE)  (EE——— *
ot

Ligation

)
ORF = /An
m&

Fig. 7.1: Strategy used for cloning of artificial citrate operon in pGRG36 containing
vhb, egfp resulted in pJIYC.
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7.3: RESULTS

7.3.1: Construction of Genome integrants of B. japonicum USDA110 M. loti
MAFF030669 and S. fredii NGR234

PCR amplification of NADH insensitive citrate synthase (cs*) along with citC
gene- Na* dependent transporter under constitutive lac promoter was done from pJNK4
plasmid containing YFcitC by using specific primers as mentioned above. This PCR
amplicon was used for ligation with integration vector (Fig.7.2). For further
confirmation, the recombinant plasmid pJIYC plasmid containing NADH insensitive
Y145F and S. typhimurium sodium citrate transporter operon under constitutive lac
promoter was confirmed by restriction enzyme digestion. pJI'YC was digested with Pvull
and pGRG36vhb, egfp plasmid digested with Pvull (Fig. 7.3).

2.9KDb

Fig. 7.2: PCR amplification of YFcitC with constitutive lac promoter

Lanel- Marker Hindlll/EcoRlI, Lane2- PCR amplification with constitutive lac promoter

e ——
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Base Pairs
23,130 —

2416 ~13 Kb

6.557 — ~11Kb

4361 —

~4.5 Kb
~3.5Kb

2322 —

2,027 —

Fig.7.3: Restriction enzyme digestion pattern of pJIYC plasmid containing NADH
insensitive Y145F and S. typhimurium sodium citrate transporter operon under lac
promoter. Lanel- Marker Hindlll, Lane2- Plasmid undigested, Lane-3 pJIYC digested
with Pvull, and Lane-4 pGRG36vhb, egfp plasmid digested with Pvull.

B. japonicum USDA110, M. loti MAFF030669 and S. fredii NGR234 integrants
were confirmed based on PCR amplification of YF-CitC from genomic DNA (Fig. 7.4).

PCR 2.9 Kb

Fig. 7.4: Confirmation of Genome integrants by PCR amplification of YF-citC from
B. japonicum USDA110 , M. loti MAFF030669 and S. fredii NGR234 integrants:
Lanel- Marker Hindlll/EcoRI. Lane- 2,3,4 PCR amplicon of YF-citC from genomic
DNA of B. japonicum USDA110 , M. loti MAFF030669 and S. fredii NGR234
integrants.
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7.3.2: CS activity and MPS ability of B. japonicum USDA110 , M. loti MAFF030669
and S. fredii NGR234 integrants on 50 mM Tris-Cl buffer pH 8 and 50 mM glucose

containing rock phosphate.

The CS activity of B. japonicum USDA110 M. loti MAFF030669 and S. fredii
NGR234 integrants grown on 50 mM Tris-Cl Buffer pH 8 and 50 mM glucose, was ~2.6,
~4.3 and ~2.2 fold higher (47.13 £ 1.04 U, 54.8 £ 1.23 U and 34.5 £ 1.02 U) in the three
strains, respectively, compared to control which possessed low levels of CS activity
(17.85 £ 1.14U), (12.86 + 0.07) and (16.02 £ 0.12 U), respectively. To check MPS ability
a zone of clearance and acidification was observed on PVK and TRP plates. Maximum
zone of clearance and acidification was shown by Bj. intYc, MI. intYc and Sf. intYc as
compared to the wild type B. japonicum USDA110 , M. loti MAFF030669 and S. fredii
NGR234 . P-solubilizing ability of wild type B. japonicum, M. loti MAFF030669 and S.
fredii NGR234 and its transformants varied in the order of Sf intYc > Bj intYc > MI
intyYc> Sf >Bj = Ml on PVK medium after 3 days of incubation at 30°C (Fig. 7.5). The
integrants of S. fredii NGR234, B. japonicum USDA110 and M. loti MAFF030669
showed enhanced zone of clearance as compared to the wild type. Also among the three
integrants showed maximum PSI (Table 7.2).

—
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Ml

O

(b) Bj intYc Ml intYc Sf intYc

(© Bj MI St
(d) Bj intYc Ml intYc Sf intYc

Fig. 7.5: MPS phenotype of B. japonicum USDA110 M. loti MAFF030669 and S.
fredii NGR234 integrants (a), (b) Zone of clearance formed by Rhizobium integrants
on Pikovskaya’s agar and (c), (d) zone of acidification Tris rock phosphate agar
containing 50 mM glucose and 50 mM Tris CI buffer pH 8.0. The results were noted after
an incubation of 3 days at 30 °C. Media composition and other experimental details are as
described in Sections 2.2.4 and 2.7.

|
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Table 7.2: P solubilization index on Pikovskyas agar of B. japonicum USDA110 , M.
loti MAFF030669 and S. fredii NGR234 integrants during 3 days of growth on 50
mM Tris-Cl buffer pH 8 and 50 mM glucose containing rock phosphate. Bj, Ml and
Sf : wild type strain; and Bj intYc, MI intYcand Sf intYc : B. japonicum USDA110 , M.
loti MAFF030669 and S. fredii NGR234

incubation of 3 days at 30 °C and are given as mean + S.D. of three independent

integrants. The results were noted after an

observations as compared to native Bj, Ml and Sf.

Rhizobium | Diameter of zone | Diameter of | Phosphate Solubilizing
Strains of clearance(mm) | colony (mm) Index
Bj 12.17 +0.29 11.17 +0.29 1.09
Bj.. intYc 13.17+£ 0.29 9.50+0.50 1.44
M 12.83 +£0.29 11.50 + 0.50 1.09
ML.. intYc 14.50 + 0.50 10.17 +0.29 1.40
St 12.17 £ 0.29 10.50 + 0.50 1.20
Sf..intYc 16.50 + 0.50 9.17 £0.29 1.78

7.3.4: Growth pattern and pH profile of B. japonicum USDA110, M. loti
MAFF030669 and S. fredii NGR234 integrants on 50 mM Tris-Cl buffer pH 8 and
50 mM glucose containing rock phosphate.

The growth of Bj intYc, Ml intYcand Sf intYc on 50 mM Tris-Cl buffer pH 8 and
50mM glucose reached to a maximum of 1.8 O.D. within 12 h in integrants compared to
20 h of the native B. japonicum USDA110, M. loti MAFF030669 and S. fredii NGR234
strains. pH of the medium dropped to 6.8, 6.8 and 5.7 within 20 h in the native B.
japonicum USDA110, M. loti MAFF030669 and S. fredii NGR234,while pH drop to
3.84, 422 and 4.31 was seen within 12 h in B. japonicum USDA110, M. loti
MAFF030669 and S. fredii NGR234 integrants, respectively (Fig. 7.6; 7.7; 7.8).
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Fig. 7.6: Extracellular pH (o, A,) and growth profile on glucose 50 mM, Tris-Cl 50
mM rock phosphate medium (m, A,) of B. japonicum USDA110 integrant containing
YFcitC, vhb, egfp. o, m, Bj (wild type); A, A, Bj intYc. ODggo and pH values at each time

point are represented as the mean £ SD of six independent observations.
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Fig. 7.7: Extracellular pH (o, A,) and growth profile on glucose 50 mM , Tris-Cl 50
mM rock phosphate medium (m,A,) of M. loti MAFF030669 integrant containing
YFcitC, vgb and egfp. o, m, Ml (wild type); A, A, Ml intYc. ODgoo and pH values at each

time point are represented as the mean £ SD of six independent observations.
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Fig.7.8: Extracellular pH (o, A,) and growth profile on glucose 50 mM , Tris-Cl 50
mM rock phosphate medium (m,A,) of S. fredii NGR234 integrant containing
YFcitC, vgb, egfp. o, m, Sf (wild type); A, A, SfintYc. ODgy and pH values at each time

point are represented as the mean £ SD of six independent observations.

7.3.5: Physiological effect of genomic integration on 50 mM Tris-Cl buffer pH 8 and

50 mM glucose containing rock phosphate.

In presence of 50 mM glucose, genomic integration showed ~1.73,~1.72 and ~2.2
fold increase in growth profile by Bj intYc, Ml intYc and Sf intYc, respectively. The total
glucose utilization rate at the time of pH drop remained unaffected and the total amount
of glucose consumed at the time of pH drop showed ~1.15, ~1.10 and ~1.4 fold decrease
in Bj intYc, Ml intYcand Sf intYc, respectively, and Specific Glucose utilization Rate Qgyc
(9.9 dew ™ .h™") decreased ~1.6, ~2.1 and ~1.9 fold. Increase in enzyme activity improved
the biomass yield by ~1.5, ~2.1 and ~2.1 fold in the integrants of B. japonicum
USDA110, M. loti MAFF030669 and S. fredii NGR234, respectively, compared to native
B. japonicum, M. loti MAFF030669 and S. fredii NGR234 (Table 7.3).
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Table 7.3: Physiological variables and metabolic data of B. japonicum USDA110, M.
loti MAFF030669 and S. fredii NGR234

expressed as Mean + S.E.M of 6-10 independent observations. a Biomass yield Y gewcic,

integrants grown on TRP The results are

specific growth rate (k) and specific glucose utilization rate (Qgc) were determined from
mid log phase of each experiment. b Total glucose utilized and glucose consumed were
determined at the time of pH drop. The difference between total glucose utilized and

glucose consumed is as explained in Section 2.9.3. * P<0.05,** P<0.01 and *** P<0.001.

Rhizobium Specific Total Glucose Glucose Biomass Specific
Strains Growth Rate Utilized Consumed Yield Glucose
K(h™h? (mM)°® (mM)°® Y dewilc Utilization
(9/9)° Rate Qg
(9.9 dew™.h%)?
Bj 0.186 +0.03 46.20 0.2 38.23 +1.33 1.78 +0.14 0.14 +0.01
BjintYc | 0.321+0.017 48.28 +0.12 33.15+0.92 | 2.66+0.15 0.09 +0.01
M 0.221 +0.03 45.91 +0.64 37.07 £+0.55 1.36 +0.26 0.19 +0.04
Ml intYc 0.380 +0.01° 48.29 +0.15 33.56 +0.40 | 2.80+0.28" 0.09 +0.01
Sf 0.260 +0.02 46.10 +0.42 37.17 +0.55 1.85+0.1 0.15 +0.02
SfintYc 0.569 +0.01" 48.26 +0.1 26.82 +1.07 | 3.95+0.17 0.08 +0.01

7.3.6: P solubilization and organic acid by B. japonicum USDA110, M. loti
MAFF030669 and S. fredii NGR234 integrants in 50 mM Tris-Cl buffer pH 8 and
50 mM glucose containing rock phosphate.

There was significant increase in release of P by ~11.2, ~8.6 and ~11.24 fold by
Bj intYc, Ml intYcand Sf intYc, respectively, compared to wild type when grown in 50
mM Tris-Cl Buffer pH 8 containing 50 mM glucose containing Rock Phosphate 1mg/ml
(Fig. 7.9).
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Fig. 7.9: P Solubilization by different integrants. (A)- ==, Bj,==, Bj intYc,) (B)- ==,
MI, ==, Ml intYc and (C) e, Sf, ==, Sf intYc; on 50 mM Tris-Cl buffer pH 8 and 50
mM glucose containing rock phosphate. Results are expressed as Mean + S.E.M of 4-6
independent observations. * P<0.05, ** P<0.01 and *** P<0.001.

On 50 mM Tris-Cl pH 8 and in presence of 50 mM glucose, the organic acids
identified were mainly gluconic, 2-ketogluconic, acetic and citric acids. Extracellular
medium of Bj intYc, Ml intYc and Sf intYc showed ~9.4, ~9.6 and ~7.9-fold increase in
citric acid with specific citric acid yield Y¢i ~2.7, ~3.5 and ~1.5 fold, respectively,
which is ~2.1, ~1.9 and ~2.8- fold higher amount of gluconic acid as compared to native
with specific gluconic acid vyield, Yg, increasing by ~1.7~1.5 and ~1.8 fold,

respectively (Fig. 7.10). There was no change in the intracellular citric acid levels.(Table
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Fig.7.10: Organic acid production by three integrants. (A, B)-=, Bj , , Bj.
intYc,) (C, D)- ==, Ml, ==, MLl. intYc and (E, F) =, Sf, ==, Sf. intYc; (A), (C), (E)
Organic acids in mM (B ), (D), (E) Organic acid yields, grown on 50 mM Tris-Cl
buffer pH 8 and 50 mM glucose containing rock phosphate. All organic acids are
estimated from stationary phase cultures (at the time of pH drop). Results are expressed
as Mean + S.E.M of 4-6 independent observations. * P<0.05, ** P<0.01 and ***
P<0.001.
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Table 7.4: Intracellular citric acid levels of B. japonicum USDA110, M. loti
MAFF030669 and S. fredii NGR234 integrants grown on TRP.

Rhizobium Intracellular
Strains Citric acid in
mM

B.japonicum USDA110 0.83+£0.06
Bj intYc 0.85+0.04
M. loti MAFF030669 0.85+0.04
Ml intYc 1.07 £ 0.09
S. fredii NGR234 1.48 +0.08
SfintYc 1.32+0.31

7.3.7: Alterations in enzyme activities in B. japonicum USDA110 M. loti
MAFF030669 and S. fredii NGR234 integrants .

Genome integrants were further analyzed for alterations in physiological variables
and organic acid profile, enzymes involved periplasmic direct oxidation and intracellular
phosphorylative pathways. There was an overall increase in all the enzyme activities.
GDH activity increased by about ~1.95, ~1.3 and ~2.1- fold; PPC activity increased by
~1.7, ~1.3-fold and no change; PYC increased by ~2.6, ~2.5 and ~2.0-fold; CS increased
by ~2.6, ~4.3 and ~2.2-fold; ICL increased by -~1.5, ~1.3-fold and no change, ICDH
increased by ~1.5, ~1.8 and~1.6-fold and G-6-PDH increased by ~1.6,~1.4 and ~1.5-fold
in Bj. intYc, ML. intYc and Sf. intYc or B. japonicum USDA110 M. loti MAFF030669
and S. fredii NGR234 integrants respectively compared to the native strains (Fig.
7.11,7.12 and 7.13).
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Fig.7.11: Alterations in enzyme activities in B. japonicum USDA110 integrants (==,
Bj;== , Bj. intYc). The activities have been estimated using cultures grown on M9
minimal medium with 50 mM glucose. All the enzyme activities are represented in the
units of nmoles/min/mg total protein. Results are expressed as Mean + S.E.M of 4-6
independent observations. * P<0.05, ** P<0.01 and *** P<0.001.
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Fig. 7.12: Alterations in enzyme activities in M. loti MAFF030669 integrants (==,
MI, ==, MI. intYc). The activities have been estimated using cultures grown on M9
minimal medium with 50 mM glucose. All the enzyme activities are represented in the
units of nmoles/min/mg total protein. Results are expressed as Mean + S.E.M of 4-6
independent observations. * P<0.05, ** P<0.01 and *** P<0.001.
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Fig. 7.13: Alterations in enzyme activities in S. fredii NGR234 integrants (==, Sf;
==, Of. INtYC). The activities have been estimated using cultures grown on M9 minimal
medium with 50 mM glucose. All the enzyme activities are represented in the units of
nmoles/min/mg total protein. Results are expressed as Mean + S.E.M of 4-6 independent
observations. * P<0.05, ** P<0.01 and *** P<0.001.

—
Development of mineral phosphate solubilization ability in Rhizobium spp. by metabolic engineering of tricarboxylic acid

cycle Page 218



Chapter 7 : Genomic integration of E. coli NADH insensitive cs and Salmonella typhimurium Na+
dependent citrate transporter with vgb, egfp in B. japonicum USDA110 M. loti MAFF030669 and S.
fredii NGR 234

7.4: DISCUSSION

Genetic engineering of microorganisms involves the use of extra-chromosomal
plasmid for heterologous expression of desired genes. Plasmid DNA is known to cause
metabolic burden on the cell and alter its metabolism depending on the host organism,
plasmid nature, and environmental conditions (Buch et al., 2010b; Sharma et al., 2011).
Hence, genetic manipulations need to be directed towards chromosomal integration as it
would lead not only to increased stability but also decrease the metabolic load caused by
the presence of the plasmids to nullify the pleotropic effects on the host metabolism. The
present study demonstrates the effect of genomic integration of E. coli NADH insensitive
cs Y145F gene and S. typhimurium citC gene on B. japonicum USDA110, M. loti
MAFF030669 and S. fredii NGR234.

In our study, genomic integrants of B. japonicum, M. loti MAFF030669 and S.
fredii NGR234 showed MPS phenotype in 50 mM Tris pH 8.0 while corresponding
plasmid transformants showed phenotype even on 100 mM Tris pH 8.0 medium. Hence,
the strength acidification by the genomic integrants had decreased. This was contrary to
the phenotype expected on the basis of metabolic load between plasmid transformants
and genomic integrants. This, it appears that the higher level overexpression of genes in
plasmid transformants, due to high copy number of the genes, may be responsible for
their better MPS phenotype.

The metabolic differences among the various transformants and the integrants
may be due to the differences in the copy numbers, the former having 10-16 plasmid
copy number. Plasmid nature and copy number are known to exert load on cellular
physiology leading to significant alterations in the metabolism (Schweder et al, 2002;
Wang et al., 2006; De Gelder, 2007). The copy number of the plasmids used in this study
(pAB4, pAB3, pAB8, pAB7) in P. fluorescens 13525 was found to be 10-16 and was
independent of the nature of antibiotic resistance.(Buch et al., 2010) The increased

phenotype in plasmid transformants is due to high copy number of plasmids, so more
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overexpression, and more enzyme activity resulted in increased amount of acid. While in
the integrants, single copy number produced less amount of acid, and thus showed
decreased phenotype compared to transformants. Here metabolic load is not so high in

the laboratory conditions compared to copy number effect.

There was significant increase in activities of GDH, G-6-PDH, PPC, PYC, CS,
ICL and ICDH in integrants of all the three strains, suggesting increase in oxidative and
phosphorylative pathway and higher flux of glucose through TCA in Rhizobium leading
to increase in gluconic acid and citric acid (Fuhrer, 2005). In addition to the metabolic
alterations in the central carbon pathway, this work also deals with the overexpression of
vgb gene in Rhizobium spp. along with artificial citrate operon to improve the
recombinant protein production and better survival of host under microaerobic conditions
(Frey and Kallio, 2003). A loss of MPS ability under low aeration conditions was seen in
case of Citrobacter sp. DHRSS containing citrate operon with a concomitant loss of citric
and gluconic acid secretion. Presence of vgb gene restored the citric and gluconic acid
secretion along with MPS ability under microaerobic conditions (Yadav, 2013). In this
study vgb effect was seen under aerobic condition and effect in microaerobic condition is

yet to be investigated.

The genetically modified strains are expected to be an efficient phosphate
solubilizing bacterium (PSB) in rhizosphere soil. This paves the way for genetic
modification of other plant growth promoting rhizobacteria to enable them to secrete

higher amount citric acid and converting into efficient PSB.
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Chapter 8: Effect of Sinorhizobium fredii NGR 234 genomic integrant containing E. coli NADH
insensitive ¢s and S. typhimurium citC, vgb and egfp gene cluster on growth promotion of Mung
bean plants.

8.1 Introduction

Legumes are second only to cereals as a source of human food and animal feed.
Their importance as food lies primarily in their high protein content. Legumes’ grain
protein is the natural supplement to cereal grain protein. They also provide fat and
carbohydrates. Moreover, legumes are high in bone building minerals and vitamins
essential for good health (Porres et al., 2003). Many efforts were directed to improve
yield and protein content of legumes through breeding, fertilization and genetic
engineering. Biofertilizers are inputs containing microorganisms which are capable of
mobilizing nutritive elements from non-usable form to usable form through biological
processes; they include mainly the nitrogen fixing, phosphate solubilizing and plant
growth—promoting microorganisms (Goel et al., 1999). To maintain the sustainability and
soil fertility research efforts are concentrated to make use of less expensive, eco friendly
sources of P nutrients such as rock phosphate (Whitelaw, 2000; Arcand 2006). Rock
phosphate originates from igneous, sedimentary, metamorphic, and biogenic sources,
with sedimentary being the most widespread (van Straaten, 2002). Microorganisms are an
integral part of the soil P cycle and in particular, are effective in releasing P from rock
phosphate (Richardson 2011).

The inoculation of seeds with Rhizobium increased nodulation, nitrogen uptake,
seed protein (Solaiman, 1999; Rudresh, 2005). Rhizobium inoculant significantly
increased number of pods, nodule dry weight compared to uninoculated control in
chickpea (Solaiman ,1999; Daza et al., 2003; Rabbani et al., 2005; Togay et al., 2008).
The combined inoculation of Rhizobium and phosphate solubilizing bacteria has
increased nodulation, plant height, seed protein and yield parameters in chickpea
[Khurana and Sharma, 2000; Namvar et al., 2011). Co-inoculation with nodule-forming
and rhizospheric soil bacteria improved growth and nodulation through multiple
mechanisms (Contesto et al. 2008; Zadeh et al. 2008). Several PGPR produced ACC-
deaminase (e.g. Dimkpa et al. 2009; Shaharoona et al. 2012) and thus modulated C;H,4
levels in plant through the cleavage of ACC (Glick et al. 1997).
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The conducive effect of dual inoculation of seeds with Rhizobium and
microelements application on nodulation and N fixation in legumes has been established
(Zehirov and Georgiev, 2001). Inoculation of seed with Rhizobium in combination with
microelement fertilizer significantly affected the yield and nodules formation of chickpea
(Bejandi et al., 2012). Concentration of chlorophyll dyes is a reliable index of
physiological plant condition (Swedrzynska and Sawicka, 2000). However, little work
has been done on the combined effects of Rhizobium inoculation, microelements
application and plant density on nodulation, seedling emergence, chlorophyll content,

seed protein and grain yield.

After nitrogen, phosphorus is generally the most limiting nutrient affecting plant
growth and productivity. In legumes, phosphorus availability stimulates the nodulation
and N fixation since nodule initiation and nodule growth require P (Gentili and Huss-
Danell 2003). Phosphorus deficiency generally results in impaired symbiotic N fixation
by limiting plant growth, survival of rhizobia, nodule formation, and nodule functioning
(Tang et al. 2001; Bargaz et al. 2011). Low organic matter content coupled with native
low soil P pool is a major factor limiting agricultural productivity in the Indian
subcontinent (Manna et al. 2001). Soil organic amendments increased soil biological
activity and improved physical and chemical properties (Gaind et al. 2006). Addition of
organic amendment to soil stimulated microbial activity that in turn increased organic
matter decomposition rate and nutrient dynamics (Abbott and Murphy 2007; Chakraborty
et al. 2011). Microbial biomass has vital role in regulating nutrient source sink. Soil
enzymatic activities are key determinants of soil available nutrient pools including N, P,
and K (Sinsabaugh et al. 2009; Nannipieri et al. 2012).

PGPR benefit the plant growth directly by solubilization of insoluble
phosphorous, nitrogen fixation, sequestering of iron by production of siderophores,
producing metabolites such as auxins, cytokinins, gibberellins, lowering of ethylene
concentration. The indirect growth promotion occurs via antibiotic production, synthesis
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of antifungal metabolites and cell wall lysing enzymes, competing for sites of root
colonization, induced systemic resistance (Ahmad and Khan, 2011). The beneficial
effects of PGPR seen under greenhouse conditions are often not repeatable under field
conditions and the results in terms of crop growth and vyields are highly variable
(Gyaneshwar et al. 2002; Viveros —Martinez et al., 2010). Understanding the influence of
environmental factors is widely recognized as a key to improve the level and reliability of
PGPR (Dutta et al., 2010). The dissemination of bacteria in the field has remained
marginal, with the exception of rhizobia and agrobacteria. Inoculation of plants with P-
solubilizing microorganisms in controlled experiments improved the growth and P
nutrition, especially under glasshouse conditions and in fewer cases in the field
(Whitelaw, 2000; Gyaneshwar et al., 2002; Jakobsen et al., 2005; Rodriguez and Fraga,
2006; Khan et al., 2007; Harvey et al., 2009; Khan et al., 2010). But, the effectiveness of
PSMs in the laboratory or controlled conditions is not operable in soils (Richardson
2011). Plant growth promotion abilities of biofertilizers are strongly influenced by
climate changes and are restrictive to certain cultivars, climate, and soil conditions
(Figueiredo et al., 2010; Kern et al., 2011). The phosphate solubilization is accompanied
by a number of activities such as production of plant stimulants, enzyme production,
biocontrol activity and organic acid production (Vassilev et al. 2006; 2007a,b; 2008;
2009b).

Efficacy of PGPR in field conditions is determined mainly by their survival in
harsh environmental conditions including high concentrations of environmental
contaminants, salts, extremes of pH and temperature, and competition with other
organisms. Isolation of stress tolerant PSM is gaining importance to enhance the efficacy
of PSM (Thakuria et al. 2004; Chaiharn et al., 2008; Vassilev 2012). Inoculation of
Sinorhizobium cicero and Pseudomonas sp. with 18/20 kg NP ha™ as urea and di-
ammonium phosphate increased nodule number, nodule dry weight, nodule volume and
dry matter compared to uninoculated control at mid flowering stage in chickpea plant
(Messele and Pant, 2012).
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A large number of PGPR representing diverse genera have been isolated over past
50 years. Despite of their natural means of plant growth promotion ability, strains are
genetically modified because of their inconsistent performance and requirement of
uneconomically high dose application (Carmen, 2011). Additionally, several plant growth
promoting traits are combined in a single organism for long-term cell survival under a
variety of environmental conditions (Defez, 2006). Inoculation of Medicago tranculata
plant with indole-3-acetic acid-overproducing strain of Sinorhizobium meliloti improved
both the shoot and root fresh weigh, nitrogen fixation ability, P mobilization, oxidative
damage and salt tolerance (Bianco and Defez, 2009; 2010a,b; Imperlini et al., 2009).
Hence, genetic modification of native strains may help to survive, adapt and function

better in the rhizosphere and improve plant nutrition.

Plant growth promoting rhizobacteria (PGPR) stimulated or inhibited nodule
formation in a given symbiotic association, depending upon the type, nature, and
concentration of secondary metabolites produced by the rhizobacteria. PGPR carrying
ACC-deaminase enzyme intrinsically improved symbiotic efficiency of legumes by
lowering the plant ethylene level that inhibited nodulation process (Nascimento et al.
2012).

Over-expression of genes involved in soil inorganic phosphate solubilization in
natural PGPR improved the capacity of microorganisms when used as inoculants (Bashan
et al., 2000). Studies carried out so far have shown that following appropriate regulations,
genetically modified microorganisms can be applied safely in agriculture (Armarger,
2002; Morrissey et al., 2002). Chromosomal insertion of the genes is one of the tools to

minimize the risks of using genetically modified microbes in agricultural filed.

MPS ability of the bacterial transformants in field conditions could be affected by
various parameters. In addition to the nutrient availability and soil properties, oxygen
limitation could be a significant factor. Oxygen is present in limited amounts in the

rhizosphere which limits the colonization and survival of rhizobacteria (Ramirez et al.,
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1999). The obligate aerobic bacterium, Vitreoscilla, synthesizes elevated quantities of
homodimeric hemoglobin (VHb) under hypoxic growth conditions which improved
growth under microaerobic conditions when dissolved oxygen is less than 2% of air
saturation (Khosla and Bailey, 1988a; b). Expression of vgb gene encoding VHb protein
in heterologous hosts often enhanced growth and metabolism by facilitating oxygen
transfer to the respiratory membranes (Stark et al., 2011). Genetically modified
Rhizobium with vgb overexpression has enhanced the ATP, ADP, NADH and NADPH
generation, plasmid bearing vgb gene generated 0.624 nmoles of ATP, which
significantly enhanced the nitrogenase activity up to ~170 pumol at low concentration of
oxygen, while nitrogen content was increased up to ~56 mg/plant in bean plants (Ramirez
etal., 1999).

In addition to the metabolic alterations in the central carbon pathway,
overexpression of vgb gene in Rhizobium spp. along with artificial citrate operon
improved the recombinant protein production and better survival of host under
microaerobic conditions (Frey and Kallio, 2003). The MPS ability was lost when grown
without an air in case of Enterobacter intermedium which secreted 2-ketogluconic acid
(Hwangbo et al., 2003). A similar loss of MPS ability under low aeration conditions was
seen in case of Citrobacter sp. DHRSS containing citrate operon with a concomitant loss
of citric and gluconic acid secretion. Presence of vgb gene restored the citric and gluconic

acid secretion along with MPS ability under microaerobic conditions (Yadav, 2013).

Plant growth promoting rhizobacteria (PGPR) are soil bacteria that benefited plant
growth by different mechanisms (Glick, 1995; Archana et al., 2012), and P-solubilization
ability of the microorganisms is one of the most important traits. The effect of genomic
integration of yc operon containing E. coli NADH insensitive cs and S. typhimurium citC,
vgb and egfp gene cluster in fluorescent pseudomonad strains showed enhancement of all
plant growth parameters (leaf number, plant height and dry weight, nodule number, and
dry weight) and remarkably at par with the SSP control (Fig. 8.1; 8.2; 8.3) (Adhikary et
al., 2012).
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Fig. 8.1: Effect of P. fluorescens genomic integrants on shoot length, weight and P
content and root length, weight and P content of mung bean (Vigna radiata) at 45
Days after sowing.
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Fig. 8.2: Effect of P. fluorescens genomic integrants on number of leaves, nodule

number and weight of mung bean (Vigna radiata) at 45 Days after sowing.
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Fig. 8.3: Effect of P. fluorescens genomic integrants on enzyme activities of mung

bean (Vigna radiata) at 45 Days after sowing.
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8.1.2: Rationale of the Study

Metabolic engineering strategies developed for a particular organism may not
necessarily work for other organism or even organism of the same species. Therefore, it
IS necessary to investigate the effects of genetic modification in multiple host organisms.
In this study, Sinorhizobium fredii NGR 234 was subjected to similar genetic
modification for citric acid secretion leading to P solubilization and plant growth
promotion. S. fredii NGR234 having wide host range for nodulation and its integrant
gave better results compared to the integrants of Bradyrhizobium japonicum USDA110
and Mesorhizobium loti MAFF030669. Thus, S. fredii NGR234 has been selected to
monitor its efficacy in providing P and promoting the growth of mung bean (Vigna
radiata) plants. The objectives of this study were to determinate the effects of S. fredii
integrant on rhizospheric soil, plant height and weight, leaf number and area, chlorophyll
content, number and size of nodules, number and size of pods and grain yield, and

determine the nitrogenase and antioxidant enzyme activities of mung bean.

8.2 Experimental design
8.2.1: Bacterial strains used in this study

Table 8.1: Bacterial strains used in this study.

Plasmid/Strains Characteristics Source or
Reference
S. fredii NGR 234 NC_012587.1
Sf intYc Genomic integrant of S. fredii NGR 234 containing | This study
lac-YF citC, vgb, egfp Ap' Chapter 7

8.2.2 Plant Inoculation Experiments

Pure bacterial cultures were grown in nutrient broth at 30°C, centrifuged, and

diluted to a final concentration of 108 CFU/ml in sterile distilled water. Seeds of mung
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bean obtained from local market and were washed repeatedly with autoclaved distilled
water and soaked in distilled water for 10 minutes. Later seed directly soaked into
respective cultures. For uniform treatment of the seed with culture, flasks were kept in an
orbital shaker at 500 rpm for 2 h. Seeds were treated with Rhizobium strains each
containing native strain (N), and yc operon genomic integrant (Int). In the experiment,

one control was used, where no inoculum was added and designated as control (C).
8.2.3 Greenhouse experiment

Bacteria coated Mung bean seeds were sown in pots containing unsterile field soil
and reared in a green house (25-30 °C). The pots were irrigated time to time to maintain
the moisture level in green house. The growth parameters were recorded out at 20 days
and 45 days after sowing and biochemical characterization was carried out at 45 days
after emergence. Each treatment had 5 replications (6 seeds per replicate).

8.2.4 Growth parameter assessment

All the plant growth parameters were estimated at 20 days and 45 days after
sowing (DAS).

8.2.5 Biochemical characterization

Superoxide dismutase (SOD), Catalase (CAT), Ascorbate Peroxidase (APX),
Guaicol Peroxidase (POX) and nitrogenase enzyme activities were estimated at 45 days
after sowing (DAS).

8.2.6 PQQ determination

PQQ production was estimated using the method of Rajpurohit et al. (2008).
Fresh leaves and nodules were crushed using liquid nitrogen. Acetonitrile 50% was added
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to powder and kept for digestion at 65°C for 2 h. The mixture was centrifuged at 15,000 g
for 10 min; the clear supernatant was collected and dried with a concentrator under a
vacuum. The residue was dissolved in 50% n-butanol at 1 mg/ml, and PQQ was extracted
at 50°C overnight. The clear supernatant was dried under a vacuum and dissolved in
100% methanol. The identity of the PQQ was ascertained by comparing with standard

PQQ on spectrofluorometer. Fluorescence was monitored at ex 360 and em 480 nm.

8.2.7 Isolation of bacteria from rhizospheric soil and nodules.

Bacteria isolated from rhizospheric soil and nodules from mung bean plants of 45
days and were isolated on agar plate with appropriate dilutions. Further, total bacterial

count was mentioned in CFU.

8.2.8 Statistical analysis

The experiments were carried out in a completely randomized design (CRD) for

mung bean. The experimental data was analyzed statistically using Prism 3.

8.3 RESULTS

8.3.1 Effect of genomic integrant on bacteria of rhizospheric soil and bacteroids of

nodules.

Fluorescent colonies were not seen in the control and native plate but were seen in
experimental plate under UV light in the samples isolated from rhizospheric soil. Mucoid
colonies of Rhizobium were seen in the control and native plates and fluorescent colonies
of S. fredii NGR 234 with the integrant were seen in the plate containing isolate from
nodules of nodules from the inoculated mung bean plant (Fig. 8.4). There was increase
by 24 fold and 150 fold in CFU count from the rhizospheric soil and bacteroids from

nodules of mung bean plant, respectively, inoculated with the integrant (Table 8.2).
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Weight of nodules increased by 3.3 fold of the integrant treated plant as compared to the

control plant.

Bacteria isolated from nodules
of mung bean plant

Bacteria isolated from
experimental soil

Control

Control

Native

Integrant

Integrant

Fig. 8.4: Effect of genomic integrant on bacteria of rhizospheric soil and bacteroids

of nodules.
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Table 8.2: Effect of genomic integrant on number of S. fredii NGR 234 integrants in

the rhizospheric soil and in nodules from 45 days old mung bean plants.

Total bacterial count. | Total bacterial count. Wt. of 10 nodules
CFU /mg of soil CFU / nodule (mg)
Control 6 x 10° 1.1 x 10* 13.9
Native 1.6 X 10* 1.7 X 10* 14.2
Integrant 3.8 X 10° 2.6 X 10° 473

8.3.2 Effect S. fredii NGR 234 genomic integrant on nitrogenase activity, available
Soil P and N, K content.

S. fredii NGR 234 genomic integrant increased ~5.5 fold and ~2.8 fold increase in
nitrogenase activity of integrant and native, respectively, as compared to control (Fig.
8.5).
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Fig. 8.5: Effect of S. fredii NGR 234 genomic integrant on nitrogenase activity of
mung bean at 45 Days after sowing. * Represents comparison with the control and
represents comparison of the integrant with the native. The values are depicted as Mean +
S.E.M of 3 independent observations. ** P<0.01 and *, { P<0.05.
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Inoculation with integrant (Sf intYc) increased ~7.4 fold soluble P as compared to
the uninoculated control and ~2.4 fold increase compared to native (Table 8.3). The
native strain resulted in ~3.1 fold increase in soil P while N and K levels remained
unaltered compared to control. Also there was ~1.25 fold and ~2.32 fold increase in N

and K content of the soil from plant inoculated with integrant compared to control.

Table 8.3: Effect of genomic integrant on the N, P and K content of rhizospheric soil
from mung bean plants of 45 days old.

Soil N Kg/hac P,0Os5 kg/hac K>0 kg/hac
Control 158.7 12.9 338.7
Native 161.6 40.0 364.9
SfintYc 198.9 95.7 788.9

8.3.3 Effect of genomic integrant on N P K content in plant and pods

Significant increase in N, P, K and protein content was observed in plants
inoculated with the native (S. fredii NGR 234) and the integrant (Sf intYc). N, K and
protein showed ~1.5 fold increase in plants inoculated with the integrant compared to
control and ~ 1.2 fold increase compared to native while P content increase was ~2.7 fold
and ~1.64 fold, respectively, compared to control. Integrant also showed~1.64 fold
increase in P and ~1.2 fold increase in N, K and protein content compared to native
(Table 8.4).

Significant increase in N, P, K and protein content was observed in pods from
plants inoculated with the integrant (Sf intYc). All parameters showed ~1.3 and ~1.1
fold increase in pods from plants inoculated with the integrant compared to control and
native, respectively. Integrant also showed ~1.2 fold increase in N, P, K and Protein

content compared to native strain (Table 8.5).
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Table 8.4: Effect of genomic integrant on total plant N, P, K and protein content of
45 days old mung bean plants.

Bacterial .
(0)
inoculation N %o P % K % Protein %
- 1.39 0.34 1.02 8.71
Native Sf 1.65 0.57 1.25 10.30
SfintYc 2.07 0.93 1.57 12.96

Table 8.5: Effect of genomic integrant on N, P, K and protein content of pods from

45 days old mung bean plants.

Pods from plants
with bacterial Protein %
inoculation N %o P % K %
- 2.61 1.40 1.05 16.29
Native Sf 3.05 151 1.24 19.08
SfintYc 341 1.74 1.39 21.29

8.3.4 Growth parameters

8.3.4.1. Effect of S. fredii NGR 234 genomic integrant on growth parameters of

mung bean plant.

S. fredii NGR 234 genomic integrant containing E. coli NADH insensitive c¢s and
S. typhimurium citC, vgb and egfp gene cluster upon inoculation to mung bean resulted in
significant increase in all growth parameters. In 20 day plants, ~1.3 fold increase in shoot
length and ~2.8 fold increase in root length, ~2.4 fold increase in plant weight, ~2.9 and
~1.4 fold increase in leaf number and leaf area were found in comparison to control.
Increase was also seen in all the above parameters in plants inoculated with genomic

integrant inoculated with native S. fredii NGR 234 compared to control plants (Fig. 8.5).
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Chapter 8: Effect of Sinorhizobium fredii NGR 234 genomic integrant containing E. coli NADH
insensitive ¢s and S. typhimurium citC, vgb and egfp gene cluster on growth promotion of Mung
bean plants.

In 45 day plants, ~1.45 fold increase in shoot length and ~1.35 fold increase in
root length, ~2.5 fold increase in plant weight, ~2.3 and ~1.3 fold increase in leaf number
and leaf area was seen (Fig. 8.6). In addition, there was ~1.7 fold and ~1.3 fold increase
in chlorophyll content in the leaves of plants inoculated with integrant and native,

respectively, compared to control (Fig. 8.7).
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Fig. 8.5: Effect of S. fredii NGR 234 genomic integrant on shoot length and root
length of mung bean at 20 Days after sowing. * represents comparison with the control
and { represents comparison of the integrant with the native. The values are depicted as
Mean + S.E.M of 3 independent observations. *,{ P<0.05.
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Chapter 8: Effect of Sinorhizobium fredii NGR 234 genomic integrant containing E. coli NADH
insensitive ¢s and S. typhimurium citC, vgb and egfp gene cluster on growth promotion of Mung
bean plants.

. 70~ q

g 55 5

K = SHpe.
| = =

o 40 ==

=

2 25-

—

(o]

© 10

T

=

14+]

Ce—

(]

(o]

b o=

w

* q
5-
204
35-

CControl [ S/ Native M SfintYc

Fig. 8.6: Effect of S. fredii NGR 234 genomic integrant on shoot length and root
length of mung bean 45 Days after sowing. * Represents comparison with the control
and 1 represents comparison of the integrant with the native. The values are depicted as
Mean £ S.E.M of 3 independent observations. *,{ P<0.05.
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Fig. 8.7: Effect of S. fredii NGR 234 genomic integrant on chlorophyll content of
mung bean at 45 Days after sowing. * Represents comparison with the control and
represents comparison of the integrant with the native. The values are depicted as Mean +
S.E.M of 3 independent observations. ***, P<0.001, **, 1 1 P<0.01.

Development of mineral phosphate solubilization ability in Rhizobium spp. by metabolic engineering of tricarboxylic acid cycle

Page 236



Chapter 8: Effect of Sinorhizobium fredii NGR 234 genomic integrant containing E. coli NADH
insensitive ¢s and S. typhimurium citC, vgb and egfp gene cluster on growth promotion of Mung
bean plants.

There was ~2.4 fold, ~1.45 fold and ~1.6 fold increase in number, length and
number of grains per pod, respectively, from plants treated with the integrant as
compared to control. Fresh weight and dry weight of pods also showed ~2.2 and ~3.1

fold increase, respectively in integrant, compared to control.

SfintYc genomic integrant in 20 days old plants showed, ~3.1 increase in number
of nodules and ~4.3 fold increase in weight of 10 nodules compared to the control. Native
Plants treated with native culture showed nodules having double weight compared to
untreated plants and nodule number was increased by ~1.35 fold (Table 8.6). 45 days old
plants treated with integrant showed less increase compared to increase seen in 20 days
old plants (Table 8.7). ~2.8 increase in number of nodules and ~3.4 fold increase in
weight of 10 nodules were found as compared to the control. Nodules from 45 days old

integrant plants were ~3.3 times heavier than those of native plant.
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Chapter 8: Effect of Sinorhizobium fredii NGR 234 genomic integrant containing E. coli NADH
insensitive ¢s and S. typhimurium citC, vgb and egfp gene cluster on growth promotion of Mung
bean plants.

Table 8.6: Effect of S. fredii NGR 234 genomic integrant on growth parameters of
mung bean at 20 Days after sowing

Details of 20 Days old Plants Parameter | Control | Native | Integrant
Plant fresh 2.20 3.72 5.33
weighting | +0.26 | +£0.10 +0.50
No of 6.33 10.00 18.33
leaves +1.52 +1.73 +1.52
Leaf area 17.33 21.66 24.66
cm? +2.08 | £+2.08| +251
No of | 23.33 31.66 72.66
nodules +3.51 + 3.08 +251
/plant

. * K )

L J B> " = ® B #® | Weightof 21.66 46.00 93.00
i A
: 10 nodules | *2.08 +3.0 +4.58
‘ ® . ® o P g "
° g
® - ¢ e ©
Control Sf Native SfintYc

L
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Chapter 8: Effect of Sinorhizobium fredii NGR 234 genomic integrant containing E. coli NADH
insensitive ¢s and S. typhimurium citC, vgb and egfp gene cluster on growth promotion of Mung
bean plants.

Table 8.7: Effect of S. fredii NGR 234 genomic integrant on growth parameters of
mung bean at 45 Days after sowing

Details of 45 Days old Plants Parameter | Control | Native | Integrant

Fresh 29.08 44,93 | 72.07
weight in | £5.22 +1.67 | £13.33

g

0.25 033 |[1.35
weight in | £0.13 +0.04 | £0.06

No of 18.00 23.00 | 42.00
leaves +3.00 + +5.29
4.35

Leaf area | 26.33 27.00 | 34.66
in cm? +208 |+1.00|+152

Contd...
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Chapter 8: Effect of Sinorhizobium fredii NGR 234 genomic integrant containing E. coli NADH
insensitive ¢s and S. typhimurium citC, vgb and egfp gene cluster on growth promotion of Mung
bean plants.

Table 8.7: Effect of S. fredii NGR 234 genomic integrant on growth parameters of

mung bean at 45 Days after sowing (contd.)

Details of 45 Days old Plants Parameter | Control | Native | Integrant
No of 10.33 15.00 | 24.66
pods/ +152 |+£3.00 |£152
plant
Pod 6.26 6.60 9.13
length in|£0.25 |+£0.26 | £0.15
cm
No of | 8.66 10.00 | 13.66
grains +15 |z +1.52
per/pod 1.00
Pod fresh | 1.176 1.33 2.58
weight +0.10 |[+£0.15 | £0.50
Podsdry |0.14 0.25 0.43
weight/mg | £0.04 | +£0.04 | £ 0.11

P [ TR) [ B
' X No of 12.33 13.66 | 34.33
S nodules/ |+251 |[+205 |+£251
plant
—— B 2% L d Weight of | 13.86 14.20 | 47.33
N 3  ® e 10 +1.95 |+£1.11 |+3.05
- p ¢ ¥ - nodules

The genomic integrant treatment had also decreased oxidative stress of mung

bean plants as found in the specific activities of antioxidant enzymes (Fig. 8.8),
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Chapter 8: Effect of Sinorhizobium fredii NGR 234 genomic integrant containing E. coli NADH
insensitive ¢s and S. typhimurium citC, vgb and egfp gene cluster on growth promotion of Mung
bean plants.

Superoxide Dismutase (SOD), Catalase, Guaiacol Peroxidase (POX) and Ascorbate
peroxidase (APX), at 45 days after sowing. There was ~2.2 fold, ~1.4 fold, ~2 fold and ~
1.5 fold decrease in POX, SOD, CAT and APX, respectively, in the plants inoculated
with integrant compared to control. Compared to native, the integrants showed ~1.2 to
~1.4 fold decrease in the enzyme activities. PQQ levels increased by ~1.5 fold in the
nodules and leaves of native as well as genome integrant inoculants as compared to

control plant while (Table 8.8).

Table 8.8: PQQ levels in leaves and nodules of mung bean plants

Bacterial PQQ ng/g fresh wt of nodule | PQQ ng/g fresh wt of leaves
inoculation
- 3.26x 0.40 1.73+ 0.25
S. fredii NGR 234 523+ 051 243+ 0.32
Sf intYc 6.10+ 0.20 273t 0.32
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Chapter 8: Effect of Sinorhizobium fredii NGR 234 genomic integrant containing E. coli NADH
insensitive ¢s and S. typhimurium citC, vgb and egfp gene cluster on growth promotion of Mung

bean plants.

301

— —

——

1 ok
204 40 - 1
(233 ﬂ — kK
E *kk

POX activity
(U/mg protein)
by

ot
—J
L

SOD activity (U/mg/protein)
L] o
OI (=]

5 10
0 0
[ Control [ Sf Native [ SfintYc ] Control - 2§/ Native NS intYc
40
T 1.59 —_
g
[
A 3
L S0 T 5 1 p—
0 = E)
3 0 _I_ g 107
35 -= 2
20 g -
2. — 2
B z
% E o 054
o= 10 v
E o
0 <
0 0.0
CControl 3 §fNative [ SfintYc EControl [J5fNative [ SfintYc

Fig. 8.8: Effect of S. fredii NGR 234 genomic integrant on enzyme activities of mung
bean at 45 Days after sowing. * represents comparison with the control and § represents
comparison of the integrant with the native. The values are depicted as Mean + S.E.M of
3 independent observations. ***, P<0.001, ** P<0.01 and *,{ P<0.05.
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Chapter 8: Effect of Sinorhizobium fredii NGR 234 genomic integrant containing E. coli NADH
insensitive ¢s and S. typhimurium citC, vgb and egfp gene cluster on growth promotion of Mung
bean plants.

8.4 Discussion

Availability of phosphate in soil is greatly enhanced through microbial production
of metabolites leading to lowering of pH and release of phosphate from organic and
inorganic complexes. Productivity of legumes is severely affected by P limitation, as both
the plants and their symbiotic bacteria require P for nodule formation. Development of
integrant of S. fredii NGR234 from TRP medium released 0.56 mM P as compared to
0.05 mM P of native strain. S. fredii NGR 234 integrant was efficient in increasing the N
and P levels in soil.

Fluorescent colonies of S. fredii NGR234 containing integrant were present in
rhizospheric soil and nodules isolated from plant (Fig. 8.4). Increase in cfu count of
integrant was accompanied by increase in P, N and K content, respectively, as compared
to native strain. Similar results of increase in soil P was found with co-inoculation of
Rhizobium strain and PSM in chick pea and soybean (Argaw, 2011; Singh and Sharma,
2011). P levels play important role in nodule formation and nitrogen fixation as nitrogen
fixation which is a high energy consuming process (Sulieman and Tran, 2012). Increase
in free P content in soil helped plant growth and increased the number and weight of

nodules compared to native strain.

Cfu count of S. fredii NGR 234 integrant in nodules also increased with
concomitant increase in nitrogenase activity. Improvement in nodulation due to
inoculation of P solubilizers was seen in chick pea and other leguminous plant (Tang et
al., 2001). Enhanced nodulation after inoculation of the rhizobium strain increased
available P for the plant as leguminous plant require high amount of P for nodule
formation and maintenance of high rate of bacterial activity inside the nodule (Leidi et
al., 2000; Zaman et al., 2007; Singh et al., 2011).

Increased nitrogenase activity led to increase in N, P, K and Protein content of

whole plant in the integrant compared to control. Similar results were found with co
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Chapter 8: Effect of Sinorhizobium fredii NGR 234 genomic integrant containing E. coli NADH
insensitive ¢s and S. typhimurium citC, vgb and egfp gene cluster on growth promotion of Mung
bean plants.

inoculation of legumes and crops with Rhizobium and different PSMs (Yazdani et al.,
2011; Sharma et al., 2012; Tahir and Sarwar, 2013). Additionally, increase in NPK
content of plant enhanced chlorophyll content and all growth parameters like fresh
weight, dry weight, length of root, shoot and pod growth and yield parameters up to
100% compared to native. Simliar studies with barley and chick pea when grown in soil
treated with insoluble phosphate and PSM Mesorhizobium mediterraneum PECA21
showed 100 and 125%, respectively, increase in the P content as compared to control
(Peix et al., 2001).

P deficiency is one of the critical limiting factors, adversely affecting nodulation
and N, fixation, and thus legume growth and productivity, worldwide (Tesfaye et al.,
2007). M. truncatula plants inoculated with either the S. meliloti 102F51 or 2011 strain
but due to P deficiency severely inhibited plant growth and development of nodules as
well as N and P assimilation (Sulieman and Schulze, 2010a). Similar results were seen
with co-inoculation studies with Rhizobium, PSMs, supplementation with fertilizers on
Zea mays, cow pea, walnut, mung bean and chick pea (Gulati et al., 2010; Deepa et al.,
2010; Yu etal., 2011; Jha et al., 2012; Verma et al., 2013).

S. fredii NGR 234 encodes pgq genes and incorporation of yc operon in the
genome increased PQQ secretion probably due increased available P. PQQ is a strong
antioxidant compared to ascorbate and other antioxidants. Addition of PQQ showed
increased growth and scavenging of ROS and hydrogen peroxide (Choi et al., 2008;
Ahmed and Shahab, 2010; Misra et al., 2012). Significant decrease in SOD, POX, CAT
and APX activities after inoculation with the integrant of S. fredii NGR 234 indicates
decreased oxidative stress in mung bean plants. Inoculation of PGPR reported to reduce
oxidative stress in plants. Abiotic stress conditions cause an increase in ROS formation
such as superoxide radical (O, hydrogen peroxide, and hydroxyl radicals (OH) at the
cellular level (Sgherri et al., 2000; Hemavathi et al., 2010). Al toxicity and P deficiency
both increased SOD and POD activities in maize and rice plants (Tewari et al, 2004;
Sharma and Dubey, 2007). Induction of antioxidant enzymes (catalase, SOD, APX, GR
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insensitive ¢s and S. typhimurium citC, vgb and egfp gene cluster on growth promotion of Mung
bean plants.

and POX) is involved in the alleviation of salinity stress in lettuce plants inoculated with
PGPR strains (Bianco and Defez, 2009; Kohler et al., 2010). In contrast, PGPR
inoculated plants showed significantly lower activity of antioxidant enzymes as compared
to uninoculated plants (Omar et al., 2009; Sandhya et al., 2010). Significant increase of
catalase and peroxidase activities is found in salt-stressed leaves of two barley cultivars
differing in salinity tolerance after inoculation with Azospirillum brasilense (Omar et al.,
2009). In contrast, the mRNA expression of SOD, CAT, DHAR, GR and APX in
bacteria-inoculated considerably increased in plants grown under stress conditions when
compared with that of uninoculated stressed plants (Gururani et al 2012). Mung bean
plant showed significant increase in all parameters related to growth and yield, decreased
oxidative stress with S. fredii integrant compared to native. This clearly shows that S.
fredii integrant is a strong nitrogen and phosphate solubilizer showing enhanced plant
growth promoting ability. In vitro study of vgb on P solubilization, effect of inoculation
of plasmid transformants on plant growth promotion and efficacy of integrant with
respect to mung bean plant supplemented with super phosphate and urea will determine

the potential of the genome integrants applicability in field conditions.
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Phosphate solubilizing bacteria release P from inorganic complexes by the
secretion of wide range of low molecular weight organic acids. P solubilization potential
of these bacteria varies based on the amount and nature of organic acid produced. Citric,
oxalic, and gluconic acids are the product of central carbon metabolism. Rhizobium
strains show myriads of catabolic diversity in their carbon metabolism. The amount of the
organic acid secretion may differ between members of the same genus and sometimes
between strains of the same species. Moreover, organic acid secretion in the rhizosphere
depends not only on the metabolic potential of the organism but also on the plant
physiology as complex set of interactions mediated many compounds including the root
exudates as the major C source. The nature of root exudates varies from plant to plant and
composed of a complex mixture of several nutrients in low amount. Therefore, it is
difficult to predict the organic acid secretion by rhizobacteria which may also vary with
plant physiology. Hence, to develop an efficient P biofertilizer with the potential plant
growth promoting properties for multiple host systems and diverse eco habitats, the
present study was an effort to understand the following aspects: (i) to develop a potential
genetic modification strategy to increase the MPS ability of nitrogen fixing Rhizobium ;
(ii) to understand in vitro metabolic effects of genetic modification on different strains of
Rhizobium and (iii) to determine the consistency and performance of genetically modified
strains in alkaline vertisol soils.

Chapter 1 describes about Rhizobium as a PGPR ,nitrogen fixing microorganism
and P solubilizer. It also describes about central carbon metabolism and its use for
metabolic engineering. Chapter 2 dealt with various materials and methods used in the

study.

The distribution of glucose between two catabolic pathways: GDH mediated
extracellular direct oxidation pathway and intracellular phosphorylative pathway
involving active glucose uptake followed by the action of glucokinase and G-6-PDH are
responsible for MPS ability of Rhizobium. Higher amount of total glucose utilized and
less glucose consumption in B. japonicum and M. loti strain compared to the control

correlated with enhanced gluconic acid production and MPS ability (Table 1 and 2).
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Chapter 3 demonstrates the construction of B. japonicum and M. loti strain
harboring S. elongatus PCC 6301 ppc gene under lac promoter in broad host range
plasmid pUCPM18 containing tetracycline resistance. The overexpression of ppc gene
resulted in increased PPC activity with a simultaneous increase in gluconic acid (~15
mM) and citric acid (~7 mM) secretion as compared to the control and wild type. The
MPS ability in terms of P solubilization index in PVK agar medium and red zone
acidification on TRP plate was in the order of WT<pAB4<pAB3 clearly indicating the

enhanced effect of ppc gene overexpression in terms of citric acid secretion(Table 3).

Chapter 4-5-6 demonstrates the construction of B. japonicum and M. loti strain
harboring E. coli NADH insensitive cs gene , E. coli NADH insensitive cs gene and S.
typhimurium sodium dependent citrate transporter (yc) operon under lac promoter
respectively in broad host range plasmid pUCPM18 containing kanamycin resistance.
The overexpression of ¢s, NADH insensitive cs and yc operon resulted in increased CS
activity with a simultaneous increase in citric acid (~7 mM,~8 mM and ~10
mM,respectively) and gluconic acid (~9 mM,~25 mM and ~26 mM, respectively)
secretion as compared to the vector control. The overexpression in terms of citric acid
produced was in the order of WT<pAB8 <pAB7<pJNK3<pJNK4 clearly indicating the
enhanced effect of both NADH insensitive citrate synthase and citrate transporter over

wild type citrate synthase(Table 3).

The MPS ability in terms of P solubilization index in PVK agar medium and red
zone acidification on TRP plate was in the order of WT<pAB8<pAB7< pJNK3<pJNK4
clearly indicating the enhanced effect of both NADH insensitive citrate synthase and

citrate transporter over wild type citrate synthase in terms of citric acid secretion.

The main objective of the present study was to design a stable and broad host
range expression system for enhancing citric acid secretion which could provide MPS
ability in Rhizobium strains. Considering the stability of the established genetic
modification and to test the efficacy in multiple host system, the 7th Chapter describes
the effect of yc operon integration into the genome of B. japonicum, M. loti and S. fredii
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strain. All these strains are known for nitrogen fixation and other PGPR activities. B.
japonicum, M. loti and S. fredii strains are reported to possess poor P solubilizing ability.
A systematic study was carried out to determine the effects of genomic integration in
TRP broth medium and compare with the wild type and plasmid transformants of yc
operon. MPS phenotype and Pi release of the genomic integrants of all strains decreased

than the plasmid bearing strains (Table 2).

Chapter 8 describes the effect of genomic integration on growth promotion ability
of mung bean plants in alkaline vertisol soil without supplementation of rock phosphate
in green house conditions. Genome integrant of S. fredii NGR234 released 0.56 mM P
released 0.56 mM P from TRP medium as compared to 0.05 mM P of native strain.
Inoculation of S. fredii NGR 234 genome integrant to mung bean plants increased the N
and P levels in soil. Mung bean plants inoculated with genome integrant increased nodule
number, bigger nodules, bacteroids number and nitrogenase activity of nodules. These
plants had more biomass and pods coupled with bigger pods. All parameters showed a
consistent increase in growth compared to control. Improvement in plant growth appears

to be due not only to increased availability of P but also to decreased oxidative stress.

In conclusion, the present study illustrates a novel genetic engineering approach
of enhancing citric acid secretion and MPS ability by genomic integration of NADH
insensitive E. coli ¢s gene along with S. typhimurium sodium dependent citrate
transporter operon constructed under lac promoter in B. japonicum, M. loti and S. fredii
strains. Genomic integration appears to be a better strategy than plasmid based expression
which creates a milestone for getting stable expression system in metabolic engineering
studies. Further, genomic integration of yc operon led to enhanced plant growth
promotion under P limitation and without supplementation of external rock phosphate by
Rhizobium spp. Among B. japonicum, M. loti and S. fredii strains tested, the overall
performance of S. fredii genomic integrants was found to be the better in terms of MPS
ability in laboratory condition and so was further used for growth promotion of mung

bean in green house.
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Future prospective will be to test the efficacy of these strains in field condition
with multiple host plant under different environmental condition to determine their

consistency of P supplementation and other plant growth promotion abilities in
agricultural field conditions.
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Rhizobium Specific Glucose Glucose Biomass yield Specific
Strain Growth Rate Utilized Consumed (fold) glucose Utilization
(fold) mM mM rate (fold)
(fold)
Bj (pAB4) 0.26 - 36.5 1.7 0.15
Bj (pABS) 0.23 - 37.1 1.6 0.17
Bj (pAB3) 0.53(2.1) No change | 29.6 (1.2) 2.2 (1.3) 0.11 (1.4)
Bj (PAB7) 0.33 (1.5) No change | 36.4 (1.4) 2.2 (1.4) 0.12 (1.4)
Bj (PINK3) 0.26 (1.1) No change | 19.6 (1.9) 2.5 (1.6) 0.10 (1.7)
Bj (pINK4) 0.34 (1.5) No change | 19.6 (1.9) 2.5 (1.6) 0.10 (1.7)
Bj (Native) 0.18 - 38.23 1.78 0.14
Bj .IYCV 0.32 (1.7) No change | 33.1(1.2) 2.7 (1.5) 0.09 (1.5)
MI (pAB4) 0.29 No change 36.1 1.6 0.15
MI (pAB8) 0.26 No change 37.1 1.06 0.24
MI (pAB3) 0.48(1.7) No change | 31.6 (1.1) 1.9(1.2) 0.13 (1.2)
MI (pAB7) 0.33(1.3) No change 36.2(1.1) 1.08 0.23
MI (pIJNK3) 0.38(1.5) No change | 20.9(1.8) 1.7 (1.6) 0.14 (1.7)
MI (pJNK4) 0.32(1.3) No change 18.5(2.0) 2.4 (2.2) 0.28 (2.2)
MI (Native) 0.221 - 37.07 1.36 0.19
MI..IYCV 0.38(1.7) No change | 33.6(1.1) 2.8(2.0) 0.09 (2.1)
Sf (Native) 0.26 No change 37.2 1.85 0.15
Sf.IYCV 0.57(2.2) No change | 26.8(1.4) 3.9 (2.1) 0.08(1.9)
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Table 1: Comparative growth and physiological effects of overexpression of ppc, cs, NADH insensitive cs, NADH
insensitive cs along with citC transporter genes in B. japonicum USDAZ110, M.loti MAFF030669 and S.fredii NGR 234
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Table 2 Comparative effects of overexpression of ppc, cs, NADH insensitive cs, NADH insensitive ¢s and citC transporter genes on
enzyme activities in B. japonicum USDA110, M.loti MAFF030669 and S.fredii NGR 234.

GDH activity* PPC activity* | PYC activity* | CS activity* | ICDH Activity* | G-6-PDH activity*

(fold) (fold) (fold) (fold) (fold) (fold)
Bj (pAB4) 14.86 4.98 18.39 18.72 13.17 14.77
Bj (PABS) 12.95 5.23 18.46 18.64 13.51 18.38
Bj (PAB3) 20.2(1.4) 45.6(9.1) 25.6 (1.4) 19.9 24.1(1.8) 26.5(1.8)
Bj (PAB7) 18.9(1.5) 5.57 36.9 (2.0) 56.7(3.0) 28.0(2.1) 18.9
Bj (PINK3) 19.3(1.5) 5.7 41.8(2.3) 62.4(3.4) 26.5(1.9) 28.2(1.5)
Bj (pINK4) 18.4(1.4) 7.3(1.4) 40.3(2.2) 72.3(3.9) 25.7(1.9) 33.5(1.8)
Bj 12.54 3.29 16.29 17.85 11.96 14.89
Bj.IYCV 24.5(2.0) 5.6(1.7) 42.7(2.6) 47.1(2.6) 18.0(1.5) 23.3(1.6)
MI (pAB4) 16.67 5.82 13.97 14.54 14.29 14.9
MI (pABS) 15.8 5.2 15.43 13.89 18.29 19.31
MI (pAB3) | 23.9(1.4) 35.6(6.1) 16.4(1.2) 17.8 16.8(1.2) 29.9(2)
MI (pAB7) 19.0(1.2) 6.2(1.2) 37.0(2.4) 42.1(3.0) 22.3(1.2) 21.4(1.1)
MI (pJNK3) | 20.9(1.3) 6.6 49.4(3.2) 67.0(4.8) 27.9(1.5) 26.5(1.4)
MI (pJNK4) | 18.5(1.2) 7.0(1.3) 50.3(3.3) 64.6(4.7) 26.5(1.5) 23.8(1.2)
Ml 14.9 4.09 15.87 12.86 13.95 14.81
MI..IYCV 19.5(1.3) 5.3(1.3) 40.3(2.5) 54.8(4.3) 25.5(1.8) 21.1(1.4)
Sf 14.36 5.03 17.5 16.0 17.26 16.7
Sf.IYCV 30.3(2.1) 5.5 (1.1) 34.3(2.0) 34.5(2.1) 27.6(1.6) 24.6(1.5)

*All enzyme activities are expressed as nmoles/mg protein

Development of mineral phosphate solubilization ability in Rhizobium spp. by metabolic engineering of tricarboxylic acid cycle

Page 251




Summary

Table 3 Comparative effects of overexpression of ppc, cs, NADH insensitive cs, NADH insensitive ¢s and citC transporter genes on
organic acid production and P solubilization in B. japonicum USDA110, M.loti MAFF030669 and S.fredii NGR 234.

Rhizobium Strain

Gluconic acid

Citric acid mM

Citric acid mM

P release mM

mM (fold) intracellular (fold) extracellular (fold)
(fold)
Bj (pPAB4) 7.3 0.8 0.76 0.078
Bj (pPAB8) 6.6 0.7 0.73 0.050
Bj (PAB3) 16.3 (2.2) 0.8 7.1(9.3) 0.58(7.4)
Bj (pPAB7) 9.5 (1.4) 1.1 7.3(9.9) 0.37 (7.4)
Bj (pJNK3) 26.3 (4.0) 0.7 7.9 (10.8) 0.65(13.0)
Bj (pINKA4) 26.8 (4.10 0.8 10.3 (14) 0.73 (14.6)
Bj 6.2 0.8 0.73 0.05
Bj .IYCV 13.0 (2.0) 0.8 6.9 (9.4) 0.59(12.04)
MI (pAB4) 6.9 0.8 0.76 0.057
MI (pABS) 6.7 1.0 0.76 0.043
MI (pAB3) 14.3 (2.0) 1.2 6.8 (8.9) 0.45 (7.9)
Ml (pAB7) 9.9 (1.5) 0.9 6.0 (7.9) 0.36 (8.3)
MI (pINK3) 25.0 (3.7) 0.8 0.6 (4.9) 0.55 (12.9)
MI (pINK4) 27.6 (4.1) 0.8 10.8 (14.2) 0.73 (17.0)
Ml 6.53 0.8 0.73 0.058
MI..IYCV 12.4 (1.9) 1.1 7.0 (9.6) 0.50 (8.6)
Sf 6.76 15 0.76 0.05
Sf.IYCV 19.2(2.8) 1.1 6.0 (7.9) 0.56 (11.2)
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