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Executive summary 

Observation is the first and one of the most fundamental steps in scientific methodology. In the 

field of biomedical imaging, for observing and accessing information, light microscopy is still 

one of the least invasive and widely used technique. Brightfield light microscopes have several 

features that make them ideal for imaging biological cells, including high lateral resolution 

which matches the size of the sub-cellular structures of the cells. It is also relatively non-

perturbing in nature enabling one to study the biological cells for a longer period to follow their 

dynamics. However, brightfield light microscopes only provide two-dimensional information 

about the sample (cells) under investigation. Moreover, such microscopes provide only low 

contrast images since most biological cells are transparent to visible light. Contrast is improved 

by staining the sample (chemical processing), which may deteriorate its life cycle. Hence, 

techniques that would provide high contrast images of low absorbing samples along with their 

thickness information without the need of staining (labelling) would be highly useful. The 

thickness information could provide knowledge about the state of the health of the cell under 

investigation, leading to its characterization and classification. The advancement in laser 

technology and digital sensors along with holography, extended the horizon of imaging 

techniques. Due to this evolution, the field of biomedical imaging has witnessed immense 

growth but there are still many low and middle-income countries that face major shortages of 

imaging equipment and diagnostic tools which becomes an obstacle for quick and affordable 

diagnosis and treatment of several diseases. Moreover, most of the present-day diagnostic tools 

are required to be operated under stringent conditions, by trained technicians. Therefore, the 

design and development of tools that are rugged, stand-alone, compact, inexpensive as well as 

field deployable, requiring minimum human intervention is essential to address these issues. 

The work described in this thesis, details the efforts that has been made to investigate 

interferometric as well non interferometric techniques for the three-dimensional imaging of 

technical and biological samples using low coherent light emitting diodes (LEDs). The 

developed techniques can image and provide, bio-physical and bio-mechanical parameters of 

samples including human erythrocytes (red blood cells - RBCs), which will be useful in 

examining them for their characterization. LEDs offer certain advantages over laser such as 

they are small, rugged, bright, cost effective, and have a longer lifetime. Moreover, LEDs being 

low temporally coherent, minimizes the effect of speckles and parasitic interference patterns, 

which otherwise acts as a noise in the resulting images. These features of LEDs acted as a 

driving force to use them as an alternative to laser in the developed imaging devices. The use 



of LEDs has also cut down the form factor and the cost of the developed systems. However, 

owing to their low spatiotemporal coherence, it becomes difficult to use LEDs in 

interferometric techniques as it does not generate high contrast interference fringes across a 

significant area (field of view). To tackle this issue, a sincere effort has been put forward to 

incorporate LEDs in interferometric techniques by means of special optical arrangement and 

geometries for performing quantitative phase contrast imaging. Furthermore, the investigated 

designs of digital holographic microscopes (interference microscopes) involving Lloyd’s 

mirror and Fresnel Biprism have been converted into field portable, cost-effective devices 

using off the shelf components and 3D printing of the microscope structure. These devices can 

be used for point-of-care cell characterization, leading to assessment of the sample health. 

Apart from harnessing the low coherent property of LED, its intensity has also been exploited 

for retrieving phase information through Fringe projection technique (non-interferometric 

technique). Further, a Fourier domain optical coherence tomography (FDOCT) system have 

been developed by utilizing LED as the light source to obtain sample depth information. The 

technique is demonstrated as a proof of concept that a sufficiently high-power LED can be used 

as an alternative to super luminescent diodes which are conventionally used to perform OCT 

by making the system compact and cost-effective. The use of low-end CMOS sensors 

(Webcam) as a detector, further reduced the cost of the system.  

 

 

 

 

 

 

 

 

 

 



Chapter 1: Introduction 

Chapter 1 puts forward an introduction and overview to the problem that is addressed in this 

thesis. It provides a brief of the techniques involved in the work and a short discussion and 

introduction to each technique including their pros and cons. Non interferometric and 

interferometric techniques have been discussed which have been implemented to perform 

quantitative phase contrast imaging of RBCs. A lens-less technique has also been discussed 

which has been employed to reduce the aberration that arise due to lens and other optical 

components. FDOCT has also been performed utilizing LED instead of the conventional light 

source used which is the superluminescent diode in order to make the system cost effective.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 2: Coherence 

Chapter 2 discusses about the fundamental and inherent property of the light source; coherence, 

which has a particularly important implication in imaging systems. Broadly speaking, 

coherence has two aspects associated to it, one that focuses on the correlation of a wave with 

itself at different time points is termed as temporal coherence whereas the one that represents 

the mutual coherence of different parts of the same wavefront termed as spatial coherence The 

chapter describes both temporal and spatial coherence and how the use of laser (high coherent 

source) poses some limitations in the imaging system by degrading the image quality (due to 

speckle noise). It also discusses several advantages of utilizing LED (low coherent) as an 

alternative to laser in interferometric as well as non-interferometric techniques which are 

digital holographic microscopy and fringe projection technique respectively. 

 
 

Fig 2. 1 Pictorial representation of temporal and spatial coherence in the case of plane waves 

 

 

 

 



Chapter 3: Fringe Projection Technique 
Chapter 3 focuses on the implementation of a non-interferometric, non-invasive technique for 

generating three-dimensional surface information namely Fringe projection technique which is 

made up of a projection unit, image acquisition unit and a processing unit. In this technique, a 

structured pattern (sinusoidal or grid pattern) is projected on the object under investigation. 

Depth information is encoded in the deformed pattern which is imaged by the digital sensor 

array. This technique can be used in two modes: reflection and transmission. The study focuses 

on shape measurement of optical components such as wedges, cylindrical rods and cylindrical 

lens etc. Further the technique is also implemented to retrieve three-dimensional information 

of human RBCs. 

 

Fig 3.1 Recorded modulation of line pattern projected through a lens and optical system configuration for 
imaging the structured pattern projected through object under investigation. A magnification of 1 is used in the 

simulations 

 

 

Fig 3.2 Schematic of the Fringe projection technique for the measurement of phase objects (Cylindrical glass 
rod and human red blood cells) and their respective results obtained.  

 

 

 



Chapter 4: Theory of holography 

Chapter 4 explains the theory behind the recording and reconstruction of holograms. It also 

describes the mathematical formulation related to the angular spectrum propagation approach 

of the scalar diffraction theory and Fourier fringe analysis that is used to analyse the recorded 

data.  

 
Fig 4.1 Digital hologram reconstruction. Reference wave gets scattered from the structures of the hologram. It is 
numerically propagated to the position where the object existed (virtual image) and Numerical reconstruction of 

digital holograms using ASP approach 

 

 

 
Fig 4.2 Hologram illuminated by the reference wavefront. (b) Power spectrum of the hologram obtained after 

Fourier transform, where three components (un-diffracted reference, real object and virtual object) can be seen. 
(c) Filtered spectrum, which contains only the spatial frequencies corresponding to object alone. This is then 

propagated to the image plane 

 

 

 

 

 

 

 

 

 



Chapter 5: Wide field of view common path self-referencing digital holographic 
microscopy employing LED 

Chapter 5 describes how low coherent source such as LED is integrated as a light source in 

various common path self-referencing geometries to perform quantitative phase contrast 

imaging of human RBCs. The coherence properties of LED are exploited in order to generate 

high contrast interference fringes over a large FOV. Common path self-referencing 

configuration such as Sagnac, Lloyd’s mirror and Fresnel biprism have been explored to 

harness the coherence of LED employing it for performing digital holography microscopy. The 

work also includes increasing the effective FOV by hologram multiplexing. The use of exotic 

wavelength such as UV LED has also been explored for performing the experiment in so as to 

enhance the resolution of the system. The chapter also includes designing and development of 

3D printed, stand alone, portable and cost-effective device based on Lloyd’s mirror 

interferometer and Fresnel Biprism interferometer. A comparative study has also been 

undertaken using the above-mentioned geometries and with a combination of different sources 

and sensors.    

 
Fig 5.1 Diameter of the spatial coherence area increases upon demagnifying the light emitting area of the source. 

 

 

 

 



 
Fig 5.2 Spatial stability (a) spatially varying optical path length using laser source (b) histogram of the spatial 
thickness variation along with the standard computed standard deviation value for laser source. (c) spatially 
varying thickness using LED source (d) histogram of the spatial thickness along with the standard computed 

standard deviation value for LED source. σ in the histogram represents the standard deviation of the optical path 
length 

 

 
Fig 5.3 Self-referencing common path configurations and the results obtained: Fresnel Biprism interferometer, 
Lloyd’s mirror and Sagnac interferometer that were implemented to perform digital holographic microscopy to 

obtain 3D images of human red blood cells utilizing LED as the light source  

 

 

 

 

 

 

 

 



Chapter 6: Large field of view self-referencing lens-less Holographic Microscopy 

Chapter 6 describes the application of lens-less imaging techniques. To attain high-resolution 

imaging, lenses are necessary nevertheless lens-less imaging is serviceable where high 

resolution is not a major requirement. A lens-less digital holographic microscope is developed 

to examine micro- objects by employing lateral shearing interferometer. Furthermore, the lens-

less system would make the microscope compact, easy to implement, portable, robust, and also 

eliminate the aberration introduces due to a lens. 

 

 

Fig 6.1 Schematics and results obtained by implementing lens-less digital holographic microscopy to obtain 
phase images of technical objects such as USAF and numbers written on a microscope slide using a marker pen 

using Laser with lateral shearing interferometer and LED with a pair of Fresnel Biprism interferometer 

 

 

 

 

 

 

 

 

 

 



Chapter 7: Low-cost Optical Coherence Tomographic System using LEDs 

Chapter 7 introduces the theory of Optical coherence tomography (OCT) which is a rapidly 

emerging, robust, non-invasive, three-dimensional sub surface tissue imaging technique. In this 

chapter design of a cost-effective Fourier Domain Optical Coherence Tomography (FD-OCT) 

system which employs an LED source is describes. The LED source offers features such as 

relative simplicity, compactness, robustness. Moreover, LEDs are low cost, unlike Super 

luminescent Diode (SLD) which is the standard light source used in commercially available 

OCT devices. The developed design uses a Webcam instead of a high-end detector to record 

the data. Theoretical formulation of Time domain OCT and Fourier Domain OCT has also been 

discussed in this chapter. 

 

Fig 7.1 General OCT system based on a Michelson interferometer 

 
Fig 7.2 Schematic of the developed low-cost FD-OCT system and Recorded spectral interference pattern for 

10mm path length delay between object and refence paths, intensity profile along the line shown in (a)  



 

Fig 7.2 Reconstructed intensity from the Fourier transforms of the interference pattern for each lateral position 
of the scanning beam. (a) at depth 32mm (b) at depth 58mm (c) at depth 74mm (d) at depth 87mm (e) at depth 

103mm, and (f) at depth 140mm. (g) Variation in reflected light intensity with depth 

 

 

Fig 7.3 Reflected intensity with depth (a) along the dashed red line in Fig. 7.2 b. (c) along the dashed blue line 
in Fig. 7.2 b 
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