LIST OF FIGURES

Figure 2-1	General control structure of grid tied PV system	14
Figure 2-2	Classification of the grid tied PV system topology	15
Figure 2-3	General structure of two -stage grid tied PV system	17
Figure 2-4	General structure of Single –Stage grid tied PV system	18
Figure 2-5	General structure of single-stage PV system with Galvanic Isolation	19
Figure 2-6	Power-voltage PV characteristic	20
Figure 2-7	Flowchart of perturb and observe maximum power point algorithm	21
Figure 2-8	Flowchart of incremental conductance (INC) MPPT algorithm	22
Figure 2-9	Flowchart of modified incremental conductance (INC) MPPT algorithm	24
Figure 2-10	Flowchart of ripple correlation MPPT algorithm	25
Figure 2-11	One-line diagram of a STATCOM	27
Figure 2-12	Per-phase fundamental equivalent circuit	31
Figure 2-13	Phasor diagram for leading and lagging mode	32
Figure 2-14	Vector representation of instantaneous three-phase variables	32
Figure 2-15	Definition of orthogonal coordinates	33
Figure 2-16	Definition of rotating reference frame	34
Figure 2-17	Control structure of grid tied PV system in synchronous reference frame	35
Figure 2-18	Current Control loop of grid tied PV system for stationary reference frame(PR controller)	36
Figure 2-19	Current Control loop of grid tied PV system for dead-beat controller	37
Figure 2-20	Control structure of grid tied PV system using hysteresis current controller	38
Figure 2-21	Control structure of grid tied PV system using sinusoidal pulse width modulation	39

Figure 3-1	Phase lock loop block diagram	46
Figure 3-2	Phase lock loop Linearized block diagram in the complex	46
_	frequency domain	
Figure 3-3	Step response of Phase lock loop	48
Figure 3-4	Block diagram of PLL with quadrature signal generator and	48
i iguie 5	two phase detector	10
Figure 3- 5	Block diagram of SRF- PLL	49
Eiguro 3 6	Simulation results of SRF-PLL during Phase Jump of 90° at	50
Figure 5- 0	t=0.1 second	
Eiguro 2 7	Simulation results of SRF-PLL during voltage Imbalance of 10%	51
Figure 5- 7	on phase-B	51
F ' 2.0	Simulation results of SRF-PLL during 5th Harmonic content in	50
Figure 3-8	grid voltages (5%)	52
F: 2.0	Simulation results of SRF-PLL during balanced voltage change	50
Figure 3- 9	(Voltage Sags and Dips)	53
Figure 3-10	Voltage vectors of unbalanced three phase system	55
Figure 3- 11	Voltage vector on stationary and synchronous reference frame	56
Figure 3-12	Voltage vector representation	57
	Dynamic performance of DDSRF-PLL during balanced grid	
Figure 3-13	voltages, unbalanced in phase B of grid voltages, and distorted	61
	grid voltages	
Eigung 2 14	Dynamic performance of DDSRF-PLL during balanced grid	62
Figure 5- 14	voltages, and unbalanced in phase B of distorted grid voltages	05
	(a) Basic structure of Second-order generalized integrator, (b)	
Figure 3-15	Bode diagram of transfer function $(Y(s) / Vin (s))$ and $(Y'(s) / Vin (s))$	65
	Vin (s))of SOGI, and (c) Step response of SOGI	
	(a) Block diagram of SOGI-OSG, (b) Bode Diagram of	
Figure 3-16	$D_v(s)$, and (c) Bode Diagram of $Q_v(s)$ with different value of	66
	k	
	(a) Block diagram of SOGI-FLL, and (b) the Bode diagram of	
Figure 3-17	transfer functions, E_v (s) and Q_v (s)(dotted line shows the SOGI	
	resonance frequency (ω'))	67

Figure 3.18	Schematic diagrams of the Decouple SOGI and phase-angle	
Figure 5-16	computation	69
Figure 3-19	Phasor diagram of direct/quadrature components of v_{α} and v_{β}	70
	grid voltage	70
Figure 3-20	Bode plot of transfer functions $\frac{ \mathbf{v}_{\alpha\beta}^+ '}{ \mathbf{v}_{\alpha\beta}^+ }$ and $\frac{ \mathbf{v}_{\alpha\beta}^+ '}{ \mathbf{v}_{\alpha\beta}^- }$ in the	71
	Decouple- SOGI	
	Step response of Frequency Estimation (a) different value of k	
Figure 3-21	,constant value γ =5000, (b) different value of k ,constant value	72
115010 5 21	γ =10000, (c) different value of γ ,constant value k=1, and (d)	
	different value of γ ,constant value k=0.5	
	Simulation result of grid connected PV inverter using decouple-	
Figure 3-22	SOGI-FLL :(a)PCC voltages with grid abnormalities,(b)positive	74
1 iguite 5 22	component of stationary frame voltages, (c)comparative results	, ,
	of phase-angle and PCC voltages, and (d)frequency extraction	
Figure 3-23	Time responses of frequency extraction in different grid	75
1 iguie 5-25	synchronization techniques	75
Figure 3-24	DC offset elimination IIR high-pass Filter	79
Figure 3-25	Bode plot of IIR high pass filter by taking different value of k	80
Figure 3-26	Functional diagram of MSOGI-FLLL	81
Figure 3-27	Bode diagram of MSOGI-FLL by choosing the value of k and k'	83
Figure 4-1	A power circuit diagram of single stage grid tied PV system	88
Figure 4- 2	Conceptual Power theory for grid tied PV system	89
Figure 1 3	Control mechanism of single stage grid tied PV system in	01
11guie 4- 5	Synchronous reference frame	71
	Flow-chart of Increment-conductance MPPT algorithm,(b) PV	
Figure 4- 4	characteristic of PV panel with different temperature, and (c) PV	96
	characteristic of PV panel with different solar irradiance	
Figure 4- 5	Block diagram for a Power factor correction	100
Figure 4- 6	Control for mode of operation	102
	Dynamic performance of multipurpose single-stage PV	10.4
rigure 4- /	system during full-PV mode (reverse power flow)	104

Figure 4- 8	Dynamic performance of multipurpose single-stage PV system during full-PV mode (forward power flow)	106
Figure 4- 9	Dynamic performance of multipurpose single-stage PV system during Partial PV & Partial-STATCOM mode	108
Figure 4- 10	Dynamic performance of multipurpose single-stage PV system during Full-STATCOM mode	110
Figure 4- 11	Dynamic performance of multipurpose single-stage PV system (PV-STATCOM) during power factor correction	112
Figure 4- 12	Simulation results of MODE A and MODE B (a) P_{pv} (W)and Irriandance $\left(Irr, \frac{w}{m^2}\right)$,(b) V_{dc} and $V_{dc(ref)}$ (c) PV current (I_{dc}), (d) d-q axis PCC voltage, (e) d-q axis inverter current ,(f))grid current, inverter current , load current and theta	117
Figure 4- 13	Simulation results of MODE A and MODE B(a)Active Power of P_g (W), P_{inv} (W), P_{load} (W), P_{pv} (W)and Irriandance $(Irr, \frac{w}{m^2})$,(b) Reactive Power of Q_g (W), Q_{inv} (W), Q_{load} (W)(c) PCC voltage (Phase a) and, (d)grid current, inverter current, load current	118
Figure 4- 14	Simulation result of Multipurpose PV system connected to capacitive load at PCC (a) Phase a of PCC voltage, and (b) phase a of grid current, inverter current, and load current	119
Figure 4- 15	Simulation result of Multipurpose PV system connected to inductive load at PCC (a) Phase A of PCC voltage, and (b)phase A of grid current, inverter current, and load current	120
Figure 4-16	Functional diagram of Hysteresis current controller	121
Figure 4- 17	Hysteresis current control mechanisms	122
Figure 4-18	Functional diagram of grid tied system	123
Figure 4- 19	Basic block schematic of LCL type filter	125
Figure 4-20	Bode Plots for general filter variants	127
Figure 4- 21	Bode plot for LCL type filter considering different conditions	127
Figure 4- 22	Control mechanism of single stage grid tied PV system in	128

	abc reference frame	
	Simulation result of Multipurpose PV system connected to	
Figure A_{-} 23	non-linear load at PCC (a) PCC voltage, (b) grid currents,	130
Figure 4- 25	(c) inverter currents, (d) load currents, and (e) dc-link	
	voltage	
Figure 1 24	Functional and Phasor diagram of grid tied PV system	132
Figure 4- 24	during power injection into a grid	132
Figure 1 25	Power curve for PV panel using sin angle based dc current	133
rigure 4- 25	sensor-less MPPT	155
E'	Power curve for PV panel using modified dc current sensor-less	
Figure 4- 20	MPPT	136
	Tracking the change in V _{PV} [Upper Trace: Voltage Generated by	
F ' 4 07	PV Array (Red): X axis: 1 Div. = 20 mSec, Y axis : 1 Div. = 5 V;	100
Figure 4- 27	Lower Trace: Reference Voltage Generated by MPPT Algorithm	130
	(Blue): X axis : 1 Div. = 20 mSec, Y axis : 1 Div. = 5 V]	
	Dynamic performance of Multipurpose PV system using a	
Figure 4- 28	modified DC current sensor-less MPPT and synchronous frame	138
	current control	
Figuro 5 1	Target Simulink/MATLAB diagram for the control system of	145
Figure 5-1	Multifunction Single-stage grid tied PV System	145
	Schematic Diagram of (a) voltage Hall sensor circuit, (b) AC	
Figure 5-2	voltage sensor circuit using Potential divider and voltage	147
	transformer, and(c) current transformer circuit with DC-bias	
Figure 5-3	Configuration view of A/D converter in the target Simulink	149
Figure 5-4	Configuration view and Pin assignment of A/D converter in the	
	target Simulink	150
Figure 5-5	Configuration schematic of Start/Stop of gating pulses control in	151
11501000	the target Simulink	101
Figure 5-6	Configuration schematic of DC signal conditioning in the target	152
1.801000	Simulink	10-
	Configuration schematic of DQ transformation for (a) three phase	
Figure 5-7	inverter currents, and (b) three phase load currents in the target	153
	Simulink	

Figure 5-8	Configuration schematic of modified SOGI-FLL and angle	154
	computation block in the target Simulink	134
Figure 5-9	Configuration schematic of DQ transformation for the three	
	phase voltage signal in the target Simulink	155
Figure 5-10	Test bench schematic diagram for Modified SOGI-FLL by	
	designing programmable source in the target Simulink	156
	Experimental results obtained from test bench of SOGI-FLL and	
	measured during 10% frequency and 45° phase shift in grid	
F igure 5 , 11	voltages: (a) three-phase voltage signals and phase -angle of	157
Figure 5-11	grid, (b)Zoom view of phase-a voltage signal of three phase and	157
	phase(c) dynamic performance of angular frequency,	
	and(d)Zoom view of dynamic performance of angular frequency	
Eigung 5 10	Experimental results obtained from test bench of SOGI-FLL	150
Figure 5-12	during 50% balanced sag in the grid voltages	158
	Experimental results for grid synchronization during grid	
	voltages effected by the harmonics, and (b) Experimental results	
Figure 5-13	of single-phase grid interfaced voltage source converter (Time	159
	scale:10ms//div) : i_g (Pink and blue; Scale 2A/div), v_g (Orange;	
	Scale: 40V/div), and theta(green)	
Figure 5-14	Configuration View and m-file of modified MPPT algorithm	160
Eigung 5 15	Configuration View of synchronous frame inner current	160
Figure 5-15	control loop	102
	Experimental results of inner current control loop obtained in	
	grid-tied PV system without outer voltage controller by taking	1.62
Figure 5-16	$i_{inverter(ref)_d}$ = -2 A and $i_{inverter(ref)_q}$ = 0, Conventional PV	163
	system	
	Experimental results of inner current control loop obtained in	
Figure 5-17	grid-tied PV system without outer voltage controller obtained by	
	taking (a) $i_{inverter(ref)_d}$ = -2 A and $i_{inverter(ref)_q}$ = +1.5, and	164
	(b) $i_{inverter(ref)_d} = -2$ A and $i_{inverter(ref)_q} = -1.5$, Partial PV-	
	STATCOM	
Figure 5-18	Experimental results of inner current control loop obtained in	165

	grid-tied PV system without outer voltage controller obtained by	
	$i_{inverter(ref)_d} = 0A$ (a) $i_{inverter(ref)_q} = +1.5$, and	
	(b) $i_{inverter(ref)_q} = -1.5$, Full -STATCOM	
Figure 5 10	Configuration view of PWM generation block in target Simulink	166
rigure 5-19	file	100
Figure 5 20	Configuration view of Display unit and DSO unit in target	167
rigure 5-20	Simulink file	107
Figure 5-21	Configuration View and m-file Protection algorithm of system	168
Figure 5_2 ?	Schematic of experimental set-up of Single Stage grid tied PV	171
1 iguite 5-22	system	1/1
Figure 5-23	Experimental set-up of Single Stage grid tied PV system	172
	Dynamic performance of single stage grid tied PV system	
Figure $5-24$	during variable solar irradiance (Time scale:60ms//div) : v_{PCC}	176
11guit 5-24	(Red; Scale 75V/div), i _{source} (Pink; Scale: 4A/div), P _{PV} (Blue;	170
	Scale: 500W/div), and id (green Scale: 4A/div)	
	Dynamic performance of single stage grid tied PV system	
Figure 5-25	during variable solar irradiance (Time scale:60ms//div) : v_{PCC}	176
1 iguie 5-25	(Red; Scale 75V/div), i _{source} (Pink; Scale: 4A/div), P _{PV} (Blue;	170
	Scale: 500W/div), and id (green Scale: 4A/div)	
	(a)Dynamic Performance of DC-bus reference voltage and DC-	
	bus voltage and d-axis current synchronous reference frame.	
Figure 5-26	(Time scale:2ms//div) : V_{DC} (purple)and $V_{DC_{ref}}$ (orange) : Scale:	177
	110V/div, and i_d (cyan)Scale: 1A/div, and (b) the PV curve	
	characteristics	
	Waveform of sensed Phase-A PCC voltage and sensed three	
	phase inductive load currents, (b)Experimental Results of PV	
	inverter without reactive power support at grid side, and (c)	
Figure 5-27	Experimental Results of PV inverter with reactive power	180
	support at grid side(Time scale:10ms//div) : v_{PCC} (Red; Scale	
	75V/div), i _{source} (Pink; Scale: 0.4A/div), i _{inverter} (Blue; Scale:	
	1.6A/div), and i _{load} (green Scale: 0.5A/div)	
Figure 5-28	Experimental results(Time scale:10ms//div) (a) PCC voltage of	181

	Phase-A(Orange; Scale 75V/div), Source current of Phase-	
	A((Cyan; Scale 1A/div), load current of Phase-A(Purple:Scale-	
	2A/div), and grid angle(green), and (b) PCC voltage of Phase-A,	
	Source current of Phase-A, load current of Phase-A, and inverter	
	current of Phase-A(green: scale :2A/div	
	Dynamic results of PCC voltage of Phase-A, Source current of	
	Phase-A, inverter current Phase-A, and load current of Phase-A	
E	(Time scale:10ms//div) : PCC voltage of Phase-A(Red: Scale	100
Figure 5- 29	50V/div), Source current of Phase-A((Pink), load current of	182
	Phase-A(Blue), and load current of Phase-A, (green), from no	
	load to inductive load of 1 A	
	Zoom view of Figure 5-29 and experimental results of PCC	
Figure 5-30	voltage of Phase-A, Source current of Phase-A, inverter current	183
	Phase-A, and load current of Phase-A.	
F' 5 21	Experimental results during PCC voltage control(Source current	
Figure 3-51	phase-A, q-axis inverter current, and line to line grid voltage):	184
	(a) without PCC voltage control, and(b) with voltage control	
	Experimental results during PCC voltage control(inverter	
Figure 5-32	current phase-A, solar power, and line to line grid voltage): (a)	184
	without PCC voltage control, and(b) with voltage control	

LIST OF TABLES

Table 3-1	Impact Analysis of SOGI-FLL	73
Table 3-2	Time response of frequency extraction and performance assessment of different grid synchronization techniques.	75
Table 3-3	Highlights of Comparative Performance Assessment	84
Table 4-1	Summary of performance evaluation for multipurpose single stage PV system in Full-PV mode	103
Table 4-2	Summary of performance assessment for multipurpose single stage PV system in Full-PV mode (Forward power flow)	105
Table 4-3	Summary of performance assessment for multipurpose single stage PV system in PV-STATCOM mode	107
Table:4-4	Summary of performance assessment for multipurpose single stage PV system during Night time	111
Table 5-1	PV PANEL AND CONVERTER SPECIFIACTIONS	173
Table-5-2	Possible Variations in Modified DC current Sensor-less MPPT	178

LIST OF ABBREVIATION

DG	Distributed Generations
SCs	Shunt Capacitor Banks
OLTCs	On Load Tap Changer
SVR	Step Type Regulator
SVC	Static VAR Compensator
STATCOM	Static Synchronous Compensator
VSI	Voltage Source Inverter
VSC	Voltage Source Converter
PV	Photovoltaic
SOG	Second Ordered Generalized Integrator
SRF	Synchronous Reference Frame
DSRF	Double Synchronous Reference Frame
DDSRF	Decouple Double Synchronous Reference Frame
DSOGI	Dual Second Ordered Generalized Integrator
FLL	Frequency Lock Loop
PLL	Phase Lock Loop
TOV	Transient Over Voltage
PCC	Point Of Common Coupling