LIST OF FIGURES

Figure 1 Distribution of caspases, paracaspases and metacaspases in different kingdoms and
their evolutionary relationship22
Figure 2 Map of Gateway entry vector pDONR20743
Figure 3 Map of Gateway destination vector pMDC3244
Figure 4 Map of Gateway destination vector pMDC16345
Figure 5 Map of plasmid pRS30046
Figure 6 Cloning strategy of amiRNA46
Figure 7 Phylogenetic tree showing relationship between different metacaspases from S.
lycopersicum and A. thaliana
Figure 8 Conserved domains in tomato metacaspases49
Figure 9 Multiple sequence alignment using amino acid sequences of metacaspase from S.
lycopersicum and A. thaliana
Figure 10 Promoter cis regulatory element analysis of tomato metacaspase52
Figure 11 Chromosomal distribution of tomato metacaspases53
Figure 12 Gene structure of tomato metacaspases53
Figure 13 qRT-PCR analysis of SolycMC1 expression levels in various vegetative and
reproductive tissues of tomato
Figure 14 qRT-PCR analysis of SolycMC1-L1 expression in vegetative and reproductive
tissues of tomato
Figure 15 qRT-PCR analysis of SolycMC1-L2 expression in vegetative and reproductive
tissues of tomato
Figure 16 qT-PCR analysis of SolycMC3 expression in vegetative and reproductive tissues of
tomato
Figure 17 qRT-PCR analysis of SolycMC3-L1 expression levels in vegetative and
reproductive tissues of tomato
Figure 18 qRT-PCR analysis of SolycMC3-L2 expression in different vegetative and
reproductive tissues of tomato
Figure 19 qRT-PCR analysis of SolycMC4 expression levels in different vegetative and
reproductive tissues of tomato. Values
Figure 20 qRT-PCR analysis showing expression of SolycMC9 in different vegetative and
reproductive tissues of tomato
Figure 21 Expression analysis of SolycMC4 using PromSolycMC4::GUS line62
Figure 22 Target site of amiRNA used for silencing of SolycMC4 gene63

Figure 23 Growth of 35S::amiRNA-SolycMC4 silencing line T1 and control plantlets
cultured invitro
Figure 24 Growth of 35S::amiRNA-SolycMC4 silencing line T1 and control plants in potted
soil
Figure 25 Stem anatomical of amiRNA-SolycMC466
Figure 26 Phenotypic characterization of in vitro grown plantlets of amiRNA-SolycMC4
silencing lines and its comparison with control
Figure 27 chlorophyll content and anthocyanin content estimated in the leaves of amiRNA-
SolycMC4 expressing lines and control70
Figure 28 Detection of H ₂ O ₂ production by DAB histochemical analysis in the leaf and root
of amiRNA-SolycMC4 line and control71
Figure 29 Activity of Antioxidant enzymes, Catalase, guaiacol peroxidase, superoxide
dismutase and ascorbate peroxidase in the leaves of amiRNA-SolycMC4 lines and control
plants73
Figure 30 Expression analysis of ROS scavenging genes, APX1, Catalase, Cu/Zn SOD and
PXD27 in amiRNA-SolycMC4 lines and control plants74
Figure 31 senescence, chloroplast and mitochondria related marker genes expression analysis
of amiRNA-SolycMC4 line and control77
Figure 32 Expression analysis of various autophagy and cell death marker genes in plants of
amiRNA-SolycMC4 line and control79
Figure 33 Subcellular localization of SolycMC4::GFP fusion protein in the protoplast of
tomato81
Figure 34 Summary of Effects of SolycMC4 silencing in Tomato plant
Figure 35 Possible roles of SolycMC4 in plant development