
Chapter 3

Fixed Point Results on F-contraction

in Rectangular b-metric Space

In this chapter, some new fixed point theorems are provided for F-contraction on

rectangular b-metric spaces in which maps need not be continuous. Especially, we

derive a common fixed point theorem for two pairs of weakly compatible mappings

for a new type of F-contraction on rectangular b-metric spaces (not necessarily

continuous). Our results not only generalize many known results in the literature

but also improve some of the results therein. In addition, the results are justified

by appropriate examples and deployed to examine the existence and uniqueness of

solutions for a system of Volterra integral equations.

3.1 Introduction

The famous result of Banach (1922), celebrated as the Banach Contraction Principle.

Many researchers generalized this fixed point result in different metric spaces like b-

metric space (Bakhtin (1989), Goswami et al. (2019)) and rectangular metric space

(Branciari (2000), Azam and Arshad (2008)).
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The study of common fixed points was initiated by Jungck (1976) and Jungck (1986)

and this concept attracted many researchers to prove the existence of fixed points

by using various metrical contractions. Some authors proved the existence and

uniqueness of common fixed points for two or more than two maps (Rhoades et al.

(1987)).

George et al. (2015) introduced the concept of rectangular b-metric space, which was

not necessarily Hausdorff and which generalized the concept of metric space, RMS,

and b-metric space. He also proved Banach and Kannan’s fixed point theorems

for rectangular b-metric space. Then Mitrović and Radenović (2017) established a

common fixed point for two maps in such space.

3.2 Rectangular b- metric Space (RbMS)

Definition 3.2.1. (George et al. (2015)) Let X be a nonempty set with the coefficient

s ≥ 1, and the mapping d̂ : X ×X → [0,∞) satisfies the following:

(1) d̂(x, y) = 0 if and only if x = y,

(2) d̂(x, y) = d̂(y, x), for all x, y ∈ X,

(3) d̂(x, y) ≤ s[d̂(x,w) + d̂(w, z) + d̂(z, y)], for all x, y ∈ X and for all distinct

points w,z ∈ X − {x, y}.

Then (X, d̂) is called a rectangular b- metric space(in short RbMS).

Remark 3.2.1.1. Every metric space is a RMS and every RMS is a RbMS(with

coefficient s = 1), however, the converse is not always true. [see Example 1.4.2.1

and next Example 3.2.2 ]

The notions of Cauchy sequence, convergence, and completeness in a RbMS are

defined the same as the metric space.
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Remark 3.2.1.2. (1) Limit of a sequence in a RbMS is not always unique and

also every convergent sequence in RbMS is not essentially a Cauchy sequence.

Further, RbMS is not a continuous map.

(2) In RbMs, the open balls are not always open and (X, d̂) is not Hausdorff.

(George et al., 2015) defined the following example using the α
2n

term in place of α
2ny

.

As a result, we alter his example as follows, which justifies the preceding statements.

Example 3.2.2. Let X = U ∪ V , where U = { 1
n
: n ∈ N} and V denotes the

collection of all positive integers. Define d̂ : X ×X → [0,∞) with d̂(x, y) = d̂(y, x)

for all x, y ∈ X and

d̂(x, y) =



2α ;x, y ∈ A

α
2ny

;x ∈ A and y ∈ {2, 3}

α ; otherwise

0 ;x = y,

(3.1)

where α > 0 is a constant. Then (X, d̂) is a RbMS with s = 2 > 1. Now we have

the following:

(i) d̂(1
2
, 1
3
) = 2α ≥ 83

72
α = d̂(1

2
, 2) + d̂(2, 3) + d̂(3, 1

3
) and hence (X, d̂) is not a

rectangular metric space.

(ii) Here d̂( 1
n
, 2) and d̂( 1

n
, 3) → 0 as n → ∞. So, the limit is not unique. Also,

d̂( 1
n
, 1
n+1

) = 2α ↛ 0 as n → ∞. Therefore, { 1
n
} is not a Cauchy sequence in

RbMS.

(iii) limn→∞ d̂( 1
n
, 2) = 0 ̸= d̂(0, 2) = α. So, d̂ is not a continuous function.

41
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(iv) Bα
2
(1
2
) = {2, 3, 1

2
}, which is not an open set. Also, there does not exist any

r1, r2 > 0 such that Br1 ∩Br2 = ϕ. That means, (X, d̂) is not Hausdorff.

As we know, a sequence in a RbMS may have two limits. But, there is a special case

where this is not possible, and this will be incorporated into our results, as shown

by the following result.

Theorem 3.2.3. (Roshan et al. (2016)) Let (X, d̂) be a RbMS with s ≥ 1 and let

{xn} be a b-rectangular-Cauchy sequence in X such that xn ̸= xm whenever n ̸= m.

Then {xn} can converge to at most one point.

3.3 Wardowski F-Contraction

Wardowski (2012) introduced a new type of contraction called F-contraction.

Definition 3.3.1. Let (X, d̂) be a metric space, then a mapping T : X → X is

said to be a Wardowski F-contraction if there exists τ > 0 such that d̂(Tx, Ty) > 0

implies

τ + F (d̂(Tx, Ty)) ≤ F (d̂(x, y)) ;∀ x, y ∈ X, (3.2)

where, F : (0,∞) → R is a continuous mapping satisfying the following conditions:

(F1) F is strictly increasing.

(F2) For each sequence {αn}n∈N of positive numbers lim
n→∞

αn = 0 if and only if

lim
n→∞

F (αn) = −∞.

(F3) There exists k ∈ (0, 1) such that lim
α→0+

αkF (α) = 0.

Examples of such type of functions that satisfy all the properties from (F1) to (F3)

are as follows:
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Example 3.3.2. 1. F (x) = ln(x);x > 0.

2. F (x) = ln(x2 + x);x > 0.

3. F (x) = x+ ln(x);x > 0.

4. F (x) = −1
xp ; p > 0.

5. F (x) = 1
1−ex

;x > 0.

6. F (x) = x− 1
x
;x > 0.

Khan et al. (2016) derived fixed point results for F-contraction involving rational

expressions in metric space. In the recent year, Sholastica et al. (2019) and Wangwe

and Kumar (2021) obtained fixed point results on F-contraction. Vujaković et al.

(2020) derived Wardowski type F-contraction fixed point results for the setting of

four continuous maps and Fabiano et al. (2020) obtained fixed point theorems on

W-contraction (F-contraction) of Jungck-Ciric-Wardowski type in metric space. Re-

cently, Radenović et al. (2021) proved fixed point theorems on F-contraction with

only one condition. i.e. F be strictly increasing.

Since F is an increasing function, it is easily seen that every Wardoski’s F-contraction

mapping is a contraction mapping and hence continuous (Goswami et al. (2019)).

However, the mappings which have been found here need not be continuous. Also,

the continuity of the metric space is not necessary.

3.4 F-contraction Fixed Point Results in RbMS

The next result generalizes Wardoski’s theorem for the setting of four maps in RbMS.

Theorem 3.4.1. Suppose that A, B, S, and T are self-maps on a complete rectangu-

lar b-metrics space (RbMS) X with coefficient s > 1 such that AX ⊂ TX,BX ⊂ SX
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and if there exists τ > 0 such that d̂(Ax,By) > 0 implies

τ + F (d̂(Ax,By)) ≤ F (α(x, y)) ;∀x, y ∈ X, (3.3)

where,

α(x, y) = max{d̂(Sx, Ty), d̂(Ax, Sx), d̂(By, Ty), d̂(Ax, Ty)}.

If one of the ranges AX,BX, TX and SX is a closed subset of (X, d̂), then

(i) A and S have a coincidence point.

(ii) B and T have a coincidence point.

Moreover, if the pairs {A, S} and {B, T} are weakly compatible, then A, B, T and

S have a unique common fixed point.

Proof. Let x0 ∈ X. Since AX ⊂ TX, there exists x1 ∈ X such that Tx1 = Ax0,

and BX ⊂ SX, there exists x2 ∈ X such that Sx2 = Bx1. Continuing this process,

we can construct sequences {xn} and {yn} in X defined by

y2n = Tx2n+1 = Ax2n, y2n+1 = Sx2n+2 = Bx2n+1 ;∀n ∈ N.

First of all it is shown that {yn} is a Cauchy sequence in the RbMS.

From the equation (3.3) with x = x2k and y = x2k+1, one obtains

τ + F (d̂(Ax2k, Bx2k+1)) ≤ F (α(x2k, x2k+1)),

where,

α(x2k, x2k+1) = max{d̂(y2k−1, y2k), d̂(y2k+1, y2k)}.

If α(x2k, x2k+1) = d̂(y2k+1, y2k), then τ ≤ 0, which contradicts with τ > 0.
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This means α(x2k, x2k+1) = d̂(y2k−1, y2k). Therefore, one finds that

τ + F (d̂(y2k, y2k+1)) ≤ F (d̂(y2k−1, y2k)). (3.4)

Similarly, one obtains

τ + F (d̂(y2k+1, y2k+2)) ≤ F (d̂(y2k, y2k+1)). (3.5)

Therefore, from (3.4) and (3.5),

F (d̂(yn, yn+1)) ≤ F (d̂(yn, yn−1))− τ ; ∀ n ≥ 1. (3.6)

Likewise,

F (d̂(yn, yn+1)) ≤ F (d̂(yn−1, yn−2))− 2τ.

Continuing this process, one arrives at

F (d̂(yn, yn+1)) ≤ F (d̂(y0, y1))− nτ. (3.7)

Letting n→ ∞, we have

lim
n→∞

F (d̂(yn, yn+1)) = −∞,

which together with condition (F2) of definition 3.3.1 gives

lim
n→∞

d̂(yn, yn+1) = 0. (3.8)
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By using the condition (F3) of definition 3.3.1, there exists k ∈ (0, 1) such that

lim
n→∞

(d̂(yn, yn+1))
kF (d̂(yn, yn+1)) = 0. (3.9)

From (3.7), one infers the following for all n ∈ N.

(d̂(yn, yn+1))
k(F (d̂(yn, yn+1))− F (d̂(y0, y1))) ≤ −(d̂(yn, yn+1))

knτ ≤ 0. (3.10)

From (3.8),(3.9) and letting n→ ∞ in (3.10), one gets

lim
n→∞

(n(d̂(yn, yn+1))
k) = 0. (3.11)

This implies that, there exists n0 ∈ N, such that n(d̂(yn, yn+1))
k ≤ 1 for all n ≥ n0

d̂(yn, yn+1) ≤
1

n1/k
;∀n ≥ n0. (3.12)

Since (X, d̂) is a RbMS, one gets

d̂(yn, yn+p) ≤ s[d̂(yn+p, yn+p−1) + d̂(yn+p−1, yn−1) + d̂(yn−1, yn)] ; p > 0.

Again using the same property of RbMS and from (3.12), one arrives at

d̂(yn+p, yn) ≤
s

1− s
{ 1

(n+ p− 1)1/k
+

1

(n− 1)1/k
}.

Thus, {yn} is a b-rectangular Cauchy sequence. Since X is complete, there exists

w ∈ X such that

lim
n→∞

yn = w, (3.13)
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which yields

d̂(w,w) = lim
n→∞

d̂(yn, w) = 0.

Thus, one finds that

lim
n→∞

d̂(Ax2n, w) = lim
n→∞

d̂(Tx2n+1, w) = 0.

and

lim
n→∞

d̂(Bx2n−1, w) = lim
n→∞

d̂(Sx2n, w) = 0. (3.14)

Now without loss of generality, one can suppose that SX is a closed subset of the

RbMS (X, d̂). From(3.14), there exists z ∈ X such that w = Sz.

Claim: d̂(Az,w) = 0.

Suppose to the contrary, d̂(Az,w) > 0. For this, there exists an n1 ∈ N such that

d̂(Az, y2n) > 0 for all n ≥ n1 (otherwise, there exists n2 ∈ N such that yn = Az for

all n ≥ n2, which implies that yn → Az. This is a contradiction, since w ̸= Az).

Since d̂(Az, y2n) > 0, from contractive condition (3.3), one gets

τ + F (d̂(Az, y2n)) ≤ F (α(z, x2n)), (3.15)

where,

α(z, x2n) = max{d̂(Sz, y2n−1), d̂(Az, Sz), d̂(y2n, y2n−1), d̂(Az, y2n−1)}.

Taking n→ ∞ in (3.15), one concludes that

τ + F ( lim
n→∞

d̂(Az, y2n)) ≤ F ( lim
n→∞

d̂(Az, y2n−1)),
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which contradict with τ > 0. So,

Az = w = Sz. (3.16)

Hence, A and S have coincidence point z. Since, AX ⊂ TX and from equation

(3.16), we have w ∈ TX. So, there exists v ∈ X such that w = Tv. With the use

of a similar procedure, one can deduce that Bv = w = Tv. Hence, B and T have

coincidence point v.

Since, the pair {A, S} is weakly compatible, from (3.16) one comes across

Aw = ASz = SAz = Sw.

Next, one claims that d̂(Aw,w) = 0. Suppose, d̂(Aw,w) > 0.

From contractive condition (3.3), one can derive

τ + F (d̂(Aw, y2n)) ≤ F (α(w, x2n)), (3.17)

where,

α(w, x2n) = max{d̂(Sw, y2n−1), d̂(Aw, Sw), d̂(y2n, y2n−1), d̂(Aw, y2n−1)}.

Taking n→ ∞, from (3.17), one has

τ + F ( lim
n→∞

d̂(Aw, y2n) ≤ F ( lim
n→∞

d̂(Aw, y2n−1)).

Again it contradicts the fact that τ > 0.

So, Aw = w = Sw. Therefore, w is the common fixed point of A and S. Similarly,

Bw = w = Tw.
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Hence, w is the common fixed point of A, B, S and T . It is easy to check that w is

the unique common fixed point.

If one puts A = B and S = T , the contractive condition (3.3) leads to be following

result:

Corollary 3.4.2. Suppose that A and T are self-maps on a complete rectangular

b-metric space X with s > 1 such that AX ⊂ TX and if there exists τ > 0 such that

d̂(Ax,Ay) > 0 implies

τ + F (d̂(Ax,Ay)) ≤ F (α(x, y)) ;∀x, y ∈ X, (3.18)

where,

α(x, y) = max{d̂(Tx, Ty), d̂(Ax, Tx), d̂(Ay, Ty), d̂(Ax, Ty)}.

If range AX or TX is a closed subset of (X, d̂), then A and T have a coincidence

point. Moreover, if the pair {A, T} is weakly compatible, then A and T have a unique

common fixed point.

Example 3.4.3. Let X = U ∪ V , where U = {1, 1
2
, 1
3
} and V={2,3}.

Define d̂ : X ×X → [0,∞) such that d̂(x, y) = d̂(y, x) ;∀x, y ∈ X and

d̂(x, y) = 0 if x = y,

d̂(1,
1

2
) = d̂(1,

1

3
) = d̂(

1

2
,
1

3
) = 1; d̂(1, 2) = d̂(

1

2
, 2) = d̂(

1

3
, 2) =

1

8
,

d̂(1, 3) = d̂(
1

2
, 3) = d̂(

1

3
, 3) =

1

12
; d̂(2, 3) =

1

2
.

Note that (X, d̂) is a RbMS with coefficient s = 2, but not a RMS and metric space.

Define the mappings T , A : X → X by T (x) = 1
x

and A(x) =


1, ;x ∈ U

x− 1 ;x ∈ V.

We have AX ⊂ TX = X.
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(i) When x ∈ U and y ∈ V (vice versa).

For y = 2, we have a trivial case. So take y = 3, one gets

d̂(Ax,Ay) = d̂(1, 2) =
1

8
,

d̂(Tx, Ty) = d̂(
1

x
,
1

y
) = d̂(

1

x
,
1

3
) = 1 or

1

8
or

1

12
,

d̂(Ax, Tx) = d̂(1,
1

x
) = 0 or

1

8
or

1

12
,

d̂(Ay, Ty) = d̂(y − 1,
1

y
) =

1

8
,

d̂(Ax, Ty) = d̂(1,
1

y
) = 1.

Hence,

α(x, y) = 1.

From (3.18)

τ + ln
1

8
≤ ln1.

Implies that

τ ≤ ln8.

(ii) When x ∈ V and y ∈ V .

It is trivial if x = y. So, we should take x = 2 and y = 3 (vice versa).

One obtains

d̂(Ax,Ay) = d̂(1, 2) =
1

8
,

d̂(Tx, Ty) = d̂(
1

x
,
1

y
) = d̂(

1

2
,
1

3
) = 1,

d̂(Ax, Tx) = d̂(1,
1

2
) = 1,

d̂(Ay, Ty) = d̂(y − 1,
1

y
) = d̂(2,

1

3
) =

1

8
,

d̂(Ax, Ty) = d̂(1,
1

y
) = d̂(1,

1

3
) = 1.
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From (3.18)

τ + ln
1

8
≤ ln1.

That is

τ ≤ ln8.

(iii) When x ∈ U and y ∈ U , The case is trivial.

let τ = ln8 and F (x) = lnx. The equation (3.18) is satisfied. Hence, 1 is the unique

common fixed point of A and T .

If we put A = B and S = T = I (the identity map on X) in (3.3), we obtain

following:

Corollary 3.4.4. Let A be a self-map on a complete rectangular b-metric space X

with s > 1 and if there exists τ > 0 such that d̂(Ax,Ay) > 0 implies

τ + F (d̂(Ax,Ay)) ≤ F (α(x, y)), (3.19)

where,

α(x, y) = max{d̂(x, y), d̂(x,Ax), d̂(y, Ay)}.

Then A has a unique fixed point in X.

Example 3.4.5. We have seen that the function A given in Example 3.4.3 with the

same metric space satisfies corollary 3.4.4 for τ = ln2 and F (x) = lnx.

Next, in the sequel, the following is proven.

Theorem 3.4.6. Suppose that T and S are self-maps on a complete rectangular

b-metric space X with s > 1 and if there exists τ > 0 such that d̂(Tx, Ty) > 0

implies

τ + F (d̂(Tx, Ty)) ≤ F (d̂(Sx, Sy)). (3.20)
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If range TX or SX is a closed subset of (X, d̂), then T and S have a coincidence

point. Moreover, if the pair {S, T} is weakly compatible, then T and S have a unique

common fixed point.

Proof. Consider the sequence {xn}, where yn = Txn = Sxn+1. Adopting a similar

process as in the previous theorem, it is easy to prove that S and T have a unique

common fixed point.

Now, If we take S = I(the identity map on X), we have Wardoski’s F-contraction.

Corollary 3.4.7. Let (X, d̂) be a RbMS with s > 1 and T : X → X satisfying the

following with τ > 0,

τ + F (d̂(Tx, Ty)) ≤ F (d̂(x, y)). (3.21)

Then T has a unique fixed point in X.

Example 3.4.8. Let X = {1, 2, 3, 4}. Define d̂ : X ×X → [0,∞) such that

d̂(x, y) = d̂(y, x) for all x, y ∈ X and

d̂(1, 2) = 10; d̂(1, 3) = d̂(2, 3) = 1; d̂(1, 4) = d̂(2, 4) = d̂(3, 4) = 2.

Then, (X, d̂) is a RbMS with coefficient s = 2(> 1), but not a RMS.

Define T : X → X by T (x) =


1, ;x = 1, 2, 3

3 ;x = 4.

T satisfies equation (3.21) for τ = ln2 and F (α) = lnα. So, 1 is the unique fixed

point of T .
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3.5 Application

At last, we find the existence and uniqueness of the solution for the following system

of the integral equation of Volterra type:

u(t) = f(t) +

∫ t

0

K1(t, s, u(s)) ds

u(t) = f(t) +

∫ t

0

K2(t, s, u(s)) ds

u(t) = f(t) +

∫ t

0

K3(t, s, u(s)) ds

u(t) = f(t) +

∫ t

0

K4(t, s, u(s)) ds

(3.22)

where t ∈ [0, a], a > 0 and Ki : [0, a]× [0, a]×R → R (i ∈ 1, 2, 3, 4) and f : R → R

are continuous functions. For u ∈ C([0, a], R) = X(say), define supremum norm as:

∥u∥τ = sup
t∈[0,a]

|u(t)|2e−τt,

where τ > 0 is taken arbitrary. Let C([0, a], R) be endowed with the metric

d̂τ (u, v) = sup
t∈[0,a]

{|u(t)− v(t)|2e−τt} ;∀u, v ∈ C([0, a], R).

Here (X, d̂τ ) is a complete RbMS with s = 3/2. Notice that it is not a metric space

and RMS.

Let I = [0, a] and defined Ti : C(I, R) → C(I, R) defined by

Tiu(t) = f(t) +

∫ t

0

Ki(t, s, u(s))ds, (3.23)

∀ u ∈ C(I, R), t ∈ I, i ∈ {1, 2, 3, 4}. Clearly, u∗ is a solution of (3.22) if and only

if it is a common fixed point of Ti for i ∈ {1, 2, 3, 4}.
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We are equipped with the following condition to prove our result.

Theorem 3.5.1. Suppose that the following hypothesis hold:

1. For all t ∈ I, u ∈ C(I, R),

T1T4u(t) = T4T1u(t), whenever T1u(t) = T4u(t),

T2T3u(t) = T3T2u(t), whenever T2u(t) = T3u(t).

2. Assume that there exist τ > 1, such that

|K1(t, s, u)−K2(t, s, v)|2 ≤ τe−τ |α(u, v)|2,

∀t, s ∈ [0, a] and u, v ∈ X, where

α(u, v) = max{|Su− Tv|, |Au− Su|, |Bv − Tv|, |Au− Tv|}.

Then (3.22) has a unique solution u∗(say).

Proof. By the above assumption, we have

|T1u(t)− T2v(t)|2 ≤
∫ t

0

|K1(t, s, u(s)−K2(t, s, v(s)|2ds

≤
∫ t

0

τe−τ (|α(u, v)|2e−τs)eτsds

≤ τe−τ∥α(u, v)∥τ
1

τ
eτt

τ + ln∥T1u(t)− T2v(t)∥τ ≤ ln∥α(u, v)∥τ .

This implies τ + F (d̂(T1u, T2v)) ≤ F (α(u, v)) where, F (x) = lnx.

Putting A = T1, B = T2, T = T3 and S = T4, Theorem 3.3 is satisfied. Therefore

A,B, S and T have a unique common fixed point u∗ ∈ C(I, R); i.e, u∗ is a unique

solution of system (3.22).
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3.6 Conclusion

Throughout the chapter, we have generalized Wardoski’s F-contraction fixed point

theorem in Rectangular b-metric space. An example is also provided for the jus-

tification of our results. Finally, we successfully apply our result to examine the

existence and uniqueness of the system of Volterra integral equations. System of

Volterra integral equations appear in scientific applications in engineering, physics,

chemistry, and populations growth models (one may refer Zakwv and Uniady (2016),

Jerri (1999), Porter and Stirling (2004), Linz (1974), Linz (1985), Wazwaz (2011)).
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