
Chapter 5

Fixed Point Results in Ab-metric

Space

Ughade et al. (2016) introduced the Ab-metric space and derived some fixed point

results in Ab-metric space by considering a continuous map. Motivated by his work,

in this chapter, we present an important result in Ab-metric space and then we

obtain the Banach type contraction principle and Kannan type fixed point theorem

as corollaries in which map need not be continuous. At last, we derive the fixed

point theorem having rational terms, which is the answer to the open problem given

in Saluja (2021). Moreover, we find common fixed point theorems for four maps

that involve rational terms. Our results extend and generalize several results from

the existing literature, especially the results of Ughade et al. (2016). In addition,

we provide examples for the justification of our results.

5.1 Introduction

Metric spaces are extremely useful in mathematics and applied sciences. As a result,

some authors have attempted to provide generalizations of metric spaces in a variety
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of methods. For example, Gahler (1963) and Dhage (1992) introduced the concepts

of 2-metric spaces and D-metric spaces respectively, but some authors pointed out

that these attempts are not valid (see Mustafa (2005), Naidu et al. (2005)). Mustafa

and Sims (2006) proposed a new structure of generalized metric spaces known as

G-metric spaces as a generalization of metric spaces (X, d) in order to create and

offer a new fixed point theory for various mappings in this new structure. Sedghi

et al. (2007) established D∗-metric spaces, which are likely modifications of the defi-

nition of D-metric spaces introduced by Dhage (1992), and demonstrated some basic

properties in D∗-metric spaces.

Sedghi et al. (2012) created a three-dimensional metric space called S-metric space,

which is defined by modifying D-metric and G-metric spaces. After that, Kim et al.

(2016) derived a common fixed point theorem for two single-valued mappings in S-

metric spaces. In the same year, Souayah and Mlaiki (2016) introduced the concept

of Sb- metric space which is a combination of b-metric space and S-metric space.

In the definition of Sb-metric space, condition(2) (see 1.4.8.1) is not true in general.

In order to make a general one, Rohen et al. (2017) modified. Also, many writ-

ers generalized the Banach contraction principle by employing various contractive

conditions in extended Sb− metric space, S-metric space, and cone S-metric space

(see Mlaiki (2018), Özgür and Tas (2017), Saluja (2020), Kim et al. (2015), Sedghi

and Dung (2014), Sedghi et al. (2014), Sedghi et al. (2015), Mustafa et al. (2019b)).

Such generalizations are established via contractive conditions formulated by ratio-

nal terms (see, Latif et al. (2015), Shahkoohi and Razani (2014), Saluja (2019)).

Abbas et al. (2015) introduced n-dimensional metric space, namely A-metric space

which is a generalization of S-metric space. Ughade et al. (2016) introduced the Ab-

metric space, which is a mixture of A-metric space and Sb-metric space and defined

as below:
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5.2 Ab-metric Space and its Properties

Definition 5.2.1. (Ughade et al. (2016)) Let X be a nonempty set and let s ≥ 1,

the function Ab : X
n → [0,∞) that satisfies, for all x1, x2, ..., xn, a ∈ X,

(1) Ab(x1, x2, ..., xn) ≥ 0,

(2) Ab(x1, x2, ..., xn) = 0 if and only if x1 = x2 = ... = xn,

(3) Ab(x1, x2, ..., xn) ≤

s[Ab(x1, x1, .., x1(n−1)
, a) + Ab(x2, x2, .., x2(n−1)

, a) + . . .+ Ab(xn, ..., xn(n−1)
, a)].

Then (X,Ab) is called an Ab-metric space.

Remark 5.2.1.1. (i) Sb-metric space is the particular case of Ab-metric space

with n = 3.

(ii) Every A-metric space will be Ab-metric space with s = 1. However, the con-

verse need not be true.

Example 5.2.2. (Ughade et al. (2016)) Let X = [1,∞) and Ab : Xn → [0,∞)

defined by

Ab(x1, x2, ..., xn−1, xn) =
n∑

i=1

∑
i<j

|xi − xj|2 ;∀xi ∈ X, i = 1, 2, ..., n.

Then (X,Ab) is an Ab-metric space with s = 2.

Example 5.2.3. (Ughade et al. (2016)) Let X = R and Ab : X
n → [0,∞) defined

by

Ab(x1, x2, ..., xn−1, xn) = |
2∑

i=n

xi − (n− 1)x1|2 + |
3∑

i=n

xi − (n− 2)x2|2 + . . .

+|
n−3∑
i=n

xi − 3xn−3|2 + |
n−2∑
i=n

xi − 2xn−2|2 + |xn − xn−1|2,
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for all xi ∈ X, i = 1, 2, ..., n. Then (X,Ab) is an Ab-metric space with s = 2.

Example 5.2.4. Let X = R and Ab(x1, x2, ..., xn) = |x1 − xn|2 + |x2 − xn|2 + . . .+

|xn−1 − xn|2. Then (X,Ab) is an Ab-metric space with s = 2.

Proof.

Ab(x1, x2, ..., xn) = |x1 − xn|2 + |x2 − xn|2 + . . .+ |xn−1 − xn|2

≤ 2{|x1 − a|2 + |xn − a|2}+ . . .+ 2{|xn−1 − a|2 + |xn − a|2}

≤ 2(n− 1){|x1 − a|2 + |x2 − a|2 + . . .+ |xn − a|2}

= 2[Ab(x1, x1, ..., a) + Ab(x2, x2, ..., a) + . . .+ Ab(xn, xn, ..., a)].

Hence, (X,Ab) is an Ab-metric space with s = 2.

Lemma 5.2.5. (Ughade et al. (2016)) Let (X,Ab) be an Ab-metric space with s ≥ 1.

Then for all x, y ∈ X,

Ab(x, x, ..., x, y) ≤ sAb(y, y, ..., y, x).

The concepts of convergence, Cauchy sequence, and completeness in an Ab-metric

space are defined in a similar manner.

Definition 5.2.6. (Ughade et al. (2016)) Let (X,Ab) be an Ab-metric space and

{xn} be a sequence in X. Then

(i) A sequence {xn} is called convergent to u ∈ X if limn→∞Ab(xn, xn, ..., xn, u) =

0. That is, for each ϵ ≥ 0, there exists n0 ∈ N such that for all n ≥ n0,

we have Ab(xn, xn, ..., xn, u) ≤ ϵ, and we write limn→∞ xn = u.

(ii) A sequence {xn} is called a Cauchy sequence if limn→∞Ab(xn, xn, ..., xn, xm) =

0.
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That is, for each ϵ ≥ 0, there exists n0 ∈ N such that for all n,m ≥ n0,

we have Ab(xn, xn, ..., xn, xm) ≤ ϵ.

(iii) (X,Ab) is said to be a complete Ab- metric space if every Cauchy sequence

{xn} is convergent to a point u ∈ X.

In our last result, the following lemma will be helpful to manage the discontinuity

of the Ab-metric space.

Lemma 5.2.7. If (X,Ab) is a Ab-metric space with s ≥ 1, then we have the following

assertions:

(i) Suppose {xn} and {yn} are sequences in X such that xn → x, yn → y and the

elements of {x, y, xn, yn : n ∈ N}are totally distinct. Then, we have

s−2Ab(x, x, ..., x, y) ≤ lim inf
n→∞

Ab(xn, xn, ..., xn, yn) ≤ lim sup
n→∞

Ab(xn, xn, ..., xn, yn)

≤ s2Ab(x, x, ..., x, y).

(ii) If {xn} is a Cauchy sequence in X converging to x and it has infinitely many

distinct terms, then

s−2Ab(x, x, ..., x, y) ≤ lim inf
n→∞

Ab(xn, xn, ..., xn, y) ≤ lim sup
n→∞

Ab(xn, xn..., xn, y)

≤ s2Ab(x, x, ..., x, y),

for each y ∈ X with x ̸= y.

Proof. (i) Using the second condition from the definition of Ab-metric space, we
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have

Ab(x, x, ..., x︸ ︷︷ ︸
(N-1) terms

, y) ≤ s[(N − 1)Ab(x, x, ..., x, xn) + Ab(y, y, ..., y, xn)]

≤ s(N − 1)Ab(x, x, ..., x, xn)

+s2[(N − 1)Ab(y, y, ..., y, yn) + Ab(xn, xn, ..., xn, yn)],

and

Ab(xn, xn, ..., xn, yn) ≤ s[(N − 1)Ab(xn, xn, ..., xn, x) + Ab(yn, yn, ..., yn, x)]

≤ s(N − 1)Ab(xn, xn, ..., xn, x)

+s2[(N − 1)Ab(yn, ..., yn, y) + Ab(x, ..., x, y)].

Applying the lower and upper limit as n → ∞ in the first inequality and

second inequality respectively, we reach to the required result.

(ii) Using the second condition from the definition of Ab-metric space, we get

Ab(x, x, ..., x, y) ≤ s[(N − 1)Ab(x, x, ..., x, xn) + Ab(y, y, ..., y, xn)]

≤ s(N − 1)Ab(x, x, ..., x, xn)

+s2[(N − 1)Ab(y, y, ..., y, y) + Ab(xn, xn, ..., xn, y)].

That is

Ab(x, x, ..., x, y) ≤ s[(N − 1)Ab(x, x, ..., x, xn) + sAb(xn, xn, ..., xn, y)], (5.1)

and

Ab(xn, xn, ..., xn, y) ≤ s[(N − 1)Ab(xn, xn, ..., xn, x) + Ab(y, y, ..., y, x)]. (5.2)
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From Lemma 5.2.5, one obtains

Ab(xn, xn, ..., xn, y) ≤ s[(N − 1)Ab(xn, xn, ..., xn, x) + sAb(x, x, ..., x, y)].

Taking the lower limit as n→ ∞ in the equation (5.1) and the upper limit in

the equation (5.2), we obtain desired result.

Ughade et al. (2016) proved the following theorem for continuous maps.

Theorem 5.2.8. If (X,Ab) is a complete Ab-metric space and let f be a continuous

self map on X that satisfies:

Ab(fx
1, fx2, ..., fxn) ≤ ψ(Ab(x

1, x2, ..., xn)),

for all x1, x2, ..., xn ∈ X, where ψ : [0,+∞) → [0,+∞) is an increasing function

such that

limk→∞ ψk(t) = 0, for each fixed t > 0. Then f has a unique fixed point in X.

5.3 Fixed Point Theorems on Ab-metric Space

Now, we start with the main result in which the map need not be continuous. Also,

note that throughout, N ≥ 2.

Theorem 5.3.1. If (X,Ab) is a complete Ab-metric space with s ≥ 1 and T be a
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continuous self map on X that satisfies:

Ab(Tu1, Tu2, ..., TuN)

≤ λ1[Ab(u1, u1, ..., Tu1) + Ab(u2, u2, ..., Tu2) + ...+ Ab(uN , uN , ..., TuN)]

+λ2Ab(u1, u2, ..., uN)

+λ3[Ab(u1, u1, ..., Tu2) + Ab(u2, u2, ..., Tu3) + ...+ Ab(uN , uN , ..., Tu1)],

(5.3)

∀ u1, u2, ..., uN ∈ X, where λ1, λ2 and λ3 are non negative real numbers such that

0 < αλ1 + βλ2 + γλ3 < 1; and,

α = s(N − 1)2 + 1, β = s(N − 1), γ = s(N − 1)(N − 2) + s2(N − 1)2 + s. Then T

has a unique fixed point in X.

Note: Here α ≥ 2, β ≥ 1, γ ≥ 2 , for any value of s and N . So, according to the

value of α, β, γ, one can choose λ1, λ2 and λ3 such that 0 < αλ1 + βλ2 + γλ3 < 1 .

Proof. Let us define sequence {yn} as Tyn = yn+1. From definition of Ab-metric

space and for n > m, we have

Ab(yn, yn, ..., yn︸ ︷︷ ︸
(N-1) terms

, ym) ≤ s2Ab(ym, ym, ..., ym︸ ︷︷ ︸
(N-1) terms

, ym+1)

+s3(N − 1)Ab(ym+1, ym+1, ..., ym+1︸ ︷︷ ︸
(N-1) terms

, ym+2)

+s4(N − 1)2Ab(ym+2, ym+2, ..., ym+2︸ ︷︷ ︸
(N-1) terms

, ym+3)

+s5(N − 1)3Ab(ym+3, ym+3, ..., ym+3︸ ︷︷ ︸
(N-1) terms

, ym+4)

+s5(N − 1)4Ab(yn, yn, ..., yn︸ ︷︷ ︸
(N-1) terms

, ym+4).
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Continuing in a similar way, we obtain

Ab(yn, yn, ..., ym) ≤ s2Ab(ym, ym, ..., ym+1)

+s3(N − 1)Ab(ym+1, ym+1, ..., ym+2)

+s4(N − 1)2Ab(ym+2, ym+2, ..., ym+3)

+s5(N − 1)3Ab(ym+3, ym+3, ..., ym+4)

+s6(N − 1)4[Ab(ym+4, ..., ym+5) + (N − 1)Ab(yn, yn, ..., ym+4)].

We arrive at

Ab(yn, yn, ..., yn︸ ︷︷ ︸
(N-1) terms

, ym) ≤
n−m∑
i=1

Si+1(N − 1)i−1Ab(ym+i−1, ym+i−1, ..., ym+i−1︸ ︷︷ ︸
(N-1) terms

, ym+i).(5.4)

Again using definition of Ab-metric space and the contractive condition, one gets

Ab(Tyn−1, T yn−1, ..., T yn−1, T yn)

≤ λ1[(N − 1)Ab(yn−1, yn−1, ..., yn−1, yn) + Ab(yn, yn, ..., yn, yn+1)]

+λ2Ab(yn−1, yn−1, ..., yn−1, yn)

+λ3[{(N − 2) + s(N − 1)}Ab(yn−1, ..., yn−1, yn) + sAb(yn, ..., yn, yn+1)].

That implies

Ab(yn, yn, ..., yn, yn+1) ≤
λ1(N − 1) + λ2 + λ3[N − 2 + s(N − 1)]

1− λ1 − λ3s
Ab(yn−1, ..., yn−1, yn).

That is

Ab(yn, yn, ..., yn, yn+1) ≤ µ Ab(yn−1, yn−1, ..., yn−1, yn), (5.5)

where, µ = λ1(N−1)+λ2+λ3[N−2+s(N−1)]
1−λ1−λ3s

.
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Then, the equation (5.5) results in

Ab(yn, yn, ..., yn, yn+1) ≤ µnAb(y0, y0, ..., y0, y1).

This yields the following by the use of equation(5.4),

Ab(yn, yn, ..., ym) ≤
n−m∑
i=1

si+1(N − 1)i−1µm+i−1Ab(y0, y0, ..., y1). (5.6)

Let, ai = si+1(N − 1)i−1µm+i−1. Then,

lim
i→∞

ai
ai+1

=
1

s(N − 1)µ
.

Since, αλ1 + βλ2 + γλ3 < 1, where, α = s(N − 1)2 + 1, β = s(N − 1),

and γ = s(N − 1)(N − 2) + s2(N − 1)2 + s.

We have

{s(N − 1)2 + 1}λ1 + s(N − 1)λ2 + {s(N − 1)(N − 2) + s2(N − 1)2 + s}λ3 < 1

=⇒ s(N − 1)2λ1 + s(N − 1)λ2 + {s(N − 1)(N − 2) + s2(N − 1)2}λ3 < 1− λ1 − λ3s

=⇒ (N − 1)λ1 + λ2 + {(N − 2) + s(N − 1)}λ3 <
1− λ1 − λ3s

s(N − 1)

=⇒ (N − 1)λ1 + λ2 + {(N − 2) + s(N − 1)}λ3
1− λ1 − λ3s

<
1

s(N − 1)

=⇒ µ <
1

s(N − 1)

This yields, limi→∞
ai

ai+1
> 1. Therefore utilizing the ratio test,

∑
ai is convergent.

So, from the equation (5.6), we conclude that

lim
n,m→∞

Ab(yn, yn, ..., ym) → 0.
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Hence, {yn} is a Cauchy sequence. With the use of completeness, one gets

lim
n→∞

Ab(yn, yn, ..., y) = 0.

Again by contractive condition, one finds that

Ab(Tyn−1, T yn−1, ..., T y) ≤ λ1[(N − 1)Ab(yn−1, yn−1, ..., yn−1, yn) + Ab(y, y, ..., T y)]

+λ2[Ab(yn−1, yn−1, ..., yn−1, y)]

+λ3[(N − 2)Ab(yn−1, yn−1, ..., yn) + Ab(yn−1, yn−1, ..., T y)]

+λ3Ab(y, y, ..., yn).

Taking limit on both sides, we arrive at (1− λ1 − λ3)Ab(y, y, ..., T y) ≤ 0.

Here, 1− λ1 − λ3 > 0 as 0 < αλ1 + βλ2 + γλ3 < 1. Hence, y = Ty.

Suppose y∗ is another fixed point of T, then one can come across

Ab(Ty∗, T y∗, ...., T y) ≤ (λ2 + λ3)Ab(y∗, y∗, ..., y∗, y) + λ3Ab(y, y, ..., y∗).

With the use of Lemma 5.2.5, we have

(1− λ2 − (1 + s)λ3)Ab(y∗, y∗, ..., y) ≤ 0. (5.7)

If (1− λ2 − (1 + s)λ3) < 0, then 1 < λ2 + (1 + s)λ3. That implies

αλ1 + βλ2 + γλ3 < λ2 + (1 + s)λ3,

which is not possible for any value of s and N . So, (1− λ2 − (1 + s)λ3) > 0.

83



CHAPTER 5. . . . 5.3. FIXED POINT THEOREMS ON AB-METRIC SPACE

Therefore from (5.7), we have

Ab(y∗, y∗, ..., y) = 0.

Hence, y is the unique fixed point of T in X.

If we put λ2 = 0 and λ3 = 0 in the previous Theorem 5.3.1, then we have the

Kannan theorem as a corollary.

Corollary 5.3.2. Let (X,Ab) be a complete Ab-metric space and T be a self map

satisfying the following:

Ab(Tu1, Tu2, ..., TuN) ≤ λ[Ab(u1, u1, ..., Tu1)+Ab(u2, ..., Tu2)+...+Ab(uN , uN , ..., TuN)],

(5.8)

∀u1, u2, ..., un ∈ X and 0 < λ < 1
1+s(N−1)2

. Then T has a unique fixed point in X.

Proof. Here max { 1
1+s(N−1)2

} = 1
2
.

Let us define sequence {yn} as Tyn = yn+1. With the same process adopted in the

previous theorem, one observes that {yn} is a Cauchy sequence and hence convergent

to y(say). So, finally one can write

lim
n→∞

Ab(yn, yn, ..., y) = 0.

Now our claim is to prove that y is the fixed point of T . So, by contractive condition,

one gets

Ab(Tyn−1, T yn−1, ..., T y) ≤ λ(N − 1)Ab(yn−1, yn−1, ..., yn) + λAb(y, y, ..., y, Ty).
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Letting limit n→ ∞, we have

(1− λ)Ab(y, y, ..., y, Ty) ≤ 0.

Since, λ < 1
2
. Therefore, Ab(y, y, ..., y, Ty) = 0.

That is y = Ty. It is easy to prove that, T has a unique fixed point in X.

Example 5.3.3. Let X = R − (−1, 1) ∪ {0} ∪ {1
6
} and Ab(x1, x2, x3, x4) = |x1 −

x4|2 + |x2 − x4|2 + |x3 − x4|2. Then, it is clear from Example 5.2.4 that (X,Ab) is

an Ab-metric space with s = 2. Define T : X → X by

T (x) =


1
6

; if x = 0, 1
6

0 ; otherwise.

Here, T is discontinuous at {1
6
} and 0. Now, we have the following possibilities:

Case 1: xi = 1
6

or 0 ; i = 1, 2, 3, 4.

We have Ab(Tx1, Tx2, Tx3, Tx4) = 0. It is trivially true.

Case 2: xi ̸= 1
6

and 0 ; i = 1, 2, 3, 4. It is trivially true.

Case 3: xi ̸= 1
6
, 0 ; i = 1, 2, 3 and x4 = 0.

Ab(Tx1, Tx2, Tx3, Tx4) = Ab(0, 0, 0,
1
6
) = 3

36
, Ab(x1, x1, x1, Tx1) = 3|x1|2,

Ab(x2, x2, x2, Tx2) = 3|x2|2, Ab(x3, x3, x3, Tx3) = 3|x3|2,

Ab(x4, x4, x4, Tx4) =
3
36
.

From contractive condition, one observe that

3

36
≤ 3λ{|x1|2 + |x2|2 + |x3|2 +

1

36
}.

Case 4: xi ̸= 1
6
, 0 ; i = 1, 2 and x3 = 0, x4 = 0.
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Ab(Tx1, Tx2, Tx3, Tx4) = Ab(0, 0,
1
6
, 1
6
) = 2

36
, Ab(x1, x1, x1, Tx1) = 3|x1|2,

Ab(x2, x2, x2, Tx2) = 3|x2|2, Ab(x3, x3, x3, Tx3) =
3
36

, Ab(x4, x4, x4, Tx4) =
3
36
.

From contractive condition, one gets

3

36
≤ 3λ{|x1|2 + |x2|2 +

1

36
+

1

36
}.

Case 5: x1 ̸= 1
6
, 0 and xi = 0 ; i = 2, 3, 4.

Ab(Tx1, Tx2, Tx3, Tx4) = Ab(0,
1
6
, 1
6
, 1
6
) = 1

36
, Ab(x1, x1, x1, Tx1) = 3|x1|2,

Ab(x2, x2, x2, Tx2) =
3
36

, Ab(x3, x3, x3, Tx3) =
3
36

, Ab(x4, x4, x4, Tx4) =
3
36

.

This implies
3

36
≤ 3λ{|x1|2 +

1

36
+

1

36
+

1

36
}.

Case 6: x1 = 1
6

and xi ̸= 0, 1
6

; i = 2, 3, 4.

Ab(Tx1, Tx2, Tx3, Tx4) = Ab(
1
6
, 0, 0, 0) = 1

36
, Ab(x1, x1, x1, Tx1) = 0,

Ab(x2, x2, x2, Tx2) = 3|x2|2, Ab(x3, x3, x3, Tx3) = 3|x3|2, Ab(x4, x4, x4, Tx4) =

3|x4|2.

We arrive at
1

36
≤ 3λ{0 + |x2|2 + |x3|2 + |x4|2}.

Case 7: x1 = 1
6
, x2 =

1
6

and xi ̸= 0, 1
6

; i = 3, 4.

Ab(Tx1, Tx2, Tx3, Tx4) = Ab(
1
6
, 1
6
, 0, 0) = 2

36
, Ab(x1, x1, x1, Tx1) = 0,

Ab(x2, x2, x2, Tx2) = 0, Ab(x3, x3, x3, Tx3) = 3|x3|2, Ab(x4, x4, x4, Tx4) = 3|x4|2.

We have
2

36
≤ 3λ{|x3|2 + |x4|2}.

Case 8: x1, x2, x3 = 1
6

and x4 ̸= 0, 1
6
.

Ab(Tx1, Tx2, Tx3, Tx4) = Ab(
1
6
, 1
6
, 1
6
, 0) = 3

36
, Ab(x1, x1, x1, Tx1) = 0,

Ab(x2, x2, x2, Tx2) = Ab(x3, x3, x3, Tx3) = 0, Ab(x4, x4, x4, Tx4) = 3|x4|2.
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So,
2

36
≤ 3λ{|x4|2}.

So, for 0 < λ < 1
19

, all the above cases are satisfied. Hence, all the conditions

required in Theorem 5.3.2 are satisfied. Thus, 1
6

is the unique fixed point of T in X

at which the map is discontinuous.

Remark 5.3.3.1. In the next results, continuity of the Ab−metric space is not

necessary.

If we put λ1 = 0 and λ2 = 0 in the Theorem 5.3.1, we have following result.

Corollary 5.3.4. Let (X,Ab) be a complete Ab-metric space with s ≥ 1 and T be a

self map satisfying the following:

Ab(Tu1, Tu2, ..., TuN) ≤ λ[Ab(u1, u1, ..., Tu2)+Ab(u2, u2, ..., Tu3)+...+Ab(uN , uN , ..., Tu1)],

(5.9)

for all u1, u2, ..., uN ∈ X, where, 0 < λ < 1
s[1+(N−1){(N−2)+(N−1)s}] . Then T has a

unique fixed point in X.

Proof. With the same process adopted in the previous theorem, one observes that

{yn} is a Cauchy sequence and hence convergent to y(say). So, one can write

lim
n→∞

Ab(yn, yn, ..., y) = 0.

From the contractive condition, one finds that

Ab(Tyn−1, T yn−1, ..., T y) ≤ λ(N − 1)Ab(yn−1, yn−1, ..., yn) + λAb(y, y, ..., y, yn),
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which together with Lemma 5.2.5, we have

Ab(yn, yn, ..., T y) ≤ λ(N − 1)Ab(yn−1, yn−1, ..., yn) + λsAb(yn, yn, ..., yn, y).

lim
n→∞

Ab(yn, yn, ..., T y) = 0.

Therefore, {yn} converges to both y and Ty. It must be the case y = Ty. Suppose

y∗ is another fixed point of T, then

Ab(Ty∗, T y∗, ...., T y) ≤ λ[Ab(y∗, y∗, ..., y∗, y) + sAb(y∗, y∗, ..., y∗, y)].

[1− (1 + s)λ]Ab(y∗, y∗, ..., y∗, y) ≤ 0. (5.10)

If [1− (1 + s)λ] < 0 then

1

1 + s
< λ <

1

s[1 + (N − 1){(N − 2) + (N − 1)s}]
,

which is not possible for any N ≥ 2. That means [1 − (1 + s)λ] > 0. Hence, from

equation (5.10), it is easy to say that y is the unique fixed point of T in X.

If we put λ1 = 0 and λ3 = 0 in the Theorem 5.3.1, then the theorem turns into Ba-

nach type contractive condition. In a similar way, one can easily prove the following

corollary.

Corollary 5.3.5. Let (X,Ab) be a complete Ab-metric space and T be a self map

satisfying the following:

Ab(Tu1, Tu2, ..., TuN) ≤ λAb(u1, u2, ..., uN) ;∀u1, u2, ..., uN ∈ X. (5.11)

where, 0 < λ < 1
s(N−1)

. Then T has a unique fixed point.
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Proof. Here max { 1
s(N−1)

} = 1.

Example 5.3.6. Let X = [0,∞) and Ab(x1, x2, x3, x4) = (max{x1, x2, x3} − x4)
2.

It is clear that (X,Ab) is an Ab-metric space with s = 2. Also define T : X → X by

T (x) = x
4
.

We have

Ab(Tx1, Tx2, Tx3, Tx4) = (max{x1
4
,
x2
4
,
x3
4
} − x4

4
)2,

and

Ab(x1, x2, x3, x4) = (max{x1, x2, x3} − x4)
2.

So, for 1
16

≤ λ < 1
6
, the equation(5.11) is satisfied. Hence, 0 is the unique fixed point

of T in X.

Saluja (2021) presented the following open problem:

Open Question: "Can we extend the results for rational contraction/ rational type

contraction/ contraction involving rational expression?"

We try to give the answer to the open problem in the next theorem.

Theorem 5.3.7. Let (X,Ab) be a complete Ab-metric space and T be a self map

satisfying the following:

Ab(Tu1, Tu2, ..., TuN) ≤ λ · M
∗

N∗ ;∀u1, u2, ..., uN ∈ X,

where,

M∗ = [Ab(u1, u1, ..., Tu1) + Ab(u2, u2, ..., Tu2) + ...+ Ab(uN , uN , ..., TuN)]Ab(u1, u2, ..., uN),

N∗ = [Ab(u1, u1, ..., Tu2) + ...+ Ab(uN−2, uN−2, ..., TuN−1)] + Ab(u1, u2, ..., uN)

+Ab(Tu1, Tu2, ..., TuN),
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0 < λ < 1
s(N−1)

and N∗ ̸= 0. Then T has a unique fixed point in X.

Proof. Let us define sequence {yn} as Tyn = yn+1. Using the definition of Ab-metric

space and the contractive condition, one can see that

Ab(Tyn−1, T yn−1, ..., T yn−1, T yn) ≤ λ ·

{ [(N − 1)Ab(yn−1, yn−1, ..., yn−1, yn) + Ab(yn, yn, ..., yn, yn+1)]Ab(yn−1, ..., yn−1, yn)

(N − 2)Ab(yn−1, yn−1, ..., yn−1, yn) + Ab(yn−1, yn−1, ..., yn−1, yn) + Ab(yn, ..., yn, yn+1)
},

yielding thereby

Ab(yn, yn, ..., yn, yn+1) ≤ λnAb(y0, y0, ..., y0, y1).

With the same process adopted in previous theorems, one observes that {yn} is a

Cauchy sequence and hence convergent to y(say).

That is limn→∞Ab(yn, yn, ..., y) = 0.

Again using contractive condition, we have

Ab(Tyn−1, T yn−1, ..., T yn−1, T y) ≤

λ{ [(N − 1)Ab(yn−1, yn−1, ..., yn−1, yn) + Ab(y, y, ..., y, Ty)]Ab(yn−1, yn−1, ..., yn−1, y)

(N − 2)Ab(yn−1, yn−1, ..., yn−1, yn) + Ab(yn−1, yn−1, ..., yn−1, y) + Ab(yn, yn, ..., yn, T y)
}.

That is

Ab(yn, yn, ..., yn, T y) ≤

λ{ [(N − 1)Ab(yn−1, yn−1, ..., yn−1, yn) + Ab(y, y, ..., y, Ty)]Ab(yn−1, yn−1, ..., yn−1, y)

(N − 2)Ab(yn−1, yn−1, ..., yn−1, yn) + Ab(yn−1, yn−1, ..., yn−1, y) + Ab(yn, yn, ..., yn, T y)
}.

Taking limit both sides, we conclude that Ab(y, y, ..., T y) = 0. Hence y = Ty. It is

easy to check that, T has a unique fixed point in X.

At last, we find a common fixed point theorem for the use of four maps.
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Theorem 5.3.8. Let (X,Ab) be a complete Ab-metric space with coefficient s ≥ 1

and S, T , A and B be self mappings of X such that TX ⊆ AX,SX ⊆ BX and

Ab(Su1, Su2, .., SuN−1, TuN) ≤
λAb(Au1, Au2, .., AuN−1, BuN) + µAb(Au1, Au2, ..., AuN−1, Su1)Ab(BuN , ..., BuN , TuN)

1 + Ab(Au1, Au2, ..., AuN−1, BuN)
,

for all u1, u2, ..., uN ∈ X where, 0 < s(N − 1)λ+ µ < 1. If either range AX or BX

is a closed subset of (X,Ab), then

(i) A and S have a coincidence point.

(ii) B and T have a coincidence point.

Furthermore, if the pairs {A, S} and {B, T} are weakly compatible then A,B, S, and

T have a unique common fixed point in X.

Proof. Let x0 ∈ X. Since TX ⊆ AX, there exists x1 ∈ X such that Ax1 = Tx0,

and SX ⊆ BX, there exists x2 ∈ X such that Bx2 = Sx1. Continuing this process,

we can construct sequences {xn} and {yn} in X defined by

y2n = Ax2n+1 = Tx2n, y2n+1 = Bx2n+2 = Sx2n+1 ; ∀n ∈ N.

Using contractive condition, one can see that

Ab(Sx2n+1, Sx2n+1, ..., Sx2n+1, Tx2n+2) ≤
λAb(Ax2n+1, ..., Ax2n+1, Bx2n+2) + µ · l∗

1 + Ab(Ax2n+1, Ax2n+1, ..., Ax2n+1, Bx2n+2)
,

where,

l∗ = Ab(Ax2n+1, ..., Ax2n+1, Sx2n+1)Ab(Bx2n+2, Bx2n+2, ..., Tx2n+2).
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That implies

Ab(y2n+1, y2n+1, ..., y2n+1, y2n+2) ≤
λAb(y2n, y2n, ..., y2n, y2n+1) + µ ·m∗

1 + Ab(y2n, y2n, ..., y2n, y2n+1)
,

where,

m∗ = Ab(y2n, y2n, ..., y2n, y2n+1)Ab(y2n+1, y2n+1, ..., y2n+1, y2n+2),

which results in

Ab(y2n+1, y2n+1, ..., y2n+1, y2n+2) ≤ λAb(y2n, ..., y2n, y2n+1)+µAb(y2n+1, ..., y2n+1, y2n+2).

We arrive at

Ab(y2n+1, y2n+1, ..., y2n+1, y2n+2) ≤
λ

1− µ
Ab(y2n, y2n, ..., y2n, y2n+1). (5.12)

Similarly, one gets

Ab(y2n+2, y2n+2, ..., y2n+2, y2n+3) ≤
λ

1− µ
Ab(y2n+1, y2n+1, ..., y2n+1, y2n+2). (5.13)

Therefore, from (5.12) and (5.13),

Ab(yn, yn, ..., yn, yn+1) ≤
λ

1− µ
Ab(yn−1, yn−1, ..., yn−1, yn).

Likewise,

Ab(yn, yn, ..., yn, yn+1) ≤ [
λ

1− µ
]2Ab(yn−2, yn−2, ..., yn−2, yn−1).
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Continuing this process, one arrives at

Ab(yn, yn, ..., yn, yn+1) ≤ [
λ

1− µ
]nAb(y0, y0, ..., y0, y1).

Say, h = λ
1−µ

and with the use of the equation (5.4),

Ab(yn, yn, ..., ym) ≤
n−m∑
i=1

si+1(N − 1)i−1hm+i−1Ab(y0, y0, ..., y1). (5.14)

Let, ai = si+1(N − 1)i−1hm+i−1. Then

lim
i→∞

ai
ai+1

=
1

s(N − 1)h
.

Since, s(N −1)λ+µ < 1. We have limi→∞
ai

ai+1
> 1. By Ratio test, {yn} is a Cauchy

sequence and hence convergent to y(say). That means

lim
n→∞

Ab(yn, yn, ..., y) = 0.

Thus, one finds that

lim
n→∞

Sx2n+1 = lim
n→∞

Bx2n+2 = lim
n→∞

Tx2n = lim
n→∞

Ax2n+1 = y. (5.15)

Now without loss of generality, one can suppose that AX is a closed subset of

(X,Ab). From the equation (5.15), there exists z ∈ X such that y = Az. Employing

the definition of Ab-metric space, we have

Ab(Sz, Sz, ..., Sz, y) ≤ s[(N − 1)Ab(Sz, Sz, ..., Sz, Tx2n) + Ab(y, y, ..., y, Tx2n)].
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From the contractive condition,

Ab(Sz, Sz, ..., Sz, y)

≤ s(N − 1){λAb(Az, ..., Az,Bx2n) + µAb(Az, ..., Az, Sz)Ab(Bx2n, ..., Bx2n, Tx2n)

1 + Ab(Az, ..., Az,Bx2n)
}

+sAb(y, y, ..., y, Tx2n).

From Lemma 5.2.7 (ii) and letting limit supremum on both sides, one obtains

Ab(Sz, Sz, ..., Sz, y) = 0.

That is, y = Sz = Az. Since, SX ⊆ BX, there exists w ∈ X such that Bw = y.

Again using contractive condition, one arrives at

Ab(y, y, ..., y, Tw) = Ab(Sz, Sz, ...Sz, Tw) = 0.

Thus, y = Tw = Bw = Sz = Az. That is, A and S have coincidence point z and B

and T have coincidence point w.

Let, A and S are weakly compatible, so we have

Ay = ASz = SAz = Sy.

Now our claim is to prove Sy = y.

Ab(Sy, Sy, ..., Sy, y) = Ab(Sy, Sy, ..., Sy, Tw)

≤ λAb(Ay, ..., Ay,Bw) + µAb(Ay, ..., Ay, Sy)Ab(Bw, ..., Bw, Tw)

1 + Ab(Ay, ..., Ay,Bw)
,

which results in

Ab(Sy, Sy, ..., Sy, y) = 0.
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Therefore, Sy = y = Ay. Similarly, B and T are weakly compatible, one concludes

that Ty = y = By. Finally, we have Sy = Ay = Ty = By = y. So, y is the common

fixed point of S, T , A and B. It is easy to check that y is the unique common fixed

point.

5.4 Future Work

It is observed that our results can be derived for Wardowski F-contraction for the

discontinuous map in Ab-metric space and even without taking continuity of the

Ab-metric space.
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