Chapter 6

Fixed Point Theorems on 5,- and

Ap- metric Spaces

In this chapter, we will discuss S,- and A,- metric space which are the generalization
of S-metric space, Sp- metric space, A-metric space, and A,-metric space. In section
6.1, we prove the fixed point theorem derived by Mustafa et al. (2019b) in S,-metric
space without taking the continuity of the class of functions defined by Jleli et al.
(2014).

In section 6.2 of this chapter, we derive a common fixed point theorem for two maps
in which one map is orbitally continuous in A,-metric space (not necessarily contin-
uous) using altering distance function ¢. In addition, we prove a fixed point result
for Banach and Kannan type contraction condition without considering orbitally
continuous map. An example is also given. In our results, we are dealing with the

discontinuity of metric space.
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6.1 Fixed Point Theorem on S, - metric Space

6.1.1 Introduction and Preliminaries

Recently, Mustafa et al. (2019b) introduced S,-metric space, at which he replaced
constant s in the definition of S—metric space by one variable continuous increasing
function and derived some results in that space. Jleli et al. (2014) introduced new
contractive maps and proved a new fixed point result in generalized metric spaces
(RMS). Later on, it is known as JS-type contraction mappings. Motivated by Jleli
et al. (2014), Mustafa et al. (2019b) dealt with a different type of JS-contraction

and proved a fixed point result.

Definition 6.1.1.1. (Jleli et al. (2014)) Let the class ©q that contains all functions

6 :(0,00) — (1,00) satisfying the following:
(61) 0 is non decreasing.

(02) For each sequence {t,,} C (0,00), lim, o 0(t,) = 1 if and only if
lim,, o t, = 0.
(03) There ezists r € (0,1) and | € (0,00) such that lim, g+ % =1.

(04) 0 is continuous.

Mustafa et al. (2019b) redefined the class O as following and denote it by ©.

Definition 6.1.1.2. (Mustafa et al. (2019b)) Let the class © consisting of all func-

tions 0 : [0,00) — [1,00) satisfying only the following conditions:
(0%) 6 is a continuous strictly increasing function.

(03) For each sequence {t,} C (0,00), lim, o 0(t,) = 1 if and only if lim,, o t,, =

0.
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The definition of modified S-metric space is given below, a proper generalization of

the S-metric space and Sy-metric space.

Definition 6.1.1.3. S,-metric space(Mustafa et al. (2019b))
Let X be a nonempty set and Q : [0,00) — [0,00) be a strictly increasing continuous
function with t < Q(t) for allt >0 and 0 = Q(0). Suppose that a mapping

S:ExExE— R" satisfies:

(1) S(z,y,2) =0 if and only if x =y = z,

(2) S(z,y,2) < QS(x,z,a) + S(y,y,a) + S(z, z,a)]; for all z,y,z,a € E.
Then, (X, S) is called an Sp-metric space.

Note:(Mustafa et al. (2019b)) If we put (z, z,y, x) in place of (z,y, 2z, a) in condition

(2) of definition of S,-metric space, then S(x,x,y) < Q[S’(y, y,x)l.

Definition 6.1.1.4. (Mustafa et al. (2019b)) Let (X, S,) be an S,-metric space and

{z,} be a sequence in X. Then

(1) A sequence {x,} is called convergent to w € X if, for every ¢ > 0 there exists

some positive integer No such that §(x,, x,,u) < €, ¥n > Nj.

(i) A sequence {x,} is called a Cauchy sequence if, for every € > 0 there ezists

some positive integer Ny such that 3(x,, Tp, T,) < €, Ym,n > Nj.

(111) (X, Sp) is said to be a complete S,- metric space if every Cauchy sequence {x,}

1s convergent to a point u € X.

Lemma 6.1.1.1. (Mustafa et al. (2019b)) Let (X, S,) be an S,-metric space, then

we have the following:

98



CHAPTER 6.. .. 6.1. FIXED POINT THEOREM ON Sp - METRIC SPACE

(i) Suppose that {x,} and {y,} are sequences in X such that x, — z, y, — y.

Then, we have

QLS S S
[2 [ (x,y,y)]] lim inf S($n7yn,yn> S limsup S(I’n,ymyn)

2 n—00 n—00

< Q2 Q[S(z,y,)]l.

IN

(i1) Let {z,} be a Cauchy sequence in X converging to x and z € X arbitrary.

Then

—1 ~ I
Q7715(2, 2, 2)] liminf S(z,, 2, z) < limsup S(z,, z, 2)

2 o n—o0 n—o00

< Q25(z, 2, 2)).

Definition 6.1.1.5. (Mustafa et al. (2019b)) Let (X, <, S) be an ordered S,-metric

space. A map f: X — X is called an S, rational-JS contraction if

0(Q2S(fx, fy, f2)]) < O(M(2,y,2))", (6.1)

for all mutually comparable elements x,y,z € X, where 8 € ©, k € [0,1) and

S(x,x, f2)S(y,y, fy) S(y,y, fy)S(z, 2, f2)

M($7yvz) :max{g(:v,y, Z)a = = ) = = :
1+S(x,y,y)+5(x,z,z) 1+S(y,fz,fz)+5(y,x,$)

Definition 6.1.1.6. (Mustafa et al. (2019b)) An ordered S,- metric space (X, =, S)
is said to have the sequential limit comparison property (s.l.c. property) if {x,} is

an increasing sequence in X such that x, — u € X, then x, < u for all n € N.

Theorem 6.1.1.1. (Mustafa et al. (2019b)) Let (X,=,S) be an ordered S,-metric
space and f : X — X be an increasing map with respect to < such that there exists

an element xg € X with xg X fxg. Assume that f is an S,— rational JS-contractive
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mapping. If
(I) f is continuous, or
(II) (X,=,S) enjoys the s.l.c. property,

then f has a fixed point. In addition, f has one and only one fized point if and only

if the set of fized points of f is well ordered.

6.1.2 A Remark on the fixed point theorem of Mustafa

In this section, we show that the assumption of continuity of the function # is not
necessary. So, hereby we prove the Theorem 6.1.1.1 of Mustafa et al. (2019b) for
the class O containing of all functions 6 : [0, c0) — [1, 00) satisfying the conditions

(01) and (6,) defined by Jleli et al. (2014).

Now, the proof of the Theorem 6.1.1.1 is as follows:

Proof. Let us define x, = f"xy. We can assume, without losing generality, that

T, # Tny1, for all n € N. Then by (6.1), we conclude that

G(S(zn,xn,xn+1)) < O(Q2S(xp, Tpy Tpy1)])

IN

G(M(In—lv Tn-1, xn))k

IN

Q(S(xn_l,xn_l,xn))k, (6.2)
because
M (21, Tp1, ) < max{S(xy_1, T 1,20), (T, Tn) Tpy) .

From (6.2), one deduce that

n

1< G(S(xn,xn,:cnﬂ)) < (9(5(:1r,'n,1,.7571,1,9571))’C < ...9(5’(m0,x0,x1))k (6.3)
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Taking the limit n — oo,

0(S(p, T, Tng1)) = 1.

Since 6 € ©, we obtain

lim S(p, Tn, Zny1) = 0. (6.4)

n—oo

Now, our claim is to prove that {z,} is an S,-Cauchy sequence. Assume, on the
other hand, i.e., there exists € > 0 for which one can find two subsequences {x,,, }
and {z,,} of {x,} such that m; is the smallest index for which m; > n; > i and
S (L, Tny s T, ) > €.

This means that S(Zp, |, Tm,—1,Tn,) < €.

Using the rectangular inequality, we have

€ S S(xm“ l'm“ xnl) S Q[Q'g(wmm mm,-a xn,-—f—l) + §<xn1a mm» xnr‘rl)]-

Taking the upper limit, one obtains

1 ~
59_1(6) S hmsup S(Im“xmmxni—i—l)a (65)
1—00
and
lim sup M (T, —1, Tim;—1, Tn;) < €. (6.6)
1—00

Since 6 is non decreasing, one can write from the equation (6.1),

Q[25(fx, fy, f2)] < (M(x,y,2))".
Put, * = xy,-1,Y = ZTm,—1, 2 = T, in above equation, we have,

Q[QS(‘TWM? Ty xni-i-l)] < (M('Imi_]«? Tm;—1, xnz))k
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Taking limit supremum both sides,

lim sup(Q2S (T, , T, » Tny+1)]) < Amsup(M (T, —1, Tm,—1, Tn, ) )F-

1—00 1—>00

Again using the condition (). i.e € is non decreasing, we obtain

O{lim sup Q25 (Zm,, Ty, Tn,+1)]} < O{limsup(M (&, 1, Tm,—1, T, ))* T

1—00 i—00
Hence, from the equations (6.5),(6.6) and above inequality, one arrives at

9(9[2.%9%@]) < 0{Q21imsup S(zpm,, Tm,, T, 41)]}

1—00

< H{hm sup Q[2g<3§'mz, Ty s wnﬂrl)]}

1—00

< O{lim sup(M (2, -1, Tim,—1, xn))k}

1—00

< f(e)".

Hence,

O(e) < Q(E)k,

which is possible only if € = 0, a contradiction. So, {z,} is an S,-Cauchy sequence.
Using completeness of S,-metric space, {x,} converges to a point u € X.
Now our claim is to prove that, u is a fixed point of f. When f is continuous, it is

easy to prove. Now, from condition (II) in Theorem 6.1.1.1 and Lemma 6.1.1.1,

o TN i (0028 1,701, 1))
< limsupH(M(xn,xn,u))k,
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where,

lim M(x,, x,,u)) =

. - ST, Tny f20)S (T, Ty fT0) S(Tny T, f20)S(u, u, fu)
lim max{S(x,, z,,u), - - : B =
n—00 1+ S(xn, T, ) + S(xn, u,u) 1+ S(xy, fu, fu) + S(zh, Tn, T5)
= 0.

Therefore, we deduce that, g(u,u, fu) = 0,i.e. w= fu. From the definition of S,

rational-JS contraction (6.1), uniqueness can be proven easily. ]
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6.2 Fixed Point Theorems on A, - metric Space

6.2.1 Altering distance function

Altering distance function introduced by Khan et al. (1984), which is a control

function that alters the distance between two points in a metric space.

Definition 6.2.1.1. (Faraji and Nourouzi (2017)) Let ¢ : [0,00) — [0,00) is said

to be altering distance function if

(i) ¢ is increasing and continuous,
(11) ¢(t) =0 if and only if t =0 .

We denote the class of all functions satisfying (i) and (iz) by ¢.
Next, we present an A,- metric space which is the combination of A-metric space,

Ap-metric space, and S,- metric space.

6.2.2 A, -metric space

Definition 6.2.2.1. (Adewale et al. (2020)) Let X be a nonempty set, w : [0,00) —
[0,00) be a strictly increasing continuous function with w='(t) < t < w(t) for all
t >0 and 0 = w(0) and let A, : XN — [0,00) be a mapping such that for all

1, %9, ..., TN, a € X satisfies the following conditions:

(1) Ap(.fll'l,xz,...,l']\]) 2 O,

(2) Ay(x1,29,...;xn5) =0 if and only if v1 = 29 = ... = xn,

(3) Ap(z1,22,....,2n) < w[A,(x1, 271, "7I1(N71)’a) + A, (g, 29, .., Ton_1ys a)+ ...+

Ap(TN, TNy oy TNy, @)

Then (X, Ap) is called an A,-metric space.
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Lemma 6.2.2.1. (Adewale et al. (2020)) Let (X, A,) be an A,-metric space. Then

forall x,y € X,

Az, x, .z, y) <w[Ap(y, Y, ..., y, x)].

The concepts of convergence, Cauchy sequence, and completeness in an A,-metric

space are defined in a similar manner.

Definition 6.2.2.2. (Adewale et al. (2020)) Let (X, A,) be an A,-metric space and

{z,} be a sequence in X. Then

(1) A sequence {x,} is called convergent to u € X if im, 00 Ap(Tn, Tny ooy Ty u) =
0. That is, for each € > 0, there exists ng € N such that for all n > ny,

we have A,(xy, Tp, ..., Ty, u) < €, and we write lim,,_,o ©, = u.

(it) A sequence {x,} is called a Cauchy sequence if 1im,,_ o0 Ap(Tp, Ty ooy Ty T) =
0. That is, for each € > 0, there exists ng € N such that for all n,m > ng,

we have Ay(Tp, Tn, ..., Ty, Ty) < €.

(111) (X, A,) is said to be a complete A,- metric space if every Cauchy sequence

{x,} is convergent to a point u € X.

In our result, the problems that arise in proving fixed point results due to the possible
discontinuity of the A,-metric space can be fortunately managed with the following

lemma.

Lemma 6.2.2.2. Let (X, A,) be an A,-metric space with the function w, then we

have the following:

(1) Suppose that {x,} and {y,} are sequences in X such that x,, = x,y, — y and
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the elements of {x,y, T, y, : n € N} are totally distinct. Then, we have

w_l[w_l(Ap(x, Ty 1,Y))]

IN

liminf Ay (2, ..., Tn, Yn)
n—oo

< limsupAp(‘(En;-"axn’yn)

n—0o0

IN

wlw(A4,(z,z,...,x,y))].

(ii) Let {x,} be a Cauchy sequence in X converging to x. If z,, has infinitely many

distinct terms, then

ww N Ay(x, 2,y .1, y))] < liﬂngp(xmxm...,xn,y)
< limsup A,(zp, Tp, ..., Tn, Y)

n—oo

< ww(A(z,, ..., 2,y))],

for all y € X with x # y.

Proof. (i) Using the second condition from the definition of A,-metric space, we

have

Az, z, .z, y) Sw[(N—1DA(z, 2, ..., x,20) + Ap(Y, Y, oo Y, )]

<W[(N = 1D)A(z, .o,z 20) FW{(N — DAY, oo Yo Un) + Ap(@ny ooy Ty Yn) -

Using Lemma 6.2.2.1,

[Ay(x,z, ..., x,y)] < w[(N—1) w{Ay(Tn, Tn, ..., Tn, )}

Fw{(N = 1) w(Apy(Yny ooy Uns ¥)) + Ap(Trs, Ty ooy Ty Yn) }H,
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and

Ay @y Ty oo Ty Yn) < W[(N — DA (@ Ty oy Ty ) 4 Ap(Yns Yns s Y, )]

< W[(N—=1DA)(xn,..; tn, ) + W{(N — 1)Ap(Yn, -, Yn, y) + Ap(x, 2, iz, ) }].

Taking the lower and upper limit as n — oo in the first and second inequality

respectively, we obtain the necessary result.

ii) Using the second condition from the definition of A,-metric space, we get
g p P g

Az, z, . xy) < WN—-DA(z,2, ...z, 2,) + Ap(Y, Yy -, Y, Tn)]
< w[(N-DA,(z,z,...,x,2,)
—H'd{(N - 1)Ap(y>ya Y, y) + Ap(xna i 7$n>y)}]
That is

Az, z, .z, y) Sw|[(N=1)Ay(z, 2, ..., x, Tp) Fw{Ap(Tn, Tps ..., T, y) H, (6.7)

Ap( @y Ty ooy Ty y) S WIN — 1) Ap(20, Ty ooy Ty @) + Ap(y, Y, oy, )] (6.8)

From Lemma 6.2.2.1, one obtains

Ap( @y Ty ooy Ty y) < WI(N — 1) Ap(Tn, Ty ooy Ty ) + w{Ap(z, 2,y oy, y) H.

Taking the lower limit as n — oo in the equation (6.7) and the upper limit in

the equation (6.8), we obtain desired result.

107



CHAPTER 6.... 6.2. FIXED POINT THEOREMS ON Ap - METRIC SPACE

6.2.3 Fixed point theorems with altering distance function

Theorem 6.2.3.1. Let (X, A,) be a complete A,-metric space with non-trivial func-
tion w(i.e.,w(t) #t). Let f and g be commuting mappings into itself which satisfies

the following:

(i)

plw(w(A,(fur, fus, ..., fun)))] < Xe(Ay(gus, gua, ..., gun)) ;Yuy, ug,...,un € X,
(6.9)

where, 0 < X\ < 1.

(i1) Either f or g is orbitally continuous and the range of g contains the range of
f.

Then f and g have a unique common fixed point.

Proof. Let o € X be arbitrary. Then fxy and gz, are well defined. Since fz, €
g(X), there exists x; € X such that gz; = fzy. Continuing this process, if x,, is
chosen, then we choose a point x,,.1 in X such that gz, = fz,.
Step I: We will prove that lim, oo A,(9Zn11, 9Tni1, -y g2n) = 0.

From contractive condition (6.9) and ¢ < w(t), one can have

@{Ap<gxn+1a 9Tni1, ey gxn)} - @{Ap(fwm fxna sy fxnfl)]}
@{W(W(Ap(fxm fxna ceey fxnfl)))}

IN

IN

)‘(p{Ap(gxna 9Tn, -y anfl)}
Mp{w(w(Ay(fen—1, frn—1,..., frn_2)))}

IN

IN

)\QSO{AP(g‘rn*h GTn—1, -+ gxan)}

IN

)\ngO{Ap(ngl, gz, .., g1, ng)}
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Then

limsup o(Ap(9Zn11; Tt s GTnt1, 92n)) = Hminf p(Ay(g2nia, s 92ni1, G2n))

n—oo

= lim ‘;O(Ap(gxn—&—l? ---agxn-l-lagxn))

n—o0

= 0.

This implies

Jim Ap(9Tni1, 9Tnt1, ooy GTns1, 92Tn) = 0.

Step 2 : We will show that gz, # gx,, for n # m.
Suppose, gx,, = gr,, for some n > m, then fz, 1 = fr,,_.1 = gx, = 9T .

This yields

90{ Ap(meagxma ---79$m7gxm+1)} = 90{ Ap(gxnagxm --wgmnaganrl)}

()0{ Ap(fxnfla fxnfly EERE) f‘rnfly fxn)}

< o{wW(Ap(fn1, frn—1, s [Tuo1, f22)))}
S )‘SO{AI?(gxn—lagxn—l? 7gxn)}
S AzQO{Ap(gxn—Z;gl’n—% --ngn—l)}-

Since 0 < A < 1, one obtains

90{ Ap(gmmngxmn "'agxmugxm-i-l)} < 90{ Ap(gxn—%gxn—% "')gxn—l)}-

Here n # m, so after a few steps, we arrive at

(;0{ Ap(gxmagxma "'7gxmagxm+1)} < 90{ Ap(gmm7g$m7 "'agxm-‘rl)}a

which is not possible. Therefore, we can assume that gx,, # gx,, for n # m.
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Step 3 : Now it is shown that {gz,} is an A,-Cauchy sequence. Assume, on the
other hand, i.e. that there exists ¢ > 0, we can find two subsequences {gz,,,} and

{gxn,} of {gz,} such that n; is the smallest index, where

n; >m; >0 and Ap(9Tm;, §Tmys s §Tmys §Tn;) = €. (6.10)

It indicates that

Ap(gxmmgxmia "'7g$miygxni_1) < €. (611)

Using definition of A,- metric space, one obtains

€ S Ap(g$mivgxmi7"'agxmmgxni)

S w[(N - 1)Ap(gxm¢:gxmm "~7gxmmg$mi+1) + Ap(gxnmgxnia “ngnpgxmﬂrl)]-

Taking the upper limit as ¢ — oo, we have

w(e) < limsup Ay (9., GTnss s 9Tn,s GTm.11)]-
1—00

That is

wt(e) < lmsup Ap(fTn, 1, FTni 1y oy [Tni—1, FTm,)]- (6.12)

1—00
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From Lemma 6.2.2.1 and the equations (6.9), (6.11) and (6.12), we have

o] = ol ()]
< plo(wimsup Ay(fon, ., fon, ;o fTn,_ s fom,))]
< Nollimsup An(gmn . gn o gn)
& A0S0 Ay G s, )
< ol

a contradiction. Thus, {gx,} is a A,—Cauchy sequence in X. Since (X, A4,) is a

complete A,-metric space. So, there exists z € X such that

lim gz, = u, (6.13)

n—o0

which yields

lim gz, = lim fz,_; = u.
n—oo n—oo

Step 4 : We will prove that u is the coincidence point of f and g. i.e. fu = gu.

With the use of w— inequality, one finds that

A, (fu, fu, ..., fu, gu) < W[(N=1)A,(fu, fu, ..., fu, fgr,_1)+A,(gu, gu, ..., gu, fgr,_1)].

Letting limit supremum, one has

limsup A,(fu, ..., fu,gu) < w[(N —1)limsup A,(fu,..., fu, fgr,—1)]

n—o0 n—oo

+wllimsup 4, (gu, ..., gu, fgr,—1)].

n—oo

Without loss of generality, one can assume that f is orbitally continuous. Also, we
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have f and g are commutative. Then one gets

lim A,(fu, fu, ..., fu, gu) <w(0),

one conclude that fu = gu.
Step 5 : At last we will prove that, u is the unique common fixed point of f and g.

At first, we will prove that gu = u.

@[(Ap(gx?w Gy -y GTn, gu))] = @[Ap(fxnfla fxnfb ceey fxn717 fu>]
< @{W<W(Ap(fxnflafxnflv---ufxnflvfu»)]
< A@[Ap(qxnflagxnfl? ~-~>gxnflagu))]

< )\QSO[AP(QITL—QagIn—QJ "'7gxn—27.gu))]

< AHQO[AP(QZE()?‘QQZ‘O’...791'0,9”)].

Taking limit as n — oo, we have

lim ¢(A,(92n, 9T, ..., gTn, gu)) = 0.

n—o0

This implies

lim A,(9%n, 9Tn, ..., T, gu) = 0.

n—oo
This means Cauchy sequence {gz,} converges to both u and gu, it is clear that
gu = u. Thus gu = u = fu. It is easy to check that u is the unique common fixed

point.

]

If we put gr = I,(identity map) then Theorem 6.2.3.1 turns into Banach type
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contractive condition. To prove the below theorem, orbital continuity is not required.

Theorem 6.2.3.2. Let (X, A,) be a complete A,-metric space with non-trivial func-

tion w(i.e.,w(t) #t). Let f be a self map that satisfies the following:

olw(w(Ap(fur, fug, ..., fun)))] < Ap(Ap(ug, uz, ..., un)) Vug, ug, ..,uy € X,
(6.14)

where, 0 < A < 1. Then f has a unique fixed point.

In the next theorem, we have taken the Kannan type contractive condition.

Theorem 6.2.3.3. Let (X, A,) be a complete A,-metric space with non-trivial func-

tion w(i.e.,w(t) #t). Let f be a self map that satisfies the following:

plww(Ap(fur, fug, .., fun)))] < Me(Ap(ur, us, ..., fur))

+§0<AP(U2, U,y ...y fUQ))

+p(Ap(un, un, ..., fun))}, (6.15)

for all uy,ug,...;uy € X and 0 < X< 1. Then f has a unique fixed point.

Proof. Let the sequence {z,} defined by fz,, = z,41. First, we will prove

lim A, (2, Ty ooy Tny Tpg1) = 0. (6.16)

n—00
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From contractive condition (6.15),

@(Ap(xm$nv“'vxmxn+1)) = @(Ap(fxn—lafxrhla~~-afxn—17fxn))
< AN = De{Ay(Tn—1,Tn_1, ..., Tn)}

FA{ Ay (X, Ty ooy Tii1) -

We arrive at,

A
O(Ap(Tn, Ty ooy Ty Ty1)) < (N—1){m}g0{Ap(xn,1,xn,1,...,xn)}

A

(N - 1)2{m}290{14p(xn727 Tpn—2; -y xn—l)}

IA

< (N - 1)"{&}"@{141,(1:0,%, wnxp)}. o (6.17)

Here, 25 < 1 as A < 3. Then,

li_>m O(Ap(Tn, Ty ooy Tpy1)) = 0.

Now, our claim is to prove {x,} is a Cauchy sequence. For that we will show
lim A,(zn, Tny ooy Tngp) =0 5p > 0.

n—oo

Casel: Let pisodd,ie. p=2m+1, m>1.
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From the contractive condition and equation (6.17),

Ol Ap(Tn, Try ooy Try Tgomsn))] < QWAL fTat, fTatsoes [Tn1, [Tniom))]
< AN = D@[Ap(Znot, Tots eons Tnt, Tn))]
FAO[Ap(Tnt2ms s Trt2m, Tntomy1))]
< AN = (A el Ao, 70, 0, 1)
+A( )TN — 1) Ay (o, ... o, 1))

1—-A

Thus, we obtain

lim @[A,(Tn, Tny ooy Tngoms1)] =0 ;m > 1.
n—oo

Case 2 : let piseven, ie. p=2m, m > 1.

Pl(Ap(@n, Ty oo Tny Tngam))] < Plw(WA ([T, fTn-1, ., [Tn-1, [Tni2m-1))]
< AN = Do[Ap(Tn-1, Tn1s ooy Tne1, Tn))]
+A[Ap(Tnr2m—1, -+ Tnt2m—1; Tnt2m))]
< AN = (A el Ao, w0, 0, 1)
bAoA )],

1—A

So,

lim @[A,(Tn, Tny ooy Tngom)] =0 sm > 1,

n—o0
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which means {x,} is a Cauchy sequence and hence convergent to z.

lim z,, = 2.
n—o0

Case 3 : Finally, our claim is to prove fz = z. From the definition of A,-metric

space, one gets
Az, 2,2, f2) SW[(N — DA (2, 2, ., 2z, 20) + Ap(f2, f2, ., f2,20)].
Letting n — oo,
Az, 2,2, f2) < ,}LIEOW[AP(fZ’fZ’ v 2 fen1)]
From Lemma 6.2.2.1

Az, 2,2, f2) < lim ww(Ay(fen_1, fTn_1, ..., frn_1, f2))].

n—oo

We can write

O(Ap(z, 2, ..., 2, fz) < nhi& olwlw(Ay(frn—1, frn_1,..., fra_1, [2))]].

From the contractive condition (6.15),

O(Ap(z, 2,y 2z, f2) < lm A[(N—=1)@(Ap(Tn—1, Tn—1, s Tn—1, Tn) +0(2, 2, ..., 2, f2)],

n—oo

which results in

(I —=Ne(z,2,...,2,fz) <0.
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Since, A < 1 and ¢ is non negative,

o(z,2,...,2, fz) = 0.

Thus, z is the fixed point of f. It is clear z is the unique fixed point of f. ]
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