
Chapter 6

Fixed Point Theorems on Sp- and

Ap- metric Spaces

In this chapter, we will discuss Sp- and Ap- metric space which are the generalization

of S-metric space, Sb- metric space, A-metric space, and Ab-metric space. In section

6.1, we prove the fixed point theorem derived by Mustafa et al. (2019b) in Sp-metric

space without taking the continuity of the class of functions defined by Jleli et al.

(2014).

In section 6.2 of this chapter, we derive a common fixed point theorem for two maps

in which one map is orbitally continuous in Ap-metric space (not necessarily contin-

uous) using altering distance function ϕ. In addition, we prove a fixed point result

for Banach and Kannan type contraction condition without considering orbitally

continuous map. An example is also given. In our results, we are dealing with the

discontinuity of metric space.
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6.1 Fixed Point Theorem on Sp - metric Space

6.1.1 Introduction and Preliminaries

Recently, Mustafa et al. (2019b) introduced Sp-metric space, at which he replaced

constant s in the definition of S−metric space by one variable continuous increasing

function and derived some results in that space. Jleli et al. (2014) introduced new

contractive maps and proved a new fixed point result in generalized metric spaces

(RMS). Later on, it is known as JS-type contraction mappings. Motivated by Jleli

et al. (2014), Mustafa et al. (2019b) dealt with a different type of JS-contraction

and proved a fixed point result.

Definition 6.1.1.1. (Jleli et al. (2014)) Let the class Θ0 that contains all functions

θ : (0,∞) → (1,∞) satisfying the following:

(θ1) θ is non decreasing.

(θ2) For each sequence {tn} ⊆ (0,∞), limn→∞ θ(tn) = 1 if and only if

limn→∞ tn = 0.

(θ3) There exists r ∈ (0, 1) and l ∈ (0,∞) such that limt→0+
θ(t)−1

tr
= l.

(θ4) θ is continuous.

Mustafa et al. (2019b) redefined the class Θ0 as following and denote it by Θ.

Definition 6.1.1.2. (Mustafa et al. (2019b)) Let the class Θ consisting of all func-

tions θ : [0,∞) → [1,∞) satisfying only the following conditions:

(θ∗1) θ is a continuous strictly increasing function.

(θ∗2) For each sequence {tn} ⊆ (0,∞), limn→∞ θ(tn) = 1 if and only if limn→∞ tn =

0.
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The definition of modified S-metric space is given below, a proper generalization of

the S-metric space and Sb-metric space.

Definition 6.1.1.3. Sp-metric space(Mustafa et al. (2019b))

Let X be a nonempty set and Ω : [0,∞) → [0,∞) be a strictly increasing continuous

function with t ≤ Ω(t) for all t > 0 and 0 = Ω(0). Suppose that a mapping

S̃ : E × E × E → R+ satisfies:

(1) S̃(x, y, z) = 0 if and only if x = y = z,

(2) S̃(x, y, z) ≤ Ω[S̃(x, x, a) + S̃(y, y, a) + S̃(z, z, a)]; for all x, y, z, a ∈ E.

Then, (X, S̃) is called an Sp-metric space.

Note:(Mustafa et al. (2019b)) If we put (x, x, y, x) in place of (x, y, z, a) in condition

(2) of definition of Sp-metric space, then S̃(x, x, y) ≤ Ω[S̃(y, y, x)].

Definition 6.1.1.4. (Mustafa et al. (2019b)) Let (X,Sp) be an Sp-metric space and

{xn} be a sequence in X. Then

(i) A sequence {xn} is called convergent to u ∈ X if, for every ϵ > 0 there exists

some positive integer N0 such that s̃(xn, xn, u) < ϵ, ∀n ≥ N0.

(ii) A sequence {xn} is called a Cauchy sequence if, for every ϵ > 0 there exists

some positive integer N0 such that s̃(xm, xn, xn) < ϵ, ∀m,n ≥ N0.

(iii) (X,Sp) is said to be a complete Sp- metric space if every Cauchy sequence {xn}

is convergent to a point u ∈ X.

Lemma 6.1.1.1. (Mustafa et al. (2019b)) Let (X,Sp) be an Sp-metric space, then

we have the following:
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(i) Suppose that {xn} and {yn} are sequences in X such that xn → x, yn → y.

Then, we have

Ω−1[1
2
Ω−1[S̃(x, y, y)]]

2
≤ lim inf

n→∞
S̃(xn, yn, yn) ≤ lim sup

n→∞
S̃(xn, yn, yn)

≤ Ω[2 Ω[S̃(x, y, y)]].

(ii) Let {xn} be a Cauchy sequence in X converging to x and z ∈ X arbitrary.

Then

Ω−1[S̃(x, z, z)]

2
≤ lim inf

n→∞
S̃(xn, z, z) ≤ lim sup

n→∞
S̃(xn, z, z)

≤ Ω[2S̃(x, z, z)].

Definition 6.1.1.5. (Mustafa et al. (2019b)) Let (X,⪯, S̃) be an ordered Sp-metric

space. A map f : X → X is called an Sp rational-JS contraction if

θ(Ω[2S̃(fx, fy, fz)]) ≤ θ(M(x, y, z))k, (6.1)

for all mutually comparable elements x, y, z ∈ X, where θ ∈ Θ, k ∈ [0, 1) and

M(x, y, z) = max{S̃(x, y, z), S̃(x, x, fx)S̃(y, y, fy)

1 + S̃(x, y, y) + S̃(x, z, z)
,

S̃(y, y, fy)S̃(z, z, fz)

1 + S̃(y, fz, fz) + S̃(y, x, x)
}.

Definition 6.1.1.6. (Mustafa et al. (2019b)) An ordered Sp- metric space (X,⪯, S̃)

is said to have the sequential limit comparison property (s.l.c. property) if {xn} is

an increasing sequence in X such that xn → u ∈ X, then xn ⪯ u for all n ∈ N.

Theorem 6.1.1.1. (Mustafa et al. (2019b)) Let (X,⪯, S̃) be an ordered Sp-metric

space and f : X → X be an increasing map with respect to ⪯ such that there exists

an element x0 ∈ X with x0 ⪯ fx0. Assume that f is an Sp− rational JS-contractive
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mapping. If

(I) f is continuous, or

(II) (X,⪯, S̃) enjoys the s.l.c. property,

then f has a fixed point. In addition, f has one and only one fixed point if and only

if the set of fixed points of f is well ordered.

6.1.2 A Remark on the fixed point theorem of Mustafa

In this section, we show that the assumption of continuity of the function θ is not

necessary. So, hereby we prove the Theorem 6.1.1.1 of Mustafa et al. (2019b) for

the class Θ0 containing of all functions θ : [0,∞) → [1,∞) satisfying the conditions

(θ1) and (θ2) defined by Jleli et al. (2014).

Now, the proof of the Theorem 6.1.1.1 is as follows:

Proof. Let us define xn = fnx0. We can assume, without losing generality, that

xn ̸= xn+1, for all n ∈ N. Then by (6.1), we conclude that

θ(S̃(xn, xn, xn+1)) ≤ θ(Ω[2S̃(xn, xn, xn+1)]) ≤ θ(M(xn−1, xn−1, xn))
k

≤ θ(S̃(xn−1, xn−1, xn))
k, (6.2)

because

M(xn−1, xn−1, xn) ≤ max{S̃(xn−1, xn−1, xn), S̃(xn, xn, xn+1)}.

From (6.2), one deduce that

1 ≤ θ(S̃(xn, xn, xn+1)) ≤ θ(S̃(xn−1, xn−1, xn))
k ≤ . . . θ(S̃(x0, x0, x1))

kn . (6.3)
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Taking the limit n→ ∞,

θ(S̃(xn, xn, xn+1)) = 1.

Since θ ∈ Θ, we obtain

lim
n→∞

S̃(xn, xn, xn+1) = 0. (6.4)

Now, our claim is to prove that {xn} is an Sp-Cauchy sequence. Assume, on the

other hand, i.e., there exists ϵ > 0 for which one can find two subsequences {xmi
}

and {xni
} of {xn} such that mi is the smallest index for which mi > ni > i and

S̃(xmi
, xmi

, xni
) ≥ ϵ.

This means that S̃(xmi−1
, xmi−1, xni

) < ϵ.

Using the rectangular inequality, we have

ϵ ≤ S̃(xmi
, xmi

, xni
) ≤ Ω[2S̃(xmi

, xmi
, xni+1) + S̃(xni

, xni
, xni+1)].

Taking the upper limit, one obtains

1

2
Ω−1(ϵ) ≤ lim sup

i→∞
S̃(xmi

, xmi
, xni+1), (6.5)

and

lim sup
i→∞

M(xmi−1, xmi−1, xni
) ≤ ϵ. (6.6)

Since θ is non decreasing, one can write from the equation (6.1),

Ω[2S̃(fx, fy, fz)] ≤ (M(x, y, z))k.

Put, x = xmi−1, y = xmi−1, z = xni
in above equation, we have,

Ω[2S̃(xmi
, xmi

, xni+1)] ≤ (M(xmi−1, xmi−1, xni
))k.

101



CHAPTER 6. . . . 6.1. FIXED POINT THEOREM ON SP - METRIC SPACE

Taking limit supremum both sides,

lim sup
i→∞

(Ω[2S̃(xmi
, xmi

, xni+1)]) ≤ lim sup
i→∞

(M(xmi−1, xmi−1, xni
))k.

Again using the condition (θ1). i.e θ is non decreasing, we obtain

θ{lim sup
i→∞

Ω[2S̃(xmi
, xmi

, xni+1)]} ≤ θ{lim sup
i→∞

(M(xmi−1, xmi−1, xni
))k}.

Hence, from the equations (6.5),(6.6) and above inequality, one arrives at

θ(Ω[2.
1

2
Ω−1(ϵ)]) ≤ θ{Ω[2 lim sup

i→∞
S̃(xmi

, xmi
, xni+1)]}

≤ θ{lim sup
i→∞

Ω[2S̃(xmi
, xmi

, xni+1)]}

≤ θ{lim sup
i→∞

(M(xmi−1, xmi−1, xni
))k}

≤ θ(ϵ)k.

Hence,

θ(ϵ) ≤ θ(ϵ)k,

which is possible only if ϵ = 0, a contradiction. So, {xn} is an Sp-Cauchy sequence.

Using completeness of Sp-metric space, {xn} converges to a point u ∈ X.

Now our claim is to prove that, u is a fixed point of f. When f is continuous, it is

easy to prove. Now, from condition (II) in Theorem 6.1.1.1 and Lemma 6.1.1.1,

θ(Ω[2 · Ω
−1[S̃(u, u, fu)]

2
]) ≤ lim sup

i→∞
θ(Ω[2S̃(xn+1, xn+1, fu)])

≤ lim sup
i→∞

θ(M(xn, xn, u))
k,
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where,

lim
n→∞

M(xn, xn, u)) =

lim
n→∞

max{S̃(xn, xn, u),
S̃(xn, xn, fxn)S̃(xn, xn, fxn)

1 + S̃(xn, xn, xn) + S̃(xn, u, u)
,

S̃(xn, xn, fxn)S̃(u, u, fu)

1 + S̃(xn, fu, fu) + S̃(xn, xn, xn)
}

= 0.

Therefore, we deduce that, S̃(u, u, fu) = 0, i.e. u = fu. From the definition of Sp

rational-JS contraction (6.1), uniqueness can be proven easily.
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6.2 Fixed Point Theorems on Ap - metric Space

6.2.1 Altering distance function

Altering distance function introduced by Khan et al. (1984), which is a control

function that alters the distance between two points in a metric space.

Definition 6.2.1.1. (Faraji and Nourouzi (2017)) Let ϕ : [0,∞) → [0,∞) is said

to be altering distance function if

(i) ϕ is increasing and continuous,

(ii) ϕ(t) = 0 if and only if t = 0 .

We denote the class of all functions satisfying (i) and (ii) by φ.

Next, we present an Ap- metric space which is the combination of A-metric space,

Ab-metric space, and Sp- metric space.

6.2.2 Ap-metric space

Definition 6.2.2.1. (Adewale et al. (2020)) Let X be a nonempty set, ω : [0,∞) →

[0,∞) be a strictly increasing continuous function with ω−1(t) ≤ t ≤ ω(t) for all

t > 0 and 0 = ω(0) and let Ap : XN → [0,∞) be a mapping such that for all

x1, x2, ..., xN , a ∈ X satisfies the following conditions:

(1) Ap(x1, x2, ..., xN) ≥ 0,

(2) Ap(x1, x2, ..., xN) = 0 if and only if x1 = x2 = ... = xN ,

(3) Ap(x1, x2, ..., xN) ≤ ω[Ap(x1, x1, .., x1(N−1)
, a) + Ap(x2, x2, .., x2(N−1)

, a) + . . .+

Ap(xN , xN , ..., xN(N−1)
, a)].

Then (X,Ap) is called an Ap-metric space.
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Lemma 6.2.2.1. (Adewale et al. (2020)) Let (X,Ap) be an Ap-metric space. Then

for all x, y ∈ X,

Ap(x, x, ..., x, y) ≤ ω[Ap(y, y, ..., y, x)].

The concepts of convergence, Cauchy sequence, and completeness in an Ap-metric

space are defined in a similar manner.

Definition 6.2.2.2. (Adewale et al. (2020)) Let (X,Ap) be an Ap-metric space and

{xn} be a sequence in X. Then

(i) A sequence {xn} is called convergent to u ∈ X if limn→∞Ap(xn, xn, ..., xn, u) =

0. That is, for each ϵ ≥ 0, there exists n0 ∈ N such that for all n ≥ n0,

we have Ap(xn, xn, ..., xn, u) ≤ ϵ, and we write limn→∞ xn = u.

(ii) A sequence {xn} is called a Cauchy sequence if limn→∞Ap(xn, xn, ..., xn, xm) =

0. That is, for each ϵ ≥ 0, there exists n0 ∈ N such that for all n,m ≥ n0,

we have Ap(xn, xn, ..., xn, xm) ≤ ϵ.

(iii) (X,Ap) is said to be a complete Ap- metric space if every Cauchy sequence

{xn} is convergent to a point u ∈ X.

In our result, the problems that arise in proving fixed point results due to the possible

discontinuity of the Ap-metric space can be fortunately managed with the following

lemma.

Lemma 6.2.2.2. Let (X,Ap) be an Ap-metric space with the function ω, then we

have the following:

(i) Suppose that {xn} and {yn} are sequences in X such that xn → x, yn → y and
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the elements of {x, y, xn, yn : n ∈ N} are totally distinct. Then, we have

ω−1[ω−1(Ap(x, x, ..., x, y))] ≤ lim inf
n→∞

Ap(xn, ..., xn, yn)

≤ lim sup
n→∞

Ap(xn, ..., xn, yn)

≤ ω[ω(Ap(x, x, ..., x, y))].

(ii) Let {xn} be a Cauchy sequence in X converging to x. If xn has infinitely many

distinct terms, then

ω−1[ω−1(Ap(x, x, ..., x, y))] ≤ lim inf
n→∞

Ap(xn, xn, ..., xn, y)

≤ lim sup
n→∞

Ap(xn, xn, ..., xn, y)

≤ ω[ω(Ap(x, x, ..., x, y))],

for all y ∈ X with x ̸= y.

Proof. (i) Using the second condition from the definition of Ap-metric space, we

have

Ap(x, x, ..., x, y) ≤ ω[(N − 1)Ap(x, x, ..., x, xn) + Ap(y, y, ..., y, xn)]

≤ ω[(N − 1)Ap(x, ..., x, xn) + ω{(N − 1)Ap(y, ..., y, yn) + Ap(xn, ..., xn, yn)}].

Using Lemma 6.2.2.1,

[Ap(x, x, ..., x, y)] ≤ ω[(N − 1) ω{Ap(xn, xn, ..., xn, x)}

+ω{(N − 1) ω(Ap(yn, ..., yn, y)) + Ap(xn, xn, ..., xn, yn)}],
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and

Ap(xn, xn, ..., xn, yn) ≤ ω[(N − 1)Ap(xn, xn, ..., xn, x) + Ap(yn, yn, ..., yn, x)]

≤ ω[(N − 1)Ap(xn, ..., xn, x) + ω{(N − 1)Ap(yn, ..., yn, y) + Ap(x, x, ..., x, y)}].

Taking the lower and upper limit as n→ ∞ in the first and second inequality

respectively, we obtain the necessary result.

(ii) Using the second condition from the definition of Ap-metric space, we get

Ap(x, x, ..., x, y) ≤ ω[(N − 1)Ap(x, x, ..., x, xn) + Ap(y, y, ..., y, xn)]

≤ ω[(N − 1)Ap(x, x, ..., x, xn)

+ω{(N − 1)Ap(y, y, ..., y, y) + Ap(xn, xn, ..., xn, y)}].

That is

Ap(x, x, ..., x, y) ≤ ω[(N−1)Ap(x, x, ..., x, xn)+ω{Ap(xn, xn, ..., xn, y)}], (6.7)

and

Ap(xn, xn, ..., xn, y) ≤ ω[(N − 1)Ap(xn, xn, ..., xn, x) + Ap(y, y, ..., y, x)]. (6.8)

From Lemma 6.2.2.1, one obtains

Ap(xn, xn, ..., xn, y) ≤ ω[(N − 1)Ap(xn, xn, ..., xn, x) + ω{Ap(x, x, ..., x, y)}].

Taking the lower limit as n→ ∞ in the equation (6.7) and the upper limit in

the equation (6.8), we obtain desired result.
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6.2.3 Fixed point theorems with altering distance function

Theorem 6.2.3.1. Let (X,Ap) be a complete Ap-metric space with non-trivial func-

tion ω(i.e., ω(t) ̸= t). Let f and g be commuting mappings into itself which satisfies

the following:

(i)

φ[ω(ω(Ap(fu1, fu2, ..., fuN)))] ≤ λ φ(Ap(gu1, gu2, ..., guN)) ;∀u1, u2, ..., uN ∈ X,

(6.9)

where, 0 < λ < 1.

(ii) Either f or g is orbitally continuous and the range of g contains the range of

f .

Then f and g have a unique common fixed point.

Proof. Let x0 ∈ X be arbitrary. Then fx0 and gx0 are well defined. Since fx0 ∈

g(X), there exists x1 ∈ X such that gx1 = fx0. Continuing this process, if xn is

chosen, then we choose a point xn+1 in X such that gxn+1 = fxn.

Step I : We will prove that limn→∞Ap(gxn+1, gxn+1, ..., gxn) = 0.

From contractive condition (6.9) and t ≤ ω(t), one can have

φ{Ap(gxn+1, gxn+1, ..., gxn)} = φ{Ap(fxn, fxn, ..., fxn−1)]}

≤ φ{ω(ω(Ap(fxn, fxn, ..., fxn−1)))}

≤ λφ{Ap(gxn, gxn, ..., gxn−1)}

≤ λφ{ω(ω(Ap(fxn−1, fxn−1, ..., fxn−2)))}

≤ λ2φ{Ap(gxn−1, gxn−1, ..., gxn−2)}
...

≤ λnφ{Ap(gx1, gx1, .., gx1, gx0)}.
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Then

lim sup
n→∞

φ(Ap(gxn+1, gxn+1, ..., gxn+1, gxn)) = lim inf
n→∞

φ(Ap(gxn+1, ..., gxn+1, gxn))

= lim
n→∞

φ(Ap(gxn+1, ..., gxn+1, gxn))

= 0.

This implies

lim
n→∞

Ap(gxn+1, gxn+1, ..., gxn+1, gxn) = 0.

Step 2 : We will show that gxn ̸= gxm for n ̸= m.

Suppose, gxn = gxm for some n > m, then fxn−1 = fxm−1 = gxn = gxm.

This yields

φ{ Ap(gxm, gxm, ..., gxm, gxm+1)} = φ{ Ap(gxn, gxn, ..., gxn, gxn+1)}

= φ{ Ap(fxn−1, fxn−1, ..., fxn−1, fxn)}

≤ φ{ω(ω(Ap(fxn−1, fxn−1, ..., fxn−1, fxn)))}

≤ λφ{Ap(gxn−1, gxn−1, ..., gxn)}

≤ λ2φ{Ap(gxn−2, gxn−2, ..., gxn−1)}.

Since 0 < λ < 1, one obtains

φ{ Ap(gxm, gxm, ..., gxm, gxm+1)} < φ{ Ap(gxn−2, gxn−2, ..., gxn−1)}.

Here n ̸= m, so after a few steps, we arrive at

φ{ Ap(gxm, gxm, ..., gxm, gxm+1)} < φ{ Ap(gxm, gxm, ..., gxm+1)},

which is not possible. Therefore, we can assume that gxn ̸= gxm for n ̸= m.
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Step 3 : Now it is shown that {gxn} is an Ap-Cauchy sequence. Assume, on the

other hand, i.e. that there exists ϵ > 0, we can find two subsequences {gxmi
} and

{gxni
} of {gxn} such that ni is the smallest index, where

ni > mi > i and Ap(gxmi
, gxmi

, ..., gxmi
, gxni

) ≥ ϵ. (6.10)

It indicates that

Ap(gxmi
, gxmi

, ..., gxmi
, gxni−1

) < ϵ. (6.11)

Using definition of Ap- metric space, one obtains

ϵ ≤ Ap(gxmi
, gxmi

, ..., gxmi
, gxni

)

≤ ω[(N − 1)Ap(gxmi
, gxmi

, ..., gxmi
, gxmi+1) + Ap(gxni

, gxni
, ..., gxni

, gxmi+1)].

Taking the upper limit as i→ ∞, we have

ω−1(ϵ) ≤ lim sup
i→∞

Ap(gxni
, gxni

, ..., gxni
, gxmi+1)].

That is

ω−1(ϵ) ≤ lim sup
i→∞

Ap(fxni−1, fxni−1, ..., fxni−1, fxmi
)]. (6.12)

110



CHAPTER 6. . . . 6.2. FIXED POINT THEOREMS ON AP - METRIC SPACE

From Lemma 6.2.2.1 and the equations (6.9), (6.11) and (6.12), we have

φ[ω(ϵ)] = φ[ω(ω(ω−1(ϵ)))]

≤ φ[ω(ω(lim sup
n→∞

Ap(fxni−1
, fxni−1

, ..., fxni−1
, fxmi

))]

≤ λφ(lim sup
n→∞

Ap(gxni−1
, gxni−1

, ..., gxmi
))

≤ λφ[ω(lim sup
n→∞

Ap(gxmi
, gxmi

, ..., gxni−1
))]

< φ[ω(ϵ)],

a contradiction. Thus, {gxn} is a Ap−Cauchy sequence in X. Since (X,Ap) is a

complete Ap-metric space. So, there exists z ∈ X such that

lim
n→∞

gxn = u, (6.13)

which yields

lim
n→∞

gxn = lim
n→∞

fxn−1 = u.

Step 4 : We will prove that u is the coincidence point of f and g. i.e. fu = gu.

With the use of ω− inequality, one finds that

Ap(fu, fu, ..., fu, gu) ≤ ω[(N−1)Ap(fu, fu, ..., fu, fgxn−1)+Ap(gu, gu, ..., gu, fgxn−1)].

Letting limit supremum, one has

lim sup
n→∞

Ap(fu, ..., fu, gu) ≤ ω[(N − 1) lim sup
n→∞

Ap(fu, ..., fu, fgxn−1)]

+ω[lim sup
n→∞

Ap(gu, ..., gu, fgxn−1)].

Without loss of generality, one can assume that f is orbitally continuous. Also, we
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have f and g are commutative. Then one gets

lim
n→∞

Ap(fu, fu, ..., fu, gu) ≤ ω(0),

one conclude that fu = gu.

Step 5 : At last we will prove that, u is the unique common fixed point of f and g.

At first, we will prove that gu = u.

φ[(Ap(gxn, gxn, ..., gxn, gu))] = φ[Ap(fxn−1, fxn−1, ..., fxn−1, fu)]

< φ[ω(ω(Ap(fxn−1, fxn−1, ..., fxn−1, fu)))]

< λφ[Ap(gxn−1, gxn−1, ..., gxn−1, gu))]

< λ2φ[Ap(gxn−2, gxn−2, ..., gxn−2, gu))]

...

< λnφ[Ap(gx0, gx0, ..., gx0, gu)].

Taking limit as n→ ∞, we have

lim
n→∞

φ(Ap(gxn, gxn, ..., gxn, gu)) = 0.

This implies

lim
n→∞

Ap(gxn, gxn, ..., gxn, gu) = 0.

This means Cauchy sequence {gxn} converges to both u and gu, it is clear that

gu = u. Thus gu = u = fu. It is easy to check that u is the unique common fixed

point.

If we put gx = Ix(identity map) then Theorem 6.2.3.1 turns into Banach type
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contractive condition. To prove the below theorem, orbital continuity is not required.

Theorem 6.2.3.2. Let (X,Ap) be a complete Ap-metric space with non-trivial func-

tion ω(i.e., ω(t) ̸= t). Let f be a self map that satisfies the following:

φ[ω(ω(Ap(fu1, fu2, ..., fuN)))] ≤ λφ(Ap(u1, u2, ..., uN)) ; ∀u1, u2, ..., uN ∈ X,

(6.14)

where, 0 < λ < 1. Then f has a unique fixed point.

In the next theorem, we have taken the Kannan type contractive condition.

Theorem 6.2.3.3. Let (X,Ap) be a complete Ap-metric space with non-trivial func-

tion ω(i.e., ω(t) ̸= t). Let f be a self map that satisfies the following:

φ[ω(ω(Ap(fu1, fu2, ..., fuN)))] ≤ λ{φ(Ap(u1, u1, ..., fu1))

+φ(Ap(u2, u2, ..., fu2))

...

+φ(Ap(uN , uN , ..., fuN))}, (6.15)

for all u1, u2, ..., uN ∈ X and 0 < λ < 1. Then f has a unique fixed point.

Proof. Let the sequence {xn} defined by fxn = xn+1. First, we will prove

lim
n→∞

Ap(xn, xn, ..., xn, xn+1) = 0. (6.16)
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From contractive condition (6.15),

φ(Ap(xn, xn, ..., xn, xn+1)) = φ(Ap(fxn−1, fxn−1, ..., fxn−1, fxn))

≤ λ(N − 1)φ{Ap(xn−1, xn−1, ..., xn)}

+λφ{Ap(xn, xn, ..., xn+1)}.

We arrive at,

φ(Ap(xn, xn, ..., xn, xn+1)) ≤ (N − 1){ λ

1− λ
}φ{Ap(xn−1, xn−1, ..., xn)}

≤ (N − 1)2{ λ

1− λ
}2φ{Ap(xn−2, xn−2, ..., xn−1)}

...

≤ (N − 1)n{ λ

1− λ
}nφ{Ap(x0, x0, ..., x1)}. (6.17)

Here, λ
1−λ

< 1 as λ < 1
2
. Then,

lim
n→∞

φ(Ap(xn, xn, ..., xn+1)) = 0.

Now, our claim is to prove {xn} is a Cauchy sequence. For that we will show

lim
n→∞

Ap(xn, xn, ..., xn+p) = 0 ; p > 0.

Case 1 : Let p is odd, i.e. p = 2m+ 1, m ≥ 1.
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From the contractive condition and equation (6.17),

φ[(Ap(xn, xn, ..., xn, xn+2m+1))] ≤ φ[ω(ωAp(fxn−1, fxn−1, ..., fxn−1, fxn+2m))]

≤ λ(N − 1)φ[Ap(xn−1, xn−1, ..., xn−1, xn))]

+λφ[Ap(xn+2m, ..., xn+2m, xn+2m+1))]

...

≤ λ(N − 1)n(
λ

1− λ
)n−1φ[Ap(x0, x0, ..., x0, x1))]

+λ(
λ

1− λ
)n+2m(N − 1)n+2mφ[Ap(x0, ..., x0, x1))].

Thus, we obtain

lim
n→∞

φ[Ap(xn, xn, ..., xn+2m+1)] = 0 ;m ≥ 1.

Case 2 : let p is even, i.e. p = 2m, m ≥ 1.

φ[(Ap(xn, xn, ..., xn, xn+2m))] ≤ φ[ω(ωAp(fxn−1, fxn−1, ..., fxn−1, fxn+2m−1))]

≤ λ(N − 1)φ[Ap(xn−1, xn−1, ..., xn−1, xn))]

+λφ[Ap(xn+2m−1, ..., xn+2m−1, xn+2m))]

...

≤ λ(N − 1)n(
λ

1− λ
)n−1φ[Ap(x0, x0, ..., x0, x1))]

+ λ(
λ

1− λ
)n+2m−1(N − 1)n+2m−1φ[Ap(x0, ..., x0, x1))].

So,

lim
n→∞

φ[Ap(xn, xn, ..., xn+2m)] = 0 ;m ≥ 1,
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which means {xn} is a Cauchy sequence and hence convergent to z.

lim
n→∞

xn = z.

Case 3 : Finally, our claim is to prove fz = z. From the definition of Ap-metric

space, one gets

Ap(z, z, ..., z, fz) ≤ ω[(N − 1)Ap(z, z, ..., z, xn) + Ap(fz, fz, ..., fz, xn)].

Letting n→ ∞,

Ap(z, z, ..., z, fz) ≤ lim
n→∞

ω[Ap(fz, fz, ..., fz, fxn−1)].

From Lemma 6.2.2.1

Ap(z, z, ..., z, fz) ≤ lim
n→∞

ω[ω(Ap(fxn−1, fxn−1, ..., fxn−1, fz))].

We can write

φ(Ap(z, z, ..., z, fz) ≤ lim
n→∞

φ[ω[ω(Ap(fxn−1, fxn−1, ..., fxn−1, fz))]].

From the contractive condition (6.15),

φ(Ap(z, z, ..., z, fz) ≤ lim
n→∞

λ[(N−1)φ(Ap(xn−1, xn−1, ..., xn−1, xn)+φ(z, z, ..., z, fz)],

which results in

(1− λ)φ(z, z, ..., z, fz) ≤ 0.
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Since, λ < 1 and φ is non negative,

φ(z, z, ..., z, fz) = 0.

Thus, z is the fixed point of f . It is clear z is the unique fixed point of f .
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