
Chapter 1

Introduction

1.1 Introduction

Fixed point theory is a powerful and productive tool for non-linear analysis. It is a

rapidly expanding area in non-linear analysis and non-linear operators, because of its

importance in the existence theory of differential equations and integral equations,

partial differential equations, random differential equations, fluid flows, chemical

reactions, nonlinear oscillations, approximation theory, economic theories, steady

state temperature distribution and other related fields.

Nonlinear analysis is concerned with the solution of nonlinear problems. It is used

to examine the conditions under which solutions to mappings exist. The equation

x = Tx, where T is a nonlinear operator defined on a metric space, can be used to

model a variety of problems in various disciplines of mathematics and x is a solution

of this equation, which is called the fixed point of T .

The simple way to find whether an equation has a solution or not is to present it as

a fixed point problem.
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Example 1.1.1. Assume we have a set of n equations with n unknowns of the form:

Ai(x1, x2, . . . , xn) = 0 ; i = 1, 2, . . . n,

where the Ai are real-valued continuous functions of the real variables xi. Let

bi(x1, x2, . . . , xn) = Ai(x1, x2, . . . , xn) + xi and for any x = (x1, x2, . . . xn), define

b(x) = (b1(x), b2(x), . . . , bn(x)). Suppose b has a fixed point x̄ ∈ Rn. Then it is clear

that x̄ is a solution to the system of equations.

The results which are connected to the existence of fixed points are called fixed

point results. We know from fixed point results that a mapping T of X allows one

or more fixed points under certain conditions on the mapping T and the space X.

Poincaré (1886) is the first to use the concept of a fixed point. Poincare’s last

geometric theorem claims that "there exist at least two fixed points for an area

preserving twist homeomorphism of an annulus". Dutch mathematician Brouwer

(1912) gave the first fixed point result for a topological space, stating that "contin-

uous self mapping defined on the closed unit ball in Euclidean space has at least

one fixed point". His result is applicable to finite-dimensional spaces and serves as

the foundation for numerous fixed-point results. Because of its use in different areas

of mathematics and economics, this finding proved to be a crucial theorem. This

theorem was further generalized for set-valued functions by Kakutani (1941). There

are numerous generalizations to Brouwer’s fixed point theorem that exist at present.

Metric fixed point theory has been essential in the advancement of nonlinear

functional analysis. It has several utilization in fields like economics and computer

science (see Border (1985),Matthews (1992)), etc. The credit, however, goes to

Polish Mathematician Banach (1922) for putting the above theory into an abstract

framework suited for broad applications. Kannan (1968) established a fixed point

result for a different contractive condition for the mappings which are discontinuous
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in their domain but still have a fixed point, although such mappings are continuous

at their fixed point. This result of Kannan led to the turning point in fixed point

theory. After that, many authors improved and extended the Banach Contraction

Principle.

1.2 Preliminaries

Definition 1.2.1. Fixed point:

Let X be a non-empty set and T : X → X. If x = Tx for some x ∈ X, then x is

called a fixed point of T .

Definition 1.2.2. Common fixed point:

Let X be a non-empty set and T1, T2 : X → X. If x = T1x = T2x for some x ∈ X,

then x is called a common fixed point of T1 and T2.

Fréchet (1906) introduced the term metric space in his doctoral thesis. On the

other hand, the explanation proposed by German mathematician Hausdorff (1914),

is widely used and stated as below:

Definition 1.2.3. Metric space:

Let X be a non-empty set, and the mapping d̂ : X × X → [0,∞) satisfies the

following:

(1) d̂(x, y) = 0 if and only if x = y,

(2) d̂(x, y) = d̂(y, x) for all x, y ∈ X,

(3) d̂(x, y) ≤ [d̂(x, z) + d̂(z, y)], ∀x, y, z ∈ X (triangle inequality).

Then d̂ is called a metric on X and (X, d̂) is called a metric space.
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In metric space, the concepts of Cauchy sequence, convergence, and completeness

are defined as follows:

Definition 1.2.4. Let (X, d̂) be a metric space and {xn} be a sequence in X. Then

(i) A sequence {xn} is called convergent to u ∈ X if limn→∞ d̂(xn, u) = 0.

That is, for each ϵ ≥ 0, there exists n0 ∈ N such that for all n ≥ n0,

we have d̂(xn, u) ≤ ϵ.

(ii) A sequence {xn} is called a Cauchy sequence if limn→∞ d̂(xn, xm) = 0.

That is, for each ϵ ≥ 0, there exists n0 ∈ N such that for all n,m ≥ n0,

we have d̂(xn, xm) ≤ ϵ.

(iii) (X, d̂) is said to be a complete metric space if every Cauchy sequence in (X, d̂)

is convergent.

Definition 1.2.5. Orbitally continuous:(Ćirić (1971))

If f is a self-mapping of a metric space (X, d̂), then the set O(x, f) = {fnx :

n = 1, 2, ...} is called the orbit of f at x and f is called orbitally continuous if

limk→∞ fnkx = x, for some x ∈ X implies limk→∞ f(fnkx) = fx.

Remark: It is obvious that a continuous function is always orbitally continuous

but the converse may not be true.

The following example justifies this fact.

Example 1.2.6. Define the map T : X → X on X = [0, 2] by

T (x) =
1

2
if x ∈ [0, 1], T (x) = 0 if x ∈ (1, 2].

It is clear that f is orbitally continuous but not continuous at x = 1.
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Definition 1.2.7. Asymptotic regularity:(Browder and Petryshyn (1966))

Let (X, d̂) be a metric space. A mapping T : X → X satisfying the condition

limn→∞ d̂(T n+1x, T nx) = 0 for all x ∈ X is called asymptotically regular.

Definition 1.2.8. Coincidence point:(Jungck (1986))

Let X be a non-empty set and T1, T2 : X → X. If w = T1x = T2x for some

x ∈ X, then x is called a coincidence point of T1 and T2, and w is called a point of

coincidence of T1 and T2.

Definition 1.2.9. Weakly compatible:(Jungck and Rhodes (1998)) Let X be a

non-empty set and T1, T2 : X → X. The pair {T1, T2} is said to be weakly compatible

if T1T2t = T2T1t, whenever T1t = T2t for some t in X.

Definition 1.2.10. Commutative map:(Jungck (1976)) Suppose that T1, T2 :

X → X are two mappings in metric space (X, d̂). Then T1, T2 are called com-

mutative mappings if for all x ∈ X, T1T2x = T2T1x.

1.3 A Review on Fixed Point Results

Theorem 1.3.1. (Brouwer (1912)) Let C be a closed unit ball in Rn and let f be a

continuous self-mapping on C. Then f has fixed point in C.

Banach (1922) gave the essential result known as the Banach Contraction Principle.

Definition 1.3.2. Banach contraction: A mapping T from a metric space X into

itself is said to be a contraction if

d̂(Tx, Ty) ≤ ad̂(x, y) ;∀x, y ∈ X and 0 < a < 1.

It is clear that a contraction mapping is continuous but the converse need not be

true. The Banach Contraction Principle is as follows:
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Theorem 1.3.3. (Banach (1922)) A contraction mapping of a complete metric

space X into itself has a unique fixed point in X.

This finding has now become one of the well-known and successful tools for solv-

ing existing problems in a wide range of mathematical fields due to its simplicity

and utility. The requirement of continuous mapping is a disadvantage of this fa-

mous finding. Kannan (1968) solved this issue by employing adjusted contraction

condition.

Theorem 1.3.4. (Kannan (1968)) A mapping T from a complete metric space X

into itself such that there exists λ ∈ [0, 1
2
) and

d̂(Tx, Ty) ≤ λ[d̂(x, Tx) + d̂(y, Ty)] ;∀x, y ∈ X.

Then T has a unique fixed point in X.

Following his work, extensive research was initiated in this direction and the re-

searchers presented many contractive conditions in the next two decades. Later on,

Chatterjea (1972) and Reich (1971) presented some results obtained through the

use of modified contractive conditions.

Theorem 1.3.5. (Chatterjea (1972)) A mapping T from a complete metric space

X into itself such that there exists λ ∈ [0, 1
2
) and

d̂(Tx, Ty) ≤ λ[d̂(x, Ty) + d̂(y, Tx)] ;∀x, y ∈ X.

Then T admits a unique fixed point in X.

Theorem 1.3.6. (Reich (1971)) A mapping T from a complete metric space X into
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itself satisfies the following:

d̂(Tx, Ty) ≤ αd̂(x, Tx) + βd̂(y, Ty) + γd̂(x, y),

∀x, y ∈ X and α, β, γ non negative with α + β + γ < 1. Then T has a unique fixed

point in X.

Motivated by these results, Hardy and Rogers (1973) established the following con-

tractive inequality to prove their result.

Theorem 1.3.7. (Hardy and Rogers (1973)) A mapping T from a complete metric

space X into itself satisfies the following:

d̂(Tx, Ty) ≤ α1[d̂(x, Tx) + d̂(y, Ty)] + α2[d̂(x, Ty) + d̂(y, Tx)] + α3d̂(x, y),

∀x, y ∈ X and α1, α2, α3 non negative with 2α1+2α2+α3 < 1. Then T has a unique

fixed point in X.

Later on, a more generalized contractive condition was obtained by Ćirić (1974) to

prove the uniqueness.

Theorem 1.3.8. (Ćirić (1974)) A mapping T from a complete metric space X into

itself satisfies the following:

d̂(Tx, Ty) ≤ a m(x, y), (1.1)

∀x, y ∈ X and a ∈ [0, 1), where

m(x, y) = max{d̂(x, Tx), d̂(y, Ty), d̂(x, y), d̂(x, Ty), d̂(y, Tx)}.

Then T has a unique fixed point in X.
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As we know, Kannan (1968) proved the result for discontinuous mappings but these

maps are continuous at their fixed points. Later on, Rhoades (1988) posed an open

problem of whether there exists a contractive definition that yields a fixed point but

do not require the mapping to be continuous at the fixed point. Pant (1999) solved

the Rhoades problem by making the mapping discontinuous at the fixed point.

Theorem 1.3.9. (Pant (1999)) Let (X, d̂) be a complete metric space. Let T be a

self map on X which satisfies the following:

(i) d̂(Tx, Ty) ≤ ϕ(m(x, y)) ; ∀x, y ∈ X,

where, m(x, y) = max{d̂(x, Tx), d̂(y, Ty)}.

(ii) given ϵ > 0 there exists δ > 0 such that ϵ < m(x, y) < ϵ+δ =⇒ d̂(Tx, Ty) ≤ ϵ.

Then T has a unique fixed point, say z. Moreover, T is continuous at z if and only

if limx→zm(x, z) = 0.

For a long time, it was unknown whether two commuting mappings of a convex and

compact set into itself had a common fixed point.

Theorem 1.3.10. (Boyce (1967)) There exist two commuting continuous mappings

S and T from [0,1] into itself without fixed points.

Jungck (1976) derived the following generalization of the Banach Contraction Prin-

ciple which confirm common fixed point under certain condition.

Theorem 1.3.11. (Jungck (1976)) Let T and S be two commuting self maps of a

complete metric space (X, d̂) such that S is continuous and satisfies the following:

(i) T (X) ⊂ S(X), and

(ii) d̂(Tx, Ty) ≤ k d̂(Sx, Sy) ;∀x, y ∈ X, x ̸= y,

where, k ∈ (0, 1) a real number. Then T and S have a unique common fixed point.
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1.4 Some Abstract Spaces

Now some abstract spaces are discussed as follows:

1.4.1 b - metric space

Bakhtin (1989) introduced b-metric space by multiplying the right hand side of the

triangle inequality with some real number.

Definition 1.4.1.1. Let X be a non-empty set with the coefficient s ≥ 1, and the

mapping d̂ : X ×X → [0,∞) satisfies the following:

(1) d̂(x, y) = 0 if and only if x = y,

(2) d̂(x, y) = d̂(y, x) for all x, y ∈ X,

(3) d̂(x, y) ≤ s[d̂(x, z) + d̂(z, y)] ∀x, y, z ∈ X.

Then d̂ is called a b-metric on X and (X, d̂) is called a b-metric space with coefficient

s.

1.4.2 Rectangular metric space (generalized metric space)

The generalized metric space introduced by Branciari (2000) by replacing triangular

inequality with rectangular one in the context of fixed point theorem.

Definition 1.4.2.1. Let X be a nonempty set. Suppose that the mapping d̂ : X ×

X → [0,∞), satisfies:

(1) d̂(x, y) ≥ 0, for all x, y ∈ X and d̂(x, y) = 0 if and only if x = y,

(2) d̂(x, y) = d̂(y, x) for all x, y ∈ X,

(3) d̂(x, y) ≤ d̂(x,w) + d̂(w, z) + d̂(z, y) for all x, y ∈ X and for all distinct points
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w,z ∈ X − {x, y} [rectangular property].

Then (X, d̂) is called a generalized metric space (rectangular metric space) (RMS).

Example 1.4.2.1. (Branciari (2000)) Let X = R and 0 ̸= α ∈ R. Define d̂ :

X ×X → [0,∞) as follows:

d̂(x, y) =


3α ;x, y ∈ {1, 2}

0 ;x and y can not both at a time in {1, 2}

0 ;x = y

Then it is clear that (X, d̂) is a rectangular metric space. Also (X, d̂) does not hold

the triangular property: 3α = d̂(1, 2) ≥ d̂(1, 3) + d̂(3, 2) = α + α = 2α.

So, it is not a standard metric space.

1.4.3 2 - metric Space

Definition 1.4.3.1. (Gahler (1963)) Let X be a nonempty set, a function d̂ : X3 →

[0,∞) that satisfies the following conditions, for each x, y, z, a ∈ X,

(1) For distinct points x, y ∈ X, there is z ∈ X such that d̂(x, y, z) ̸= 0,

(2) d̂(x, y, z) = 0 if two of the triple x, y, z ∈ X are equal,

(3) d̂(x, y, z) = d̂(x, z, y) = . . . (symmetry in all three variables),

(5) d̂(x, y, z) ≤ d̂(x, y, a) + d̂(x, a, z) + d̂(a, y, z).

Then (X, d̂) is called a 2-metric space.
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1.4.4 D - metric space

Definition 1.4.4.1. (Dhage (1992)) Let X be a nonempty set, a D-metric on X

is a function D : X3 → [0,∞) that satisfies the following conditions, for each

x, y, z, a ∈ X,

(1) D(x, y, z) ≥ 0,

(2) D(x, y, z) = 0 if and only if x = y = z,

(3) D(x, y, z) = D(x, z, y) = . . . (symmetry in all three variables),

(5) D(x, y, z) ≤ D(x, y, a) +D(x, a, z) +D(a, y, z).

Then (X,D) is called a D-metric space.

1.4.5 G - metric space

Definition 1.4.5.1. (Mustafa and Sims (2006)) Let X be a nonempty set. A G-

metric on X is a function G : X3 → [0,∞) that satisfies the following conditions,

(1) G(x, x, y) > 0 for all x, y ∈ X with x ̸= y,

(2) G(x, y, z) = 0 if x = y = z,

(3) G(x, x, y) ≤ G(x, y, z) for all x, y, z ∈ X with x ̸= y,

(4) G(x, y, z) = G(x, z, y) = G(y, z, x) = . . . (symmetry in all three variables),

(5) G(x, y, z) ≤ G(x, a, a) +G(a, y, z) for all x, y, z, a ∈ X.

Then (X,G) is called a G-metric space.
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1.4.6 D*- metric space

Definition 1.4.6.1. (Sedghi et al. (2007)) Let X be a nonempty set. A D∗-metric

on X is a function D∗ : X3 → [0,∞) that satisfies the following conditions, for each

x, y, z, a ∈ X,

(1) D∗(x, y, z) ≥ 0,

(2) D∗(x, y, z) = 0 if and only if x = y = z,

(3) D∗(x, y, z) = D∗(p{x, y, z}), (symmetry), where p is a permutation function,

(5) D∗(x, y, z) ≤ D∗(x, y, a) +D∗(a, z, z).

Then (X,D∗) is called a D∗-metric space.

1.4.7 S - metric space

Sedghi et al. (2012) introduced a three dimensional metric space, and it is called

S-metric space, which is defined by modifying D-metric and G-metric spaces.

Definition 1.4.7.1. Let X be a nonempty set, an S-metric on X is a function

S : X3 → [0,∞) that satisfies the following conditions, for each x, y, z, a ∈ X,

(1) S(x, y, z) ≥ 0,

(2) S(x, y, z) = 0 if and only if x = y = z,

(3) S(x, y, z) ≤ S(x, x, a) + S(y, y, a) + S(z, z, a).

Then (X,S) is called an S-metric space.

Every metric is known to produce an S-metric. It is stated in Gupta (2013) that

every S-metric defines a metric. On the other hand, Hieu et al. (2015) provided a
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counter example, which shows that every S-metric is not generated by metric space.

The relation between an S-metric and a metric is defined as follows:

Lemma 1.4.7.1. (Hieu et al. (2015)) Let (X, d̂) be a metric space and Sd̂ be a

S-metric generated by d̂. Then Sd̂(x, y, z) = d̂(x, z) + d̂(y, z), ∀ x, y, z ∈ X is an

S-metric on X.

After that, Özgür and Tas (2017) gave the following another example of an S-metric

that is not generated by a metric (i.e. S ̸= Sd̂).

Example 1.4.7.1. Let X = R and S(x, y, z) = |x+ z− 2y|+ |x− z| ;∀x, y, z ∈ R.

Here, (X,S) is an S-metric but there is no such metric d̂ exists such that S = Sd̂.

1.4.8 Sb - metric space

Souayah and Mlaiki (2016) introduced an Sb- metric space which is a combination

of b-metric space and S-metric space.

Definition 1.4.8.1. Let X be a nonempty set and let s ≥ 1, an Sb-metric on X

is a function Sb : X3 → [0,∞) that satisfies the following conditions, for each

x, y, z, a ∈ X,

(1) Sb(x, y, z) = 0 if and only if x = y = z,

(2) Sb(x, x, y) = Sb(y, y, x),

(3) Sb(x, y, z) ≤ s[Sb(x, x, a) + Sb(y, y, a) + Sb(z, z, a)].

Then (X,S) is called an Sb-metric space.

Remark: The Sb -metric space is larger than the S-metric space. Actually, Sb-

metric space with s = 1 turns into S-metric space. However, S-metric space may
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not be Sb-metric space.

Condition(2) is not true in the definition of Sb-metric space in general. To make it

more generic, Rohen et al. (2017) changed the definition as follows:

Definition 1.4.8.2. Let X be a nonempty set and let s ≥ 1, an Sb-metric on X

is a function Sb : X3 → [0,∞) that satisfies the following conditions, for each

x, y, z, a ∈ X,

(1) Sb(x, y, z) = 0 if and only if x = y = z,

(2) Sb(x, y, z) ≤ s[Sb(x, x, a) + Sb(y, y, a) + Sb(z, z, a)].

Then (X,S) is called Sb-metric space.

1.4.9 A - metric space

Abbas et al. (2015) presented the concept of A-metric space, which is a generalization

of S-metric space and defined it as follows:

Definition 1.4.9.1. Let X be a nonempty set and the function A : Xn → [0,∞)

that satisfies the following conditions, for all x1, x2, ..., xn, a ∈ X,

(1) A(x1, x2, ..., xn) ≥ 0,

(2) A(x1, x2, ..., xn) = 0 if and only if x1 = x2 = ... = xn,

(3) A(x1, x2, ..., xn) ≤

A(x1, x1, .., x1(n−1)
, a) + A(x2, x2, .., x2(n−1)

, a) + . . .+ A(xn, xn, ...xn(n−1)
, a).

Then (X,A) is called an A-metric space.

Example 1.4.9.1. Let X = R and A(x1, x2, x3, ..., xn) = |x1−xn|+ |x2−xn|+ ...+

|xn−1 − xn|. Then, (X,A) is an A-metric space.
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1.5 Methodology

For mappings satisfying particular contraction type conditions, there exist various

metrical fixed point theorems. In all of these results, a sequence of iterates is consid-

ered, which becomes a Cauchy sequence due to the contraction condition and whose

limit is a fixed point of the mapping. A joint sequence of iterates is appropriate for

common fixed point theorems.

The thesis is organized as follows:

1.6 Layout of The Thesis

The thesis consists of six chapters, chapter 1 contains an introduction and prelim-

inaries. In subsequent chapters, chapters 2-6, we begin with some preliminaries

which are required to prove the author’s own results.

Chapter 1 contains an introduction to fixed point theory and the theoretical back-

ground needed for the problems studied in the subsequent chapters. It also contains

the summary of each chapter of the thesis. We have attempted to provide a con-

cise explanation of the subject’s historical evolution, some abstract spaces, essential

definitions, and significant results. This chapter’s major goal is to make the current

text as self-contained as possible.

Chapter 2 The purpose of this chapter is to find a common fixed point for two

maps in which one map is orbitally continuous and then we have extended some

fixed point theorems with some additional conditions such as compactness, asymp-

totic regularity. We have provided an example that gives strength to our result.
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Chapter 3 is devoted to studying the Wardowski F-contraction and rectangular

b-metric space. We provide some new fixed point theorems for F-contraction on

rectangular b-metric spaces in which maps need not be continuous. We assume two

pairs of weakly compatible mappings satisfying the new contractive condition in

rectangular b-metric spaces and derive a unique common fixed point. Some corol-

laries are also obtained from the main result. Our results not only generalize many

known results in the literature but also improve some of the results therein. In

addition, the results are justified by appropriate examples and deployed to examine

the existence and uniqueness of solutions for a system of Volterra integral equation

which is used to model many real life problems.

Chapter 4 deals with the common fixed point theorem for F-contraction by assum-

ing that one map is orbitally continuous in Ω−extended rectangular b-metric space

(not necessarily continuous). Furthermore, we identify a fixed point for Banach’s

and Kannan’s type F- contraction inequality without consideration of orbital conti-

nuity. The appropriate examples are also provided for all the results.

Chapter 5 In this chapter, we present the essential results of Ab-metric space and

then we obtain the Banach type contraction principle and Kannan type fixed point

theorem as corollaries. An example is also provided for the utility of our result.

Our theorems generalize different results from the existing literature, especially the

results of Ughade et al. (2016). In addition, we provide examples for the justification

of our results.

Chapter 6 The sixth and last chapter is divided into two sections. In the first sec-

tion, we prove the primary result (Theorem 2.11) of Mustafa et al. (2019b) without
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assuming the continuity of the class of functions defined by Jleli et al. (2014).

In the second section, we prove a common fixed point theorem by taking one map is

orbitally continuous in Ap-metric space (not necessarily continuous) using altering

distance function ϕ. Consequently, we derive a fixed point for Banach and Kannan

type contraction inequality without taking the orbitally continuous map. A suitable

example is also included.
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