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2. Prey-Predator Model with Fuzzy initial condition 

 

2.1. Introduction 

In this chapter, we consider a system of differential equations representing a prey-predator 

model as described by Lotka-Volterra equation. Such a system mathematically is represented 

in general semi-linear form. For such a prey-predator model a more realistic depiction of the 

phenomena will be by considering initial conditions fuzzy, because error may occur in 

estimating the initial populations. All other parameters involved are considered crisp given in 

the description below. 

 

In the population model, predator eats prey and prey depends on other food (grass, fruits, and 

herbs), the prey is assumed to have unlimited food supply and to reproduce exponentially until 

they interact with a predator. This exponential growth rate is represented by the parameter . 

The rate of predation upon the prey is assumed to be proportional to the rate at which prey and 

predator interact, represented as b. On the other hand, the growth term of a predator when it 

encounters prey has a proportionality constant d and c represents the loss rate of the predator 

due to natural death or absence of prey. 

Thus, the two species population model can be represented as a system, with two first-order 

nonlinear differential equations, which is also known as the Lotka-Volterra equation. 

 

 

with initial conditions,  and  

 

 

(2.1) 

where, are positive constants as described above,  denotes the population of prey 

species and  denotes the population of predator species,  and  is the initial estimates of 

the species. 

For the system, as given by equation (2.1), it may not be possible to have the exact estimates 

of the initial population, then such a scenario fits into a fuzzy setup where the initial estimates 

are represented by fuzzy numbers. 

Equation (2.1) with the fuzzy initial condition is given by, 
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with initial conditions, and . 

 

(2.2) 

 

 

 Equation (2.2) can be written in compact form as, 

 

where,      ,  and  with . 

 

In this chapter, we adopt an analytical approach to solve the proposed model, which gives the 

estimate of the numbers of prey and number of predators at time  starting with an initial 

approximate population . To get the approximate solution first we obtain the solution of 

crisp prey-predator model and use it to obtain the solution of proposed fuzzy prey-predator 

model.  

2.2. Linearized Crisp Prey- Predator Model 

The equilibrium state is obtained by considering a change in state variable concerning  as 0. 

 

i.e.                          

Giving, the nontrivial equilibrium state of the system as, 

                            

To obtain the approximate solution of such a system we linearize the equation (2.1) about the 

equilibrium state (  -order term 

and neglecting the higher-order terms, as 

 
      

     (2.3) 
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where,  is  matrix and given as   and  is  vector and given as . 

The eigenvalues of  are    and  . We construct fundamental matrix 

 to obtain transition matrix  The solution of system (2.3) is then given by, 

. 

Here,  is the state transition matrix given as , which exists at  

is made up of a linearly independent solution of a homogeneous part of the equation (2.3). 

In the next section, we have applied the above analytical technique for the prey-predator model 

with fuzzy initial conditions. 

2.3. Linearized Fuzzy Prey-Predator Model 

The Prey-Predator model with a fuzzy initial condition in the linearized form with the fuzzy 

initial condition is, represented by equation as in (2.3) with  

 (2.4) 

     

with  

The solution of equation (2.4) with fuzzy initial condition is given by, 

 

Here, , where  is a fundamental matrix of linearly independent 

columns of  

Writing parametric form of the above equation, 

 

Comparing the elements of an interval, we get, 

 
(2.5) 

 
(2.6) 
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The state vector  can be constructed from (2.5) and (2.6) using, the First Decomposition 

theorem, Klir [70]. 

The solution  obtained using (2.5) and (2.6) will be a fuzzy solution if, for  

the following conditions are satisfied. 

 ,   and    

 .   and  

Hence, ,   and  . 

In the next section, we discuss the stability analysis of equation (2.2). 

 

2.4. Stability Analysis  

Consider,  and  from the prey-predator model as in equation 

(2.2). Its equilibrium state is .  

 and  are in an equilibrium state, then equation (2.2) becomes, 

 

 

 

Now, putting  in the above equations, we have, 

 

 

 

 

 

(2.7) 

Simplifying equation (2.7) and taking appropriate assumptions, we have, 

 

 

 

 

 

(2.8) 

Now, Jacobian of equation (2.8) is, 
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Eigenvalues of the above matrix are, , . 

The sum of eigenvalues is 0 i.e.,   and product of eigenvalues  i.e., 

positive.  

Thus, equation (2.2) represents a stable system. 

2.5. Illustrative examples 

We solve two numerical examples on Prey-Predator Model by the proposed technique. 

1) Classical Prey-Predator Model  

Consider the following example of the Prey-Predator Model [73] in a crisp setup. 

 

 

 

 

(2.9) 

with initial condition  

The system has two critical points, the trivial one is the origin and the other is  First, 

we linearize this problem at   

 

(  

(2.10) 

 

The linearized system has a coefficient matrix  which is given as  and 

 is  vector which is given as . 

Eigenvalues of this matrix are  and  and corresponding eigenvectors are  and 

 respectively and the fundamental matrix is given by,  

 

Thus, the solution of equation (2.6) is given by, 
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i.e. 

 

 ds. 

And we get, 

  

        

The evolution of the system in a small-time interval is as shown in Fig. (2.1). 

 

Figure 2.1: Evolution of Crisp Prey Predator Population 

In equation (2.9), when we consider the fuzzy initial condition as below, 

 

  

 

 

 

 

 

(2.11) 
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Then,  of above equation (2.11), initial conditions are obtained as follows,  

  

 

where, . 

The solution of equation (2.9) with fuzzy initial conditions as in (2.11) by the proposed 

technique, is obtained as follows, 

 

+  

 ds 

 

 

 

 

 

 

 

(2.12) 

 

For, , the solution of above equation is, 

  

               

which is same as crisp solution of equation (2.9). 

Put,  in equation (2.12), 

 

+    

Now, comparing the components, we get 

 

 

 

. 
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The evolution of the Prey and Predator population in the system (2.9) with fuzzy initial 

conditions, in a small-time interval, are as shown in Fig. (2.2) and Fig. (2.3) respectively. 

 

Figure 2.2: Evolution of Fuzzy Prey Population 

 

Figure 2.3: Evolution of Fuzzy Predator Population 

Next, we solve a diabetes model in fuzzy setup by proposed technique, as follows. 

For stability of equation (2.9), we have imaginary eigenvalues. So, the result from section 2.4, 

the system is stable. 
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2) Mathematical Model of Diabetes Mellitus 

Diabetes mellitus is commonly known as diabetes. This chronic disease is a major concern 

among all the countries either poor or rich across the globe. In India, this disease has been 

spreading very rapidly. According to the International diabetes federation (IDF) projects that 

the number of Indians with diabetes will rise to 123 million by 2040 and currently 5% 

population of India is suffering from this disease. The major reason for being diabetic in India 

is food habits. Indian diet consists of fat and carbohydrates. Also, lacking in exercise or any 

other physical activity, people gain weight which is the key factor of being prey for this disease. 

The mathematical model for diabetes mellitus [75] is given below, 

, 

 

 

(2.13) 

For fuzzy initial populations, 

 

 

where,  denotes the total number of diabetic patients with and without complications. 

 denotes the number of diabetic patients with complications. 

For fuzzy initial conditions, on applying our proposed techniques, the following solutions are 

obtained. 

 

 

The pictorial representation is given in the following graphs, 
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Figure 2.4: Evolution of Fuzzy Population of diabetes patients with and without complications 

 

Figure 2.5: Evolution of Fuzzy Population of diabetes patients with complications 

 

System such as given by (2.12) is stable as shown below. 

Jacobian of (2.12) is given as follows, 

 

Eigenvalues of the above matrix, are  and . A sum of the eigenvalues, 

and product of eigenvalues, . Hence, the system is stable. 
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2.6. Conclusion 

Here, we have discussed the approximate solution of the Prey Predator model with a fuzzy 

initial condition. We obtained a closed-form solution of the model by using the proposed 

scheme. We have also discussed about the stability of both numerical examples. For fuzzy 

solution, from graphs of both illustrations, we have observed that support remains bounded as 

time increases. 

  


