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3. Numerical Techniques 

 

3.1. Introduction 

In this chapter, we propose and establish results for the solution of fuzzy systems using 

numerical techniques. We give two numerical techniques [62-63] to solve such systems. First, 

numerical technique is based on discretization of Hukuhara derivative [4] and the other is on 

Improved Euler method [17]. We extend both numerical techniques for the system of fuzzy 

differential equations. We also give convergence analysis of both numerical techniques, which 

is based on complete error analysis. At the end the illustrative numericals are substantiated. 

To apply numerical techniques, we consider the fuzzy system, 

,  

 where,   

 i.e.,   ,  and . 

Here, each    are  Hukuhara differentiable. 

If  can be put in the form     then it is linear otherwise nonlinear, 

where,  and  contains fuzzy elements. 

In the next section, we propose the first numerical technique that is based on the discretization 

of Hukuhara derivative. 

3.2. Numerical Scheme using the Hukuhara Difference   

We propose numerical technique by approximating the derivative using H-difference for linear 

as well as nonlinear systems. In next subsection, a numerical scheme for a fuzzy linear 

dynamical system is explained in detail. 
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3.2.1.    is linear function 

We consider the fully fuzzy linear dynamical system as follows,  

 (3.1) 

Taking on both sides of equation (3.1) we get, 

. 

Writing the above equation in parametric form gives, 

;   

Using fuzzy multiplication and addition as in Section 1.2.5 of chapter 1, we have 

 

(3.2) 

For notation, let ,   and .

Using the above notations and comparing components of both sides, we get equations 

 (3.3) 

  (3.4) 

with initial condition, . 

Equation (3.3) and (3.4) can be written as matrix form, 

 (3.5) 

Now replacing derivative, by Hukuhara difference as defined in [5], of the left side of equation 

(3.5) at , we get, 

. (3.6) 

where,  

If  contains some negative fuzzy elements then their place in  and  will be 

interchanged in equation (3.5), as in [30] and [72]. 

In the next section, we give the convergence of solution by the proposed numerical technique. 
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3.2.2. Theorem 

Let ,  be the exact solution of equation (3.5) and   be the numerical 

solutions defined by the equations (3.6) converges to the exact solution of equation (3.5) For 

sufficiently small , the determinant value of  and is less than 1. 

i.e.,   and . 

 

Proof:  It is sufficient to show, 

 

 

From equation (3.5), writing the equivalent discrete form, 

 (3.7) 

By subtracting equation (3.7) from equation (3.6), we get 

 

Taking  and   as the errors at  iteration, we can 

write, 

  (3.8-a) 

 

  (3.8-b) 

 

Now by backward substitution, equation (3.8-a) can be written as, 

 

Since,  is a nonsingular matrix,  is also nonsingular so the solution of the system 

exists. 

For the convergence of equation (3.6), 

 

Take  , , 

i.e.,

 

Similarly, 
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In the next section, we give a numerical scheme and its convergence for the system of nonlinear 

fuzzy differential equations. 

 

3.2.3.  is nonlinear function 

Instead of representation (3.1) of fuzzy differential system, we consider more general form as, 

,  

By using variables in parametric form, 

. 

where,   , . 

 The parametric form of the above equation can be written as,  

 

Now, comparing the component, 

 (3.9-a) 

 

  (3.9-b) 

with fuzzy initial conditions  

Now by the proposed scheme, 

  (3.10-a) 

 

 (3.10-b) 

with fuzzy initial condition,  

By using the Decomposition theorem as in Klir [70], the equations (3.10-a) and (3.10-b) is as 

follows, 

 

In the next section, we give the result for convergence of solution. 

3.2.4. Theorem 

For systems (3.9-a) and (3.9-b), let  , , their partial derivatives  

and   bounded and Lipschitz in . Let  both are the exact solution of equations 



44 
 

(3.9-a) and (3.9-b) and  both are the numerical solution of equations (3.10-a) and 

(3.10-b) at   then numerical solution converges to the exact solution uniformly. 

 

Proof: Define error in  term for  as, 

,  

Thus, next error term will be, 

,  

Considering, the first expression and replacing  by equation (3.10-a). 

 

 

 

 

By taking modulus  and using Lipschitz condition for function 

 with Lipschitz constant  

 

Computing in a backward manner we get at  step, ,  

 

 

 

 

Applying lemma as in [10] we get, 

 

 

, 

Assuming the initial error  (obviously) and  . 
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which is valid for   stability, finally, 

 

as , we have , 

 

Similarly, we can show linear convergence for error term  using with Lipschitz 

constant  

Let  be Lipschitz constant for function  then this will establish the linear 

convergence of the proposed iterative method. 

In the next section, we propose and establish results for another numerical technique Improved 

Euler method for fuzzy systems. 

3.3. Improved Euler Method  

We again consider a system of fully fuzzy differential equations,  

,  

Again, putting in the parametric form as in equations (3.9-a) and (3.9-b) we get 

 

 

 

 

with fuzzy initial conditions  

Now approximating the Hukuhara derivative using the first order derivative, as in Section 3.2.3, 

we propose the numerical scheme as follows, 

 

 

 

(3.11) 

where,   

After taking of equation (3.11),   
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The parametric form of equation (3.11) is as follows, 

 

 

 

                                             

+  (3.12) 

where,   

  

 

Comparing the component of equation (3.12), 

 (3.13-a) 

 (3.13-b) 

 

In the following section, we give results for existence and convergence of numerical solution 

of equations (3.9-a) and (3.9-b) by the proposed numerical scheme. For the purpose following 

lemma is required. 

3.3.1.    Lemma 

   defined in equation (3.12) is Lipchitz if   is Lipschitz. 

Proof: Let  and  are in  
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We know that  is Lipschitz continuous function with  as a Lipschitz constant and value of 

 are . So, we have, 

 

 

Thus,   is Lipchitz continuous function with constant  

Similarly,  is also Lipchitz continuous function with constant  

Hence,    is Lipchitz function with Lipschitz constant . 

In the next section, we establish convergence result for the proposed scheme. 

 

3.3.2.         Theorem 

Let be the exact solution of equations (3.9-a) and (3.9-b) and  be the numerical 

solution of equations (3.13-a) and (3.13-b) and  is Lipschitz in equations (3.13-a) and 

(3.13-b) then numerical solution converges to exact solution if  is differentiable. 

 

Proof:  We prove convergence of proposed technique as in Section 3.3 as follows, 

Define the error at  term, 

 

Using the value of   is from equation (3.13-a) and expand  , 

 we have, 

 
(3.14) 

We know that from Section 3.3, the value of  is as follows, 

 

Using value of  in equation (3.14), we get, 
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(3.15) 

 

Expanding this term   for   

   

(3.16) 

We know that, 

 ,   

 The above-mentioned partial derivatives are bounded because 

 is Lipschitz continuous. 

Using above expression and equation (3.16) in equation (3.15), we obtain, 

 

As, , the error term  becomes zero. 

Similarly, we can show, the error term  becomes zero. 

Thus, the numerical solution converges to the exact solution. 

3.4. Application (Spread of Infectious Disease Model) 

The mathematical model of the spread of infectious disease model is taken from [74].  

Consider the population of people,  and a certain contagious disease that infects the people. 

This population is divided into three parts,  denotes susceptible persons, 

those presently infected and may spread the disease,  denotes the number 

of persons, already dead due to infection, recovered or cannot spread the disease. So, we will 

consider the dynamics for  only. 

The rate of disease transmission from  is directly proportional to .  

i.e.,           . 

The rate of transfer into  comes from  and the rate of transfer out of  goes to  which is 

proportional to .  

i.e.,             
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where  and  are positive constants and population  

These parameters  and  depend on many factors like season, the severity of disease, the 

behavior of people etc. So, variation in parameters result following fuzzy model, 

 

 

with initial conditions, ,  

where, the values of parameters are given as, 

 

 

The parametric form of above-mentioned parameters, is given as, 

 

 

 

 and  

Applying the first numerical technique as given in section 3.2, we have obtained the fuzzy 

solution of the above disease model, as given in fig. 3.1 and fig. 3.2. 

 

 

Figure 3.1: Number of uninfected people those may be infected 
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Figure 3.2: Number of infected people those may spread infection 

 

From fig. 3.1 and fig 3.2, we have observed that solution remains fuzzy under the proposed 

scheme and support i.e., the number of susceptible people and presently the number of infected 

people increase with time. 

Applying the second numerical technique on Section 3.4 as given in Section 3.3, we obtained 

the fuzzy solution as in fig 3.3 and fig 3.4. 

 

Fuzzy Number representation 

 

Figure 3.3: Number of infected people they may spread infection by the second technique 
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Fuzzy Number Representation

 

Figure 3.4: Number of uninfected people who may be infected by the second technique 

From the above graphs, we can see solution remains fuzzy under the Improved Euler method 

and supports increases with time. In both proposed techniques, fuzzy solution matches with 

crisp solution at the core. 

 

3.5. Conclusion 

In this chapter, we have proposed numerical techniques to solve fully fuzzy dynamical systems. 

We have proved convergence for the proposed schemes based on complete error analysis and 

applied it to real-world problem and compared the results with crisp solution. A fuzzy scenario 

helps us in estimating the more realistic value of the variable so that we can apply the treatment 

accordingly. 

 

 

 

 

 

 

 

 

 

 


