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5. Semi-Analytical Technique 

 

5.1. Introduction 

Semi-Analytical techniques such as Adomian Decomposition Method (ADM), Homotopy 

Perturbation method (HPM) and Variational iterative method (VIM) [22-27] etc. are powerful 

tools to solve nonlinear differential equations.  

 In this chapter, we focus on ADM to solve fuzzy semi-linear dynamical systems. We consider 

two approaches for solving fuzzy systems using ADM. The First approach is to solve a fuzzy 

semi linear dynamical system using fuzzy ADM [66] in parametric form. In this approach, we 

convert fuzzy dynamical systems into the parametric form, taking  and applying fuzzy 

ADM in that form. For solving fuzzy differential equations (FDE) or systems using the 

parametric form, convert FDEs into their counter crisp part. In the second approach, we 

developed Fuzzy Adomian Decomposition Method (FADM) [69] in a complete fuzzy 

environment. The advantage of this technique is that we solve problem in a complete fuzzy 

environment instead of bringing it to the crisp form for solving and going back in fuzzy as done 

conventionally. For establishing this technique, we require some results on fuzzy power series 

along with its convergence and Fuzzy . 

In this chapter, we also consider the complexity involved in fuzzy mapping when input and 

output both are fuzzy and redefine Modified Hukuhara derivative and name it Modified 

generalized Hukuhara (mgH) derivative. So, all the results related to FADM are proposed under 

mgH-derivative. In the proposed results we have in general considered any kind of fuzzy 

numbers, positive as negative. Lastly, we give theorem for convergence of FADM followed by 

numerical examples. 

In the next section, we give a brief introduction of the Adomian Decomposition method in a 

crisp environment as given in [23]. 

5.2. Adomian Decomposition Method in a crisp environment (ADM): 

 Consider a general form of the nonlinear differential equation, given as,  
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where,  is the highest linear differentiable operator,  is nonlinear operator, is the operator 

of less order than that of  and  is source term. Then applying,  - integration operator on 

both sides we get, 

 

which gives, 

 

By ADM as in [23], we consider a series solution,  Also, the nonlinear term  

is decomposed in a series of Adomian polynomials, i.e.,  . 

Thus,   

where,                     (5.1) 

and  is the decomposition factor. 

Using recurrence relation, we have, 

 (5.2) 

Putting  in equation (5.2) and using equation (5.1) we get, 

 

 

 

Thus, the solution of general form of the nonlinear equation given as, 

 

In the next section, we present a method that we have adopted to convert FDE into a system of 

ODE, considering, in general, positive as well as negative fuzzy numbers. 

 

5.2.1. Fuzzy Semi-linear dynamical system 

We consider fully fuzzy semi-linear dynamical system as in chapter 4, 

;  (5.3) 

 Using these notations , writing equation (5.3) in 

parametric form, as follows, 

 

 
(5.4) 

 where,   , .  
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Comparing component wise on both the sides of equation (5.4), we get 

   ;     (5.5-a) 

  ;   (5.5-b) 

In the next section, we show that equation (5.3) is equivalent to equation (5.4) by the following 

lemma. 

5.2.2. Lemma 

A fuzzy semi-linear dynamical system is given in (5.3) is equivalent to system (5.4) iff  

is equicontinuous, uniformly bounded and Lipschitz. 

Proof: Since,  is equi-continuous and Lipschitz in parametric form, 

which gives, 

 

and, 

 

 

where, is Lipchitz constant of .  

Thus equation (5.4) has a unique solution in parametric form i.e.,  and  are the solution 

of equations (5.5-a) and (5.5-b) respectively. 

Conversely, let be the solution of equation (5.4) which implies that  

 and  are the solution of equation (5.5-a) and (5.5-b) component wise, also  

is Lipschitz. So, it guarantees the unique solution of equation (5.4). Now, using the 

Decomposition theorem as in Klir [70], we can construct the fuzzy solution   as 

follows, 

 

where,  denotes fuzzy union. 

Thus, equation (5.3) is equivalent to the system (5.4). 

In the next section, we present the Fuzzy Adomian Decomposition method in parametric form. 
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5.2.3. Fuzzy Adomian Decomposition Method in Parametric form (FADMP) 

In Section 5.2, the Adomian Decomposition method is presented in a crisp environment. Now, 

we propose FADMP for the fuzzy semi-linear dynamical system as in equation (5.4) as follows. 

Consider equation (5.4), 

 

with initial condition,  

Using the operator  equation (5.4) can be written as follows, 

 

Now, taking on both sides, where  

 

 

(5.6) 

Denoting,    

Then equation (5.6) can be represented as, 

 

 (5.7) 

Now, using section 5.2, consider the series solutions  in parametric 

form of equation (5.7) and nonlinear terms,  and   can be decomposed as a series of Adomian 

polynomials. 

i.e.,      

 

Thus, the solution of equation (5.4) in parametric form is given as, 

 (5.8) 

In the next section, we give existence condition for solution of equation (5.4) in parametric 

form. 
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5.2.4. Theorem 

If  be an analytic function in equation (5.4), then equation (5.4) has a series solution by 

fuzzy Adomian decomposition method in parametric form by equation (5.8) as follows, 

 

where, 

 

 

                                                       

Proof: Let  be an analytic function in equation (5.4), so FADMP is applicable. Using 

Section 5.2.3, we put,  in equation (5.8), we obtain, 

 

 

By Recurrence relation we get, 

 

for  

Therefore, for different values of  we get,  

 

 

 

and so on. 

 

The Adomian polynomials,  can be obtained by the formula as given in equation (5.2). 

So, the solution of equation (5.4) is given by, 
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5.2.5. Example 

Using the proposed Fuzzy ADM technique, we solve the following fully fuzzy prey-predator 

model [65] involving the fuzzy parameters and fuzzy initial condition given as, 

 
(5.9) 

with fuzzy initial conditions,  

where, 

 

 

Applying the proposed FADM technique, we have 

 

Applying inverse operator on both sides, we have   

   

Thus, by solving the above equation, we get, 

 
 

(5.10) 

Let and be the series 

solution in the parametric form of equation (5.10) and the nonlinear term be expressed in the 

form of Adomian polynomial as . 

So, the equation (5.10) can be written as   
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comparing both the sides, we get  

 

 

 

 

 

Similarly,     

 

 

 

 

 

Now for computation of above iterations, using following values, 

 

 

The Adomian polynomial, 

 

 

At,  
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. 

Similarly, for  we can compute the solution of the system. 

 

 

 

 

The table 5.1 shows number of Prey and Predator as follows, 

Table 5.1:   Evolution on Predator and Prey data with time 

 Prey-data Predator-data 

0 l-120 c-130 r-150 l-20 40 50 

0.056 117.7297 129.2541 150.7522 19.4470 41.4411 53.5654 

0.11 115.2383 128.4609 151.5894 18.6730 42.9199 57.4510 

0.17 112.5032 127.6203 152.5345 17.6354 44.4364 61.6943 

0.22 109.4991 126.7323 153.6145 16.2855 45.9907 66.3377 

0.28 106.1982 125.7971 154.8593 14.5685 47.5827 71.4281 

0.33 102.57 124.8144 156.3027 12.4241 49.2124 77.0168 

0.38 98.5814 123.7845 157.9817 9.78599 50.8799 83.1600 

0.44 94.1968 122.7072 159.9369 6.5821 52.5851 89.9185 

0.5 89.3778 121.5825 162.2124 2.7345 54.328 97.3575 

 

The evolution of prey-predator population at different time is as shown in Table 5.1.  fig 5.1. 

and fig. 5.2. shows the evolution if predator population and prey population for time t = 0 to 

0.5, respectively. 
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Figure 5.1: Evolution of Predator population for  to  

 

Figure 5.2: Evolution of Prey population for  to  

 

In the next section, we develop Fuzzy Adomian Decomposition method (FADM) in a complete 

fuzzy environment. The benefit of which is mentioned earlier. In the next section, all the results 

required, in the development of FADM are proposed and proved. 
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5.3. Fuzzy Adomian Decomposition Method (FADM) in fully fuzzy Environment 

For developing the FADM in a complete fuzzy environment, we redefine the definition of fuzzy 

function and using it, we give modified generalized Hukuhara (mgH) derivative. We propose 

and prove various other results like the Decomposition theorem, fuzzy power series and its 

s under mgH derivative. Also, the 

convergence of FADM is proved. All the required results are extended for  and validated at 

the core. The advantage of FADM is that it can be applied directly to the differential equations 

in fuzzy form, instead of converting to crisp. The illustrative examples are solved using this 

FADM. 

We begin the next section with the extension of the Decomposition theorem. 

5.3.1. Decomposition theorem 

We extend the first Decomposition in Klir [70] for  

 

Theorem: For, every , 

  where  

Proof: Let  is a fuzzy number i.e., . So  

where, , .  

Now, 

   

 

Taking fuzzy union on both sides, 

 

  

 

 

 

Hence,  
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                                              . 

 

Thus,     

 where,  

Next, we redefine fuzzy function as follows. 

5.3.2. Fuzzy function 

Consider a fuzzy valued scalar function with fuzzy argument  . Its parametric form 

can be defined as follows, 

                [ , where,  and   

 Further,   

where,     ,    

 

(5.11) 

This definition can be extended to  dimensional fuzzy valued function, by now considering  

as,   where, . 

where parametric form, 

               

Further,  

 

where,   and  are similar to as defined in equation (5.11) can be written as, 

,  

,  

Based on this definition of the fuzzy function, we redefined the modified Hukuhara derivative 

in a new manner as follows.  
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5.3.3. Modified Generalized Hukuhara derivative: 

A function  is said to be Modified Generalized Hukuhara (mgH) differentiable for an 

element  such that for small ,  

 and  

 

 

(5.12) 

The equivalent parametric form for the first limit is given as, 

 

 

 

Similarly, the second limit in equation (5.12) can be given as, 

 

  

  

In the following examples, we compute the derivative of a given function using the definition 

as in equation (5.12). 
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5.3.4. Example 1:  

 Derivative of  at ,  

From the definition of derivative as in equation (5.12), we get, 

 

 

 

 

 

(5.13) 

where,  

 

 

 

 

Since, , ,  (5.14) 

Using equations (5.13) and (5.14), we have,

 

 

 

Similarly, 

  

          

Thus, by the Decomposition theorem as in, Section 5.3.1, . 

Example 2:    

Derivative of  at  ,  
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By using definition as in equation (5.12), we have 

 

 

where,  

,  

  

 

. 

 

Since, , , . 

 

(5.15) 

Putting equation (5.15) in equation (5.13). 

 

Also,  

 

 

Thus, by the Decomposition theorem as in, Section 3.2, . 

Using this definition of a fuzzy derivative, we give fuzzy power series along with its 

convergence results and substantiate it with examples.  

5.3.5. Fuzzy power series and its convergence 

We know that power series is in crisp form is given as,  

. 

A power series of fuzzy valued function around the point can be given as, 

 (5.16) 

where,  are any fuzzy coefficients and n is a positive integer. Its parametric form can be 

given by, 
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Since,  then the above series expansion is given as follows, 
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With this representation of fuzzy power series, in the next section, we give result of the radius 

of convergence for fuzzy power series.  

5.3.6. Radius of Convergence 

If radius of convergence  given by  of fuzzy power series can be 

defined as in parametric form, ,  
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where, 

=  

=  

 

The fuzzy power series  with radius of convergence  and the set of the 

points from an interval at which fuzzy series is convergent, known as the interval of 

convergence such that . 

The parametric form of  and ,  

This assertion can be simplified in the following manner, 

 

 Thus, 

 

 

 

Similarly,  

 

 

(  

Thus, when we combine the result of radius of convergence in parametric form, we obtain the 

following condition for convergence, 

max  (5.17) 

This is the interval based on   in which fuzzy power series converges. 

Using the result as in equation 5.17, we proceed to find the radius of convergence for the power 

series representation of function. 

 

5.3.7. Lemma 

If  

   

and   and  then fuzzy power series in parametric form converges absolutely. 
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Proof:   

Let  be the minimum value of  

and  

Now, 

 

 for all n  and  

Now, 

 

The right hand of the above equation is convergent absolutely. 

Similarly, series converges for  

In parametric form, we can write,  

 

So, by the Decomposition theorem as in Section 5.3.1, the fuzzy power series 

 converges absolutely for  

In the next section, we give an example for the expansion of a fuzzy power series along with 

its convergence. 

5.3.8. Example  

The fuzzy power series for can be obtained as follows,  

where,  

 

 

 

(5.18) 
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Putting different values of n in equation (5.18), we can obtain the expression of the fuzzy power 

series. The first three terms in this expansion can be written as, 

 

 

 

 

                             (5.19)                                                                                

The radius of convergence for  is defined as, 

 . 

And, the region of convergence by lemma 5.3.7 is . 

The following section contains an example of radius of convergence for fuzzy power series. 

5.3.9. Example 1: 

Find the radius of convergence of , where  

 . 

Let   then the radius of convergence is defined as, 

 

min  

 

  

Therefore, the fuzzy radius of convergence is  and in parametric form . When 

we put  the radius of convergence is 1 which is the same as its counter crisp problem. 
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The given fuzzy series is convergent for , where  

Example 2: 

Consider the fuzzy power series . 

Here, 

 

 

The radius of convergence is given by, 

 

 

Thus, series is convergent for those  which satisfies this condition   

i.e., . 

The convergence of  can be visualized in crisp form by using the parametric form.  

Let  ,  and , then the inequality becomes 

 

That is,      

 

which implies, 

 

Thus,                                                  

 

Similarly,   

                

                

By 5.3.6, we can combine the results in crisp form,  

 

And by the Decomposition theorem given in Section 5.3.1, we can write that the given series 

converges for the interval  . 

The above-mentioned theories, fuzzy power series and its convergence are required for proving 
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5.3.10.  

If a fuzzy valued function,  is, n times modified generalized Hukuhara (mgH) 

 

 

 

 

Proof: We know that fuzzy valued function  is modified generalized Hukuhara (mgH) 

differentiable.  

 

The above expression gets approximated as, 

 

Thus, the linear approximation of  at  in neighborhood of  is, 

 

Denote the approximation of . That is, 

 

Then this polynomial of first degree satisfies,  . 

Linear approximation of  is well defined at , if  has a constant slope. However, if  has 

curvature near the point  then, it requires quadratic approximation. For quadratic 

approximation, we add one more term denoting it by . 

Thus, 

   (5.20) 

To determine a new term ,  must be a good approximation to , near the point .  

This requires,  

  and  

Differentiating, equation (5.20), we get 

 

Again, differentiating the above equation, we get 
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At,         

So, equation (5.20)  becomes, 

 

Following a similar way, we get the third approximation as,  

 

And the  degree approximation to , can be given as,  

 

Thus, the series approximation of  can be written as, 

 

Also, this expansion is true for all x contained in the radius of convergence. 

In the next section, we give the fuzzy Taylor series for some fuzzy functions. 

5.4. Illustrative examples for Fuzzy Taylor series expansions of fuzzy functions  

5.4.1. Fuzzy Taylor series for  about  

 Now for all  ,  

 

   

 

: 

: 
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After taking alpha  cut, 

  

The radius of convergence for , as defined in section 5.3.7, 

 

 

 

So as  tends to infinity, the radius of convergence becomes infinite. Thus  is convergent 

everywhere. 

At core,  

 

That is the -valued function. 

5.4.2. Fuzzy Taylor series for  about   

 

 

 

 

: 

: 
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The radius of convergence for  as defined in section 5.3.7, 

 

 

 

So as  tends to infinity, this term  remains finite and the radius of convergence 

becomes infinite. Thus  is convergent everywhere. 

At core,  

 

5.4.3. Fuzzy Taylor series for  about   

 

 

 

 

         : 

         : 
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The radius of convergence for  as defined in section 5.3.7, 

 

 

 

So as  tends to infinity, this term  remains finite and radius of convergence 

becomes infinite. Thus  is convergent everywhere. 

At core,  

 

In the next section, we establish Fuzzy Adomian Decomposition Method in a fully fuzzy 

environment by using the above proposed results. 

5.5. Fuzzy Adomian Decomposition Method 

Consider general nonlinear fuzzy differential equation as in Section 5.1. in fuzzy environment. 

As already defined,  is a linear differentiable operator of the highest order,  is nonlinear 

operator, is the operator of less order than that of  and  is source term.  

                     (5.21) 

Taking  on both sides of the above equation, 

 

 (5.22) 

 

The method allows us to express the unknown fuzzy function in the form of series, 

That is,                              
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(5.23) 

    

where, the fuzzy components  are estimated from recurrence relation as described below. 

The method decomposes the nonlinear fuzzy term by a series of Adomian polynomials,  

  (5.24) 

Using (5.23) and (5.24) in equation (5.22). 

( )  

Expanding the series on both sides, we have, 

  

 

By comparing both the sides, 

 

 

 

   : 

In general, the recurrence relation is, 

 

Now, we expand the nonlinear part in equation (5.21)  as in 

5.3.10. 

 

  

Using the series form of  in above equation, we get, 

 

 

 (5.25) 
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Fuzzy Adomian polynomials are constructed in such a manner  contains all terms of order 1 

in an expansion of equation (5.25). Similarly,  contains all term of order 2 and so on. 

Some fuzzy Adomian polynomials are given below, 

 

 

 

 

 

 

In the next section, we prove the convergence of FADM. 

5.5.1. Convergence of FADM 

Let,  be the fuzzy valued function from convex complete fuzzy metric space to itself. 

i.e.   

Consider a nonlinear equation as follows, 

  (5.26) 

According to FADM, we take,  and the nonlinear term can be represented as a 

series of Adomian polynomials, 

 
(5.27) 

Using the series form of  and equation (5.27) in equation (5.26), we get, 

 

 

Comparing both sides, we get, 
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 (5.28) 

Now, using (5.28) in (5.27) and comparing the term from both sides of equation (5.27), we            

get, 

 

 

 

                                     

 , for  
(5.29) 

Let  be the partial sum of  i.e., =   

Using equations (5.28) and (5.29), we have, 

 

 

 

That is,  (5.30) 

In the following section, the convergence of FADM is proposed and proved. 

5.5.2.      Theorem 

Let N is contraction, then the sequence  given by  

converges to  and in general this convergent limit  is the solution of  

Proof:  is a contraction mapping with where  

  be a complete fuzzy metric space. 

Consider a sequence   , 

 , , ,  

 

                         

                                                                               (by the definition of contraction mapping) 

                           

                         

Hence, by triangle inequality, 
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                              . 

Now,  is finite value and as we take  very large then this expression  

tends to zero. 

So, this sequence  is a Cauchy sequence and converges to . By the triangle inequality, 

 

                            

We can make R.H.S of above inequality smaller as the value of  increases. So,  

 

In the next section, we solve some numerical examples by the proposed technique. 

 

5.5.3. Example 

 

It can be written as, 

, 

Taking  on both sides of the above equation, 

 

which gives, 

 

Using the Fuzzy Adomian Decomposition method 

 

Now, using Section 5.5,  

 

which gives, 

 

Using  , we have  and continuing this process as in Section 5.5, 
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So, the solution, 

 

 

=  

Above series is convergent for , 

Let,  then lower and upper alpha cut of the above equation is, 

[

 

At core,  

=  

Which is the same as the solution in crisp environment. 

 

5.5.4. Example 

A fully fuzzy Prey-Predator model, given below, is solved by proposed FADM  

  (5.31) 

with   

Solution: 

Using Section 5.5, the proposed scheme (FADM), which calculates Adomian polynomials, is 

obtained as follows. 

 

 

 

                                                                                

By using Adomian polynomial   , we obtain  as follows, 
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Now using  and , next Adomian polynomial  can be obtained as follows, 

 

  

              . 

Similarly, using , we obtain  and  and continue the process for other values 

 

   (

 +  ) . 

 

   

   

Thus, series solution of system (5.31) is given as, 

 

 

(

 )  

 

 

 

(5.32) 

  

 

 

 

(5.33) 

Equations (5.32) and (5.33) are the required fuzzy solution of the fully fuzzy Prey-Predator 

model as given by equation (5.31). 
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5.6. Conclusion 

In this chapter, we have discussed the semi-analytical technique FADM in two ways. First, we 

have used it traditionally i.e., applying on a problem in parametric form. Secondly, we have 

developed the whole technique in a fuzzy environment. For that, we have proved many results 

under new derivative, the Modified generalized Hukuhara derivative. The advantage of this 

technique, we can solve the directly fuzzy differential equation without converting it into the 

system of ordinary differential equation. It is directly applicable to fuzzy differential equations. 

We have also solved examples by both techniques. All the results are validated at the core. 

 

  


