Notations

Following notations are used in this thesis.

X	Universal set
E	Collection of fuzzy numbers
\mathcal{E}^n	Collection of fuzzy numbers in n dimensions
_	·
$ ilde{f}$	Fuzzy function
${}^{lpha} ilde{f}$	α – cut for fuzzy function
${}^{lpha} ilde{X}$	$\alpha - cut$ for fuzzy variable
${}^{\alpha}\tilde{f} = \left[\underline{f}, \overline{f}\right]$	Parametric form of fuzzy function
${}^{\alpha}\tilde{X} = \left[\underline{X}, \overline{X}\right]$	Parametric form of fuzzy variable
I, t	Time Interval, time
$\dot{ ilde{X}}$	Derivative of fuzzy variable
$ ilde{X}(0)$	Fuzzy initial condition
$ ilde{A}$	Fuzzy matrix of $n \times n$
\widetilde{B}	Fuzzy column matrix of $n \times 1$
\otimes	Fuzzy Multiplication
Θ	Fuzzy difference
\oplus	Fuzzy Addition
$ ilde{R}$	Fuzzy Radius of Convergence
${\cal L}$	Fuzzy Laplace Transform
\mathbb{L}	Highest order fuzzy linear differential (mgH) operator
N	Nonlinear operator
\mathbb{R}	Differential operator order less than \mathbb{L}
d	Metric
а	Ambient
b	Backplate
T_a	Ambient temperature
R_e	Reynolds number
\dot{m}	Air mass flow rate (kg/s)

W	Width of Collector (<i>m</i>)
U_l	Overall heat loss coefficient $(W/m^2 K)$
F	Collector Efficiency Factor
k	Conductivity of the fin $(W/m K)$
au'	Transmittance
lpha'	Absorbance
S	Depth of air flow section (or channel height) (m)
G_t	Solar Radiation (W/m^2)
$h_{r,p-b}$	Radiative heat transfer coefficient between absorber plate
	and back plate
μ	Dynamic Viscosity