Index

Sr. No.	Content	Page No.
Chapter 1	Introduction, Aims and Objectives	
1.1	Introduction	1
1.2	Why biosensors?	1
1.3	Applications of biosensors	3
1.3.1	Food monitoring and pathogen detection	3
1.3.2	Water and environmental monitoring	4
1.3.3	Infections and Disease detection	5
1.3.4	Toxin detection and defense use	6
1.4	Biosensors – from historical background to modern market	7
1.5	Types of biosensors	12
1.5.1	Types of biosensors based on bioreceptors	12
1.5.1.1	Enzymatic biosensor	13
1.5.1.2	Antibody based biosensor	13
1.5.1.3	Nucleic acid/DNA based biosensor	16
1.5.1.4	Cell based biosensor	17
1.5.1.5	Biomimetic biosensor	21
1.5.2	Types of biosensors based on transducers	22
1.5.2.1	Electrochemical biosensor	22
1.5.2.2	Optical biosensor	24
1.5.2.3	Piezoelectric based biosensor	28
1.5.2.4	Calorimetric based biosensor	29
1.6	Types of nanomaterials	32
1.6.1	Metal nanoparticles	33
1.6.2	Magnetic nanoparticles	33
1.6.3	Carbon nanotubes (CNTs) and Carbon nanodots (CDs)	34
1.6.4	Graphene and Graphene quantum dots (GQDs)	34
1.6.5	Quantum dots, Silica nanoparticles and Upconversion	35
	nanoparticles	

1.7	Deposition techniques for nanomaterials	37
1.7.1	Coating based deposition methods	39
1.7.2	Direct deposition methods	41
1.7.3	Printing based deposition methods	43
1.7.4	Direct growth deposition methods	46
1.8	Aims and Objectives	47
Chapter 2	Acetylcholine esterase enzyme doped multiwalled carbon	
	nanotubes for the detection of organophosphorus pesticide	
	using cyclic voltammetry	
	Research highlights	52
2.1	Introduction	53
2.2	Materials and Methods	54
2.2.1	Materials	54
2.2.2	Apparatus	55
2.2.3	Fabrication of AChE/MWCNTs/GCE electrode	55
2.2.4	Electrochemical measurements	56
2.5	Preparation of samples	57
2.3	Result and discussion	58
2.3.1	Characterization of MWCNTs/GCE and	58
	AChE/MWCNTs/GCE electrode	
2.3.2	Optimization of experimental parameters	62
2.3.2.1	Effect of MWCNTs concentration on GCE	62
2.3.2.2	Effect of enzyme AChE loading	63
2.3.2.3	Effect of ATChI amount	64
2.3.2.4	Effect of inhibition time	65
2.3.3	Detection of paraoxon	65
2.3.4	Replication, stability and reactivation	69
2.3.5	Real sample analysis	69
2.4.	Conclusion	71
Chapter 3	Design and Characterization of conductive Nano-PEI-lipase	
	film based biosensor for efficient electrochemical detection	

	of triglycerides	
	Research highlights	72
3.1	Introduction	73
3.2	Experimental	76
3.2.1	Materials and Methods	76
3.2.2	Apparatus	76
3.2.3	Fabrication of Lipase/Glutaraldehyde/PEI-	77
	TiO2/MWCNTs/rGO/GCE electrode	
3.3	Result and Discussion	77
3.3.1	FT-IR studies	77
3.2	Surface morphology studies	78
3.3	Electrochemical studies of GCE/GO/MWCNTs/PEI-	80
	TiO ₂ /GA/Lipase	
3.4	Effect of pH on GCE/GO/MWCNTs/PEI-TiO ₂ /GA/Lipase	83
3.5	Cyclic voltammetric detection of triglyceride	84
3.6	Interference study	86
3.7	Real sample detection	87
3.8	Conclusion	88
Chapter 4	Molecular imprinting of Staphylococcus aureus in	
	polyacrylamide gel slab for detecting the presence of the	
	bacteria as a contaminant	
	Research highlights	89
4.1	Introduction	90
4.2	Materials and methods	91
4.2.1	Instruments	91
4.2.2	Materials	91
4.2.3	Methods	92
4.2.3.1	Preparation of Staphylococcus aureus whole cell imprinted	93
	polyacrylamide gel slabs	
4.2.3.2	Removal of entrapped bacteria	93

4.2.3.2	Gram's staining of polyacrylamide gel slabs	93
4.2.3.3	Adsorption experiments	94
4.2.3.4	Staphylococcus aureus specific recognition test and plate count	94
4.2.3.5	DSC measurements	95
4.3	Result and discussion	95
4.3.1	Confirmation and removal of entrapped bacteria in	95
	polyacrylamide gel	
4.3.2	Aadsoprtion and recognition specificty of the imprinted gel	97
	slabs	
4.3.3	Recognition specificity of 4% imprinted gel for Staphylococcus	102
	aureus bacteria	
4.4.	Conclusion	106
Chapter 5	Electrochemical biosensor for cyclic voltammetric detection	
	of SARS-CoV-2 using DNA-Chip	
	Research highlights	108
5.1	Introduction	109
5.2	Experimental	113
5.2.1	Materials	113
5.2.2	Apparatus	113
5.2.3	Purification of MWCNTs and Functionalization of MWCNTs-	114
	COOH with ssDNA probe	
5.2.4	Preparation of ssDNA modified electrode chip (ssDNA-	114
	MWCNTs/PVA/GA)	
5.2.5	Hybridization	115
5.2.6	Electrochemical measurements to investigate hybridization	115
5.2.7	Interference study	115
5.2.8	Replicability and regeneration the electrode	115
5.3	Result and Discussion	116
5.3.1	Functionalization of MWCNTs-COOH with ssDNA probe	116
5.3.2	Characterization and replication of GA/ssDNA-MWCNTs-	118

PVA/SPE electrode

5.3.3	Electrochemical responses of complementary target with	120
	different concentration	
5.3.4	Hybridization specificity of ssDNA probe or interference study	123
5.3.5	Electrode regeneration	125
5.4	Conclusion	127
Chapter 6	Summary and conclusion	128
Chapter 7	References	132
	List of publications, posters, achievements and conferences	168
	attended	