Sr. No.	Title	Page No.
1	Chapter 1. Introduction, Aims and Objectives	
Figure 1.1	Components of a typical biosensor	1
Figure 1.2	Merits of biosensors over demerits of conventional methods	2
Figure 1.3	Various applications of biosensors	6
Figure 1.4	Important breakthroughs in the field of biosensor during 1970-	8
	1992	
Figure 1.5	Biosensor development over the time from 20 th century to 21 st	9
	century	
Figure 1.6	A detailed forecast on global biosensor market by "Market	11
	Research Future"	
Figure 1.7	Biosensors categorized into different classes and subclasses	12
Figure 1.8	Different types of biosensors based on bioreceptors	15
Figure 1.9	Different types of biosensors based on use of transducer	25
Figure 1.10	Various types nanoparticles	33
Figure 1.11	Different deposition techniques for nanomaterials onto sensing	38
	support material for biosensor fabrication	
Table 1.1	Advantages of biosensors over conventional methods	3
Table 1.2	Various applications of biosensors in different fields	5
Table 1.3	Uses of different receptors for detection of various analytes	18
Table 1.4	Uses of different receptors for detection of various analytes	30
Table 1.5	Uses of various nanoparticles for detection of various analytes	36
	Chapter 2. Acetylcholine esterase enzyme doped multiwalled	
	carbon nanotubes for the detection of organophosphorus	
	pesticide using cyclic voltammetry	
Figure 2.1	Assembling AChE on glassy carbon electrode: ultra-sonicated	56
	MWCNTs were adsorbed and layered on polished surface of	
	GCE following doping of AChE through amide bond formation	

List of Figures, Tables and Equations

Figure 2.2	SEM Images of modified electrode surfaces: (a) MWCNTs	58
	adsorbed (MWCNTs/GCE); (b) AChE doped on MWCNTs	
	(AChE/MWCNTs/GCE)	
Figure 2.3	AFM pictures of different electrode surfaces: (a) bare polished	59
	glassy carbon electrode; (b) MWCNTs modified and AChE	
	doped glassy carbon electrode (AChE/MWCNTs/GCE)	
Figure 2.4	FT-IR Spectrum of MWCNTs and AChE-MWCNTs complex:	60
	FT-IR spectra were recorded separately for MWCNTs and	
	MWCNTs-AChE and were compared. The inset is showing	
	magnification of FT-IR spectrum from 1600 to $1600-1750$ cm -1	
	region	
Figure 2.5	CV of (a) bare GCE, (b) GCE + MWCNTs and (C) GCE +	61
	MWCNTs + AChE recorded in PB (pH 7.2) containing 0.1 mM	
	K3[Fe(CN)6] and 10 mM KCl	
Figure 2.6	Electrochemical behavior of cysteine on the	62
	AChE/MWCNTs/GCE recorded in PB (pH 7.2) containing 0.1	
	mM K3[Fe(CN)6] and 10 mM KCl	
Figure 2.7	Cyclic voltammogram of MWCNTs coated electrode with	63
	different concentrations of MWCNTs in PB (pH 7.2) containing	
	0.1 mM K3[Fe(CN)6] and 10 mM KCl	
Figure 2.8	Optimization of MWCNTs coating on GCE: effect of different	63
	concentrations of MWCNTs coatings in PB (pH 7.2) containing	
	0.1 mM K3[Fe(CN)6] and 10 mM KCl	
Figure 2.9	Effect of AChE loading on modified MWCNTs/GCE recorded	64
	in PB (pH 7.2) containing 1 mM ATChI in 0.1 mM 820	
	K3[Fe(CN)6] and 10 mM KCl	
Figure 2.10	Effect of various concentrations of ATChI on the sensor	65
	recorded in PB (pH 7.2) containing 0.1 mM K3[Fe(CN)6] and	
	10 mM KCl	

Figure 2.11	Effect of Inhibition time: Response time of the sensor recorded	65
	in electrolytic system having 12 mM ATChI with PB (pH 7.2),	
	0.1 mM K3[Fe(CN)6] and 10 mM KCl	
Figure 2.12	Cyclic voltammetric detection of different paraoxon	66
	concentrations by fabricated electrode in presence of 12 mM	
	ATChI with PB (pH 7.2), 0.1 mM K3[Fe(CN)6] and 10 mM	
	KCl; Incubation time 10 min; concentration of paraoxon: 0.1	
	nM, 10 mM, 20 nM, 30 nM, 40 nM, 50 nM, 60 nM, 100 nM, 200	
	nM, 300 nM, 400 nM, 500 nM	
Figure 2.13	Detection of paraoxon of the fabricated sensor: (a) Detection	67
	range 0.1–500 nM (b) Linear range 10–50 nM	
Figure 2.14	Selective detection paraoxon from real samples: (a) 5 nM	70
	paraoxon added potato (b) 10 nM Paraoxon added tap water	
Table 2.1	Comparison of analytical characteristics of the present sensor	68
	with reported sensors for detection of paraoxon	
Table 2.2	Recovery studies of different paraoxon concentrations from real samples	71
Equation 2.1	Enzymatic reaction of acetylcholine esterase enzyme	57
Equation 2.2	Rate of inhibition of acetylcholine esterase enzyme by paraoxon	57
	pesticide	
	Chapter 3. Design and Characterization of conductive Nano-	
	PEI-lipase film based biosensor for efficient electrochemical	
	detection of triglycerides	
Figure 3.1	FT-IR Spectra of nano-polymer film with and without the	78
	enzyme lipase	
Figure 3.2	FE-SEM of GCE/GO/MWCNTs (a), GCE/GO/MWCNTs/PEI-	79
	TiO ₂ (b), GCE/GO/MWCNTs/PEI-TiO ₂ /GA/Lipase (c)	
Figure 3.3	Cyclic voltammetry of bare GCE, GCE/GO/MWCNTs,	81
	GCE/GO/MWCNTs/PEI-TiO ₂ /GA and	
	GCE/GO/MWCNTs/PEI-TiO2/GA/Lipase in 10 ml system of	

	the electrolyte prepared in 50 mM PB, pH 6.5, containing 50mM	
	K ₃ [Fe(CN) ₆] and 9% NaCl at 150 mV/s scan rate.	
Figure 3.4(a)	Cyclic voltammetric measurements of GCE/GO/MWCNTs/PEI-	81
	TiO ₂ /GA/Lipase electrode fabricated in triplicates in 50 mM PB,	
	pH 6.5, containing 50mM K ₃ [Fe(CN) ₆] and 9% NaCl at 150	
	mV/s scan rate	
Figure 3.4(b)	Anodic peak currents of GCE/GO/MWCNTs/PEI-	82
	TiO ₂ /GA/Lipase electrode in triplicates in 50 mM PB, pH 6.5,	
	containing 50mM K ₃ [Fe(CN) ₆] and 9% NaCl at 150 mV/s scan	
	rate	
Figure 3.5(a)	Cyclic voltammetry of GCE/GO/MWCNTs/PEI-	82
	TiO ₂ /GA/Lipase electrode at different scan rates from 20 mV/s	
	to 100 mV/s in 50mM PB (50 mM K ₃ [Fe(CN) ₆], 9% NaCl, pH	
	5)	
Figure 3.5(b)	Square root of scan rate (20 mV/s to 100 mV/s) Vs current	83
	magnitude of GCE/GO/MWCNTs/PEI-TiO ₂ /GA/Lipase	
	electrode in 50 mM PB, pH 6.5, containing 50mM K ₃ [Fe(CN) ₆]	
	and 9% NaCl	
Figure 3.6(a)	Cyclic voltammetry of GCE/GO/MWCNTs/PEI-	84
	TiO ₂ /GA/Lipase electrode as a function of pH in 50mM	
	$K_3Fe(CN)_6$ and 9% NaCl in 50 mM PB (pH 5 to 8) at the scan	
	rate of 80 mV/s	
Figure 3.6(b)	Effect of pH on the current density of both the peaks of	84
	GCE/GO/MWCNTs/PEI-TiO ₂ /GA/Lipase electrode	
Figure 3.7(a)	Anodic sweep segments of cyclic voltammetry of the electrode	85
	GCE/GO/MWCNTs/PEI-TiO2/GA/Lipase as a function of TGA	
	concentration at the scan rate 80 mV/s in 50mM PB	
	(K ₃ [Fe(CN) ₆], 9% NaCl, pH 8) (100, 200, 300, 400, 500 mg/dL)	
Figure 3.7(b)	Linear range of the biosensor GCE/GO/MWCNTs/PEI-	85
	TiO ₂ /GA/Lipase for TGA detection (100-500 mg/dL)	

Figure 3.8(a)	Anodic current changes at anodic sweep segments after adding	86
	interfering species in 500 mg/dL TGA at	
	GCE/GO/MWCNTs/PEI-TiO ₂ /GA/Lipase bioelectrode	
Figure 3.8(b)	Effect on anodic current due to interfering species on	87
	GCE/GO/MWCNTs/PEI-TiO2/GA/Lipase bioelectrode	
Figure 3.9.	Real sample detection – ground nut oil	87
Table 3.1.	Real sample detection-Triglyceride determination	88
Equation 3.1.	Lipase enzyme reaction on triglyceride	73
Equation 3.2.	Glycerol kinase reaction glycerol	73
Equation 3.3.	Glycerol-3-phosphate oxidase on Glycerol-3-phophate	73
	Chapter 4. Molecular imprinting of <i>Staphylococcus aureus</i> in	
	polyacrylamide gel slab for detecting the presence of the	
	bacteria as a contaminant	
Figure 4.1	Gram's stainnig of various concentrations of	96
	polyacrylamide(PAM) gels stating entrapment of	
	Staphylococcus aureus: (a) Blank, (b) 4% PAM, (c) 6% PAM,	
	<i>Staphylococcus aureus</i> : (a) Blank, (b) 4% PAM, (c) 6% PAM, (d) 8% PAM	
Figure 4.2	polyacrylamide(PAM)gelsstatingentrapmentofStaphylococcus aureus:(a) Blank, (b) 4% PAM, (c) 6% PAM,(d) 8% PAMDynamic adsorption of Staphylococcus aureus onto 4%	98
Figure 4.2	polyacrylamide(PAM)gelsstatingentrapmentofStaphylococcus aureus:(a) Blank, (b) 4% PAM, (c) 6% PAM,(d) 8% PAMDynamic adsorption of Staphylococcus aureusonto 4%imprinted and non-imprinted polyacrylamide gel slabs.	98
Figure 4.2 Figure 4.3(a)	polyacrylamide(PAM)gelsstatingentrapmentofStaphylococcus aureus:(a) Blank, (b) 4% PAM, (c) 6% PAM,(d) 8% PAMDynamic adsorption of Staphylococcus aureus onto 4%imprinted and non-imprinted polyacrylamide gel slabs.Difference of adsorption of Staphylococcus aureus on 4%	98
Figure 4.2 Figure 4.3(a)	polyacrylamide(PAM)gelsstatingentrapmentofStaphylococcus aureus:(a) Blank, (b) 4% PAM, (c) 6% PAM,(d) 8% PAMDynamic adsorption of Staphylococcus aureus onto 4%imprinted and non-imprinted polyacrylamide gel slabs.Difference of adsorption of Staphylococcus aureus on 4%imprinted and non-imprinted polyacrylamide gel over a period	98
Figure 4.2 Figure 4.3(a)	polyacrylamide(PAM)gelsstatingentrapmentofStaphylococcus aureus:(a) Blank, (b) 4% PAM, (c) 6% PAM,(d) 8% PAMDynamic adsorption of Staphylococcus aureus onto 4%imprinted and non-imprinted polyacrylamide gel slabs.Difference of adsorption of Staphylococcus aureus on 4%imprinted and non-imprinted polyacrylamide gel over a periodof 180 min.	98 98
Figure 4.2 Figure 4.3(a) Figure 4.3(b)	polyacrylamide(PAM)gelsstatingentrapmentofStaphylococcus aureus:(a) Blank, (b) 4% PAM, (c) 6% PAM,(d) 8% PAMDynamic adsorption of Staphylococcus aureus onto 4%imprinted and non-imprinted polyacrylamide gel slabs.Difference of adsorption of Staphylococcus aureus on 4%imprinted and non-imprinted polyacrylamide gel over a periodof 180 min.Difference of adsorption of Staphylococcus aureus on 4%	98 98 98 99
Figure 4.2 Figure 4.3(a) Figure 4.3(b)	polyacrylamide(PAM)gelsstatingentrapmentofStaphylococcus aureus:(a) Blank, (b) 4% PAM, (c) 6% PAM,(d) 8% PAMDynamic adsorption of Staphylococcus aureus onto 4%imprinted and non-imprinted polyacrylamide gel slabs.Difference of adsorption of Staphylococcus aureus on 4%imprinted and non-imprinted polyacrylamide gel over a periodof 180 min.Difference of adsorption of Staphylococcus aureus on 4%imprinted and non-imprinted polyacrylamide gel over a periodof 180 min.Difference of adsorption of Staphylococcus aureus on 4%imprinted and non-imprinted polyacrylamide gel over a period	98 98 99
Figure 4.2 Figure 4.3(a) Figure 4.3(b)	polyacrylamide(PAM)gelsstatingentrapmentofStaphylococcus aureus:(a) Blank, (b) 4% PAM, (c) 6% PAM,(d) 8% PAMDynamic adsorption of Staphylococcus aureus onto 4%imprinted and non-imprinted polyacrylamide gel slabs.Difference of adsorption of Staphylococcus aureus on 4%imprinted and non-imprinted polyacrylamide gel over a periodof 180 min.Difference of adsorption of Staphylococcus aureus on 4%imprinted and non-imprinted polyacrylamide gel over a periodof 180 min.Difference of adsorption of Staphylococcus aureus on 4%imprinted and non-imprinted polyacrylamide gel over a periodof 75 min explaining exponential distribution.	98 98 99
Figure 4.2 Figure 4.3(a) Figure 4.3(b) Figure 4.4(a)	polyacrylamide(PAM)gelsstatingentrapmentofStaphylococcus aureus:(a) Blank, (b) 4% PAM, (c) 6% PAM,(d) 8% PAMDynamic adsorption of Staphylococcus aureus onto 4%imprinted and non-imprinted polyacrylamide gel slabs.Difference of adsorption of Staphylococcus aureus on 4%imprinted and non-imprinted polyacrylamide gel over a periodof 180 min.Difference of adsorption of Staphylococcus aureus on 4%imprinted and non-imprinted polyacrylamide gel over a periodof 180 min.Difference of adsorption of Staphylococcus aureus on 4%imprinted and non-imprinted polyacrylamide gel over a periodof 75 min explaining exponential distribution.Dynamic adsorption of Staphylococcus aureus onto 6%	98 98 99 99 99

Figure 4.4(b)	Difference of adsorption of Staphylococcus aureus on 6%	100
	imprinted and non-imprinted polyacrylamide gel over a period	
	of 180 min.	
Figure 4.5(a)	Dynamic adsorption of Staphylococcus aureus onto 8%	100
	imprinted and non-imprinted polyacrylamide gel slabs.	
Figure 4.5(b)	Difference of adsorption of Staphylococcus aureus on 8%	101
	imprinted and non-imprinted polyacrylamide gel over a period	
	of 180 min.	
Figure 4.6	DSC curves overlay of 4% non-imprinted, imprinted before	101
	adsorption, and imprinted polyacrylamide gel after adsorption	
Figure 4.7(a)	Dynamic adsorption on 4% imprinted polyacrylamide gel by	103
	different bacteria over a period of 75 min.	
Figure 4.7(b)	Recognition specificity of the 4% imprinted PAM for different	104
	bacteria at 75 min. of absorption period in terms of change in	
	optical density	
Figure 4.8(a)	Calibration curves relating OD ₆₀₀ measurements versus viable	104
	cell count in CFU/ml for Staphylococcus aureus obtained by	
	plate count method	
Figure 4.8(b)	Calibration curves relating OD ₆₀₀ measurements versus viable	105
	cell count in CFU/ml for Salmonella typhi obtained by plate	
	count method	
Figure 4.8(c)	Calibration curves relating OD ₆₀₀ measurements versus viable	105
	cell count in CFU/ml for Escherichia coli (CFU/ml) obtained by	
	plate count method	
Figure 4.9	Recognition specificity of 4% imprinted polyacrylamide gel for	106
	Staphylococcus aureus, Salmonella typhi and Escherichia coli	
	after 75 min. of incubation.	
Table 4.2	Preparation of Acrylamide gels of various concentrations	93
		-
Table 4.3	Two different washing-lysis solutions tried for removal	93

Table 4.3	Entrapment of Staphylococcus aureus observed in different	95
	concentrations of polyacrylamide gel	
Table 4.4	Change in optical density of the bacterial suspensions before and	106
	after adsorption by 4% imprinted PAM	
	Chapter 5. Electrochemical biosensor for cyclic	
	voltammetric detection of SARS-CoV-2 using DNA-Chip	
Figure 5.1(a)	Graphical representation of structural proteins of SARS-CoV-2	111
Figure 5.1(b)	Graphical representation of ORF1ab genome of SARS-CoV-2	112
Figure 5.2(a)	Ester linkage between 3' Hydroxyl group of ssDNA probe and	116
	oxidized MWCNT	
Figure 5.2(b)	FT-IR spectra stating ester linkage between ssDNA-MWCNT	117
	complex	
Figure 5.3(a)	CV measurements of bare screen printed carbon electrode and	119
	ssDNA-MWCNTs dispersed PVA matrix coated electrode in 0.5	
	M NaCl, 50 mM K ₃ [Fe(CN) ₆] prepared in 50 mM PB (pH 8).	
Figure 5.3(b)	CV measurements of bare screen printed carbon electrode and	119
	ssDNA-MWCNTs dispersed PVA matrix coated electrode in 0.5	
	M NaCl, 50 mM K ₃ [Fe(CN) ₆] prepared in 50 mM PB (pH 8).	
Figure 5.4	Cyclic voltammetry of ssDNA-MWCNTs/PVA/GA in 0.5 M	121
	NaCl, 50 mM K ₃ [Fe(CN) ₆] prepared in 50 mM PB (pH 8) after	
	hybridization with different concentrations of target ssDNA	
	sequence $(1 \times 10^{-8} \text{ M to } 1 \times 10^{-15} \text{ M})$ followed by MB incubation.	
Figure 5.5	Cyclic voltammetry of ssDNA-MWCNTs/PVA/GA in 0.5 M	121
	NaCl, 50 mM K ₃ [Fe(CN) ₆] prepared in 50 mM PB (pH 8) after	
	hybridization with different concentrations of target ssDNA	
	sequence $(1 \times 10^{-10} \text{ M to } 1 \times 10^{-15} \text{ M})$ followed by MB incubation.	
Figure 5.6(a)	Plot of various concentrations of target ssDNA (1×10^{-10} M to	122
	1×10^{-15} M) vs. I (mA) cathodic peak current showing logarithmic	
	distribution with $R^2 = 0.9644$.	

Plot of various concentrations of target ssDNA (1×10^{-10} M to	122
1×10^{-15} M) vs. I (mA) cathodic peak current showing linearity	
in logarithmic distribution with $R^2 = 0.9644$	
Cyclic voltammetry of ssDNA-MWCNTs/PVA/GA in 0.5 M	124
NaCl, 50 mM K ₃ [Fe(CN) ₆] prepared in 50 mM PB (pH 8) after	
hybridization with target complementary ssDNA (1×10^{-15} M)	
and non-complementary PupE (1×10^{-15} M) after MB	
incubation.	
Plot of complementary $(1 \times 10^{-15} \text{ M})$ and non-complementary	124
target sequences $(1 \times 10^{-15} \text{ M})$ vs. current (mA) of cathodic peaks	
after MB incubation.	
Cyclic voltammetry of water and alkali-alkaline solutions treated	126
electrode in 0.5 M NaCl, 50 mM K ₃ [Fe(CN) ₆] prepared in 50	
mM PB (pH 8).	
Plot of treated electrodes for regeneration vs. current (mA) of	126
cathodic peaks.	
Comparison of the DNA chip with reported biosensors	120
Chapter 6. Summary and conclusion	
Summary of the research work carried out in the thesis	130
	Plot of various concentrations of target ssDNA $(1 \times 10^{-10} \text{ M to})$ $1 \times 10^{-15} \text{ M}$) vs. I (mA) cathodic peak current showing linearityin logarithmic distribution with $R^2 = 0.9644$ Cyclic voltammetry of ssDNA-MWCNTs/PVA/GA in 0.5 MNaCl, 50 mM K ₃ [Fe(CN) ₆] prepared in 50 mM PB (pH 8) afterhybridization with target complementary ssDNA $(1 \times 10^{-15} \text{ M})$ and non-complementary PupE $(1 \times 10^{-15} \text{ M})$ after MBincubation.Plot of complementary $(1 \times 10^{-15} \text{ M})$ and non-complementarytarget sequences $(1 \times 10^{-15} \text{ M})$ vs. current (mA) of cathodic peaksafter MB incubation.Cyclic voltammetry of water and alkali-alkaline solutions treatedelectrode in 0.5 M NaCl, 50 mM K ₃ [Fe(CN) ₆] prepared in 50mM PB (pH 8).Plot of treated electrodes for regeneration vs. current (mA) ofcathodic peaks.Comparison of the DNA chip with reported biosensors Chapter 6. Summary and conclusion Summary of the research work carried out in the thesis