LIST OF SYMBOLS

PART - I

c : intercept of line on y-axis.

 m_1 : regression coefficient of y on x.

 m_2 : regression coefficient of x on y.

PART - II

A : Area of cross section, angle of orientation of the longer diagonal of the knoop indentation mark measured from [100] direction.

 A_{o} : Initial area of cross-section.

a : Standard hardness.

a . Minimum value of A in the parabolic plot of H $$\textsc{Vs}_{\bullet}$$ A.

b : Constant

 \mathbf{b}_2 : Constant in the HLR (Standard hardness).

c₁ : Constant.

C : Constant; constant of indentor geometry.

 C_{c} : Calculated value of intercept using formula $C = \frac{1}{2} \sqrt{n_{o} \cdot a_{o}}$

C s : Statistically determined value of the intercept of the straight line plot of $\sqrt{\ddot{H}~A}$ Vs. A.

 $^{\rm C}_{\rm Ar}$: Constant for different applied loads and

orientation

d : Diagonal length of Knoop indentation mark.

 d_{Ar} : Length of longer diagonal the of Knoop

> indentation mark corresponding to different

applied loads P_r and orientation A.

E : Young's Modulus of elasticity.

: Average hardness in high load region. Н

: High load region. HLR

: Minimum value of hardness in the parabola of ho

H Vs. A.

: Intermediate load region. ILR

: Constant. k

: Length after small compression. 1

1 : Initial length.

: Low load region. LLR

: Slope of the plot of log \overline{H} T_q $Vs.logT_q$; slope of the plot of $\sqrt{\overline{H}}$ A Vs. A.

: Slope of the plot of log $T_q \sqrt{\overline{H} A}$ Vs. log T_q .

: Slope of the plot of log T_q d Vs. log T_q .

m c : Calculated value of slope by using formula m = $\frac{1}{2} \sqrt{\frac{h_0}{a_0}}$ for straight line plot of $\sqrt{\overline{H}~A}$ Vs. A.

s: Statistically determined value of the slope of the straight line plot of \sqrt{H} A Vs. A.

 $\boldsymbol{T}_{\boldsymbol{q}}^{},\ \boldsymbol{T}_{\boldsymbol{Q}}^{}$: Quenching temperature °K .

W, w_2 : Newtonian resistance pressure

: Compressive stress.

€ : Compressive strain .

 V_1 : Lateral dissolution velocity.

 v_n : Normal dissolution veloity.

 $\mathbf{E}_{\mathbf{t}}$: Activation energy for tangential movement .

 $\mathbf{E}_{\mathbf{s}}$: Activation energy for surface dissolution.