
CHAPTER 3

PACKET PROCESSING FUNCTIONS OF

NETWORK PROCESSOR

PACKET PROCESSING

FUNCTIONS OF NETWORK PROCESSOR

3

3.1 INTRODUCTION

In this chapter, we discuss implementation of two packet processing functions of Network Processor

namely: the packet encryption and packet classification. Instead of using DES, 3DES and AES

algorithms, [43] we suggest implementation of IDEA (International Data Encryption Algorithm)

encryption algorithm as an integrated cryptography core in network processor. Packet classification is

one of the main task of NPU. We realize packet classification in software by C program. We realize

packet classification for router using hardware and packet classification for terminal using hardware

software co-design. This is an effort to understand and evaluate above methods for packet encryption

and packet classification.

3.2 PACKET ENCRYPTION FUNCTION IMPLEMENTATION

3.2.1 IDEA Encryption Algorithm and its Interface with Network Processor

Data Communication and data transaction security is must in new emerging electronic business and

commercial applications. Data Communication security is performed at Network layer and Data

transaction security is performed at application layer. A collection of cryptography applications such

as secure BP (IPsec) and Virtual Private Networks (VPNs) has been widely deployed in both routers

and end systems. Security related applications are all computational intensive applications that can

consume as much as 95 percent of an application server’s processing capacity [103]. As demands for

communication security grow, cryptographic processing becomes another type of application domain.

The fastest security processor can achieve the speed of few Gbps.

Currently available NPU and Cryptographic processors use DES, 3DES and AES algorithms. The

IDEA is a symmetric block cipher, developed in 1990-92 by Xuejia Lai and James Massey of the

Swiss Federal Institute of Technology. The input and output block of the IDEA are 64 bit long while

the key is 128 bit long (as compared to 56-bit key in the DES). We prefer IDEA over other algorithms

due to the following reasons:

36

1. IDEA clearly excels over AES and 3DES in Embedded Systems Applications and in

hardware solutions because it does not use substitution boxes (s-box), thus eliminating

additional memory access.

2. An architectural analysis of different cryptographic algorithms suggest that IDEA is one of

the best and more secure block ciphers available today [103].

3. IDEA performance fact sheet is shown in table 3.1 [46],

Table 3.1 Embedded Systems Performance Comparison

Performance Comparison IDEA
[Mbit/sec]

AES
[Mbit/sec]

3DES
[Mbit/sec]

Source

Embedded C167/20MHz 0.22 0.06 0.03 Ascom
Systems ARM7/20MHz 0.42 0.16 0.10 Systec

MCF5397/90MHz 1.47 0.65 0.54 2002,CH

Thus IDEA is the best option among other algorithms for incorporation in NPU.

3.2.2. Issues for Incorporating Cryptographic Application for NPU

When designing a network security product, one must consider both the packet-processing

requirements and the security requirements. Adding security functionality into the silicon area of

network processor while maintaining wire rate and minimizing new silicon area is a challenge.

The securing of network traffic is portioned into two partitions: protocol processing and cryptographic

algorithm processing [101],

a) Protocol processing would include Encapsulating Security Protocol (ESP), Authentication

Header (AH), Secure Sockets Layer (SSL), Transport Layer Security (TLS), and other non

security protocols such as Transmission Control Protocol (TCP) and the Internet Protocol (BP)

processing.

b) Cryptographic algorithm processing includes the data manipulation that would need to be

done on the entirety of the payloads, such as confidentiality and integrity. The cryptography

unit may be comprised of several algorithms that in conjunction must provide data

confidentiality and data integrity. Each algorithm has its own set of trade-offs and challenges,

in terms of silicon area, parallelism, and symmetry.

3.2.3. Implementation of IDEA
We have implemented encryption of IDEA (International Data Encryption Algorithm) using

ALTERA’s Quartos Development tools. IDEA is a block cipher that uses a 128-bit key to encrypt

data in blocks of 64 bits, while DES uses only 56-bit key.

Design principles for hardware implementation are as follows:

37

(i) Similarity of encryption and decryption: Encryption and decryption should differ only in the way

of using the key so that the same device can be used for both encryption and decryption. IDEA has a

structure that can satisfy this requirement, (ii) Regular structure: The cipher should have a regular

modular structure to facilitate VLSI implementation. IDEA is constructed from two basic modular

building blocks repeated multiple times.

IDEA encryption: The single round of IDEA encryption is shown in the Figure 3.1. There are two

inputs to the encryption function: I) the plaintext to be encrypted II) the key. Plaintext is 64 bits in

length and the key is 128 bits in length in this particular case. The 64 bit data block is divided into

four 16-bit sub blocks: XI, X2, X3 and X4. Similarly 128 bit key block is divided into six 16-bit sub

blocks: Zl, Z2, Z3, Z4, Z5 and Z6. These four sub blocks as well as six key blocks become input to

the first round of algorithm. The IDEA algorithm consists of eight rounds followed by a final

transformation. In each round, the sequence of events is shown in figure 3.1.

The output of the first round is the four subblocks. Swap the two inner blocks (except for the last

round) and that’s the input to the next round. After the eighth round, there is final output

transformation as shown in figure 3.2:

xr X2 X3 X4

Figure 3.1 Single Round of IDEA

38

"W81 WE52 WS4W83

YI Y2 Y3 Y4

Figure 3- 2 Output Transformation stage of IDEA

64b it plaintext*

Z1

Z6

Z7
Z12

123 Bit Key Z

>

Subfey Generator

16

Z1 Z32

Figure 3.3: Overall IDEA Structure

Finally, the four sub blocks are reattached to produce cipher text. Creating the subkeys is easier. The

algorithm uses 52 of them (six for each of the eight rounds and four more for the output

transformation.) First, the 128 -bit key is divided into eight 16-bit subkeys. These are first eight

subkeys for the algorithm. Then the key is rotated 25 bits to the left and again divided into eight

subkeys. The first four are used in round 2; the last four are used in round 3. The key is rotated

another 25 bits to the left for the next eight subkeys, and so on until the end of the algorithm. The

IDEA algorithm was implemented as shown in Figure 3.3, using ALTERA’s MAX

PLUS/QUARTUS software for VLSI synthesis. The major blocks implemented are: (i) 16 bit XOR:

Bit - by—Bit exclusive-OR, ii) 16-bit adder: Addition of integers modulo 216 (modulo 65536), with

inputs and outputs treated as unsigned 16-bit integers.

w3

(iii) Modulo 16 multiplier: Multiplication of integers modulo 216+1 (modulo 65537), with inputs and

outputs treated as unsigned 16-bit integers, except that a block of all zeros is treated as representing

216. The IDEA algorithm is implemented using ALTERA’s QUARTOS tool for VLSI synthesis. The

results for implementation are shown in Table 3.2.

Table 3.2 IDEA VLSI area requirement

Algorithm/

Project
Device

Total Logic

Elements

Total

Pins

Total

Memory

Bits

Maximum

clock

Frequency

(In MHz)

Single round

IDEA/idelmd

EP20kl5

00EBC6

52-1

6,660/51,840

(13%)

225 / 488

(46%)

0/

442,368

(0%)

4.34

Eight round

IDEA /ide8md

EP20kl5

00EBC6

52-1

43,249 /

51,840

(83 %)

257/488

(52%)

0/

442,368

(0%)

3.85

3.2.4. Interfacing Considerations

This block, can be interfaced with NPU in three different ways:

1. Security Co-processor coupled with NPU using Look aside Interface.

2. Designing inline security processor to achieve high data rates.

3. Adding encryption circuitry into the same silicon as the network processor,

As a first phase in designing of security engine, we would like to implement this as a coprocessor

working on IDEA algorithm and interfaced with NPU using the Look Aside Interface. The Hardware

Working group of Network Processor Forum will be continuously validating this Look-Aside

Interface during the development of the Open Interface standard [32], This encryption co-processor

operates using a request/response model and the LA-1 specification.

Existing designs have added security to the network through either a co-processor or an inline security

processor. As data rates go up, the co-processor solution becomes less and less practical [25]. Inline

security processors can actually scale to the higher data rates but must perform many of the same

functions as the network processor. Then based on the system performance and evaluation, we may

go for adding encryption circuitry into the same silicon as the network processor.

3.3 PACKET CLASSIFICATION FUNCTION
3.3.1 Introduction

Network processor can be used as a network terminal and router. Network terminals are end points in

a computer network, so network terminal is either the source or destination in communication. No

40

data passes through the network terminal, so network terminal does not need a routing capability.

Network terminals have to handle all layers of protocols in the ISO/OSI reference model. It receives

more data than it transmits.

Routers forward data to the correct destination and it operates at many layers in the ISO/OSI reference

model. Router functionality can be divided into two planes, the data plane and the control plane. Data

plane forward the packets to the correct destination at high speed. Control plane handles complex

activities, and is slow in speed.

This topic discusses the implementation of three different approaches for implementing packet

classifier, viz. Software realization, Hardware realization for router, and Hardware/Software Co

design for network terminal. Software realization is carried out using a C program. The hardware and

hardware/software co-design architectures are implemented using VHDL and are synthesized in

Quartus 4.1 to get the VLSI area requirement. Further hardware/software co-design is verified using

ModelSim 6.0c for a TCP/UDP over IP over Ethernet frame. The frame considered for the

implementation is Ethernet frame containing IP or ARP packets, containing TCP or UDP segments.

Ail other packets are discarded. Packet is intended for MAC Address 0x001217834586, IP Address

192.168.0.221 and TCP/UDP Port 137. Figure 3.5 (a), captured by “Ethereal” software shows a

sample frame of the same.

3.3.2 Software Realization of Packet Classifier

A classifier needs to compute logical AND of the several conditions specified in the rules. The most

conventional and straightforward implementation of a classifier uses a series of tests to examine one

header field at a time. As soon as it finds a field that does not match a specified value, the classifier

stops and declares that the packet is not a match. Only after all tests are completed the classifier

asserts that a packet matches.

A C program has been implemented to realize software classification. It also demonstrates the

sequential process flow, i.e. in conventional classification methods the entire received packet is first

stored into the memory and then is decoded header by header. We use information regarding the

header that is known a priori. We have considered following classification rules (Ethemet/IP/TCP).

Ethernet Header:

1) Destination address field of packet should match with our node address.

2) Length/Type field should contains 0x0800 (IP) or 0x0806 (ARP)

IP Header:

1) Version should contain 4,

2) Header length should be greater than 5

3) TTL field should not be zero

4) Protocol field should contain 0x11 (UDP) or 0x06 (TCP)

5) Header Checksum should match

6) Destination IP address field should match with our IP address field.

41

TCP Header:

1) Destination Port should match

2) Checksum should match [15]

A B C

Figure 3.4 Classification Flowchart

42

A B C

Figure 3.4 Classification Flowchart (Contd.)

43

version: 4 ,
. Header lengj.h: id bytes, , ,. ,
Differentiated services Field: 0x00 (DSCP 0x00: Default; icfe 0x00)
ifof'iff I3erig|hf. 78......................
identification: 0x04c4 (1220)
Flags: 0x00
Fragment offset: 0
Time to live: 128
protocol:'udp (dxll) .

i. Header checksum: 0xb2ae. [correct] .
1 source: ISibl&ByOiM (102.168.0.221)
iOiSiigiatdiiM .fS2;.|®®.®V2-53 (192.168.0.255)

Sour,ce port : netbios-ns (137)
Destination port: netbios-ns (137)
Length: 58

•... ,.4fiecl(5EiB}.'’-j^t7a8^...EfiBecfi!eai'i|..................

00 .12 .17 83 45 86 08 00 45 00
06;jfe-W ci; QOOB.StMi b2 ae cO a8 00 dd cO a8

—---- = — 80 37 oi 10 6’0 01
-N.

00 00 00 00 00 00 20 46 .48 45 50 46 43■ 45 4c;45
48 46 43 45 50 46 46 46 41 43 41 43 41 43 41 43
41 43 41 43 41 42 4c 00 00 20 00 01 '

"F:
hfcepfff!
ACACABL.

-iiieyli'EV

HEPFCELE
ACACACAC

Figure 3.5 (a) Capture by “Ethereal” software. (TCP or UDP packet only)

11^ ~ ""'

fife
IP ftladjer feyitbs

IP Type of Service:Precedence Delay :R6liij^l|30EiS

0 0 0 0 I

IP Payloail I.engtlt:?8

Ht=X28
Received IP eKe'eMsUwtSaEl'

Destination IP Address liatcihed!

Soure IP Address :C0a800dd

ia&d'lated *$ ciidefclinJ'iS'ai;
HI Cliecksiini Matelied!

Iranspiort Sayer Pv*otoeoi:UfiP

Source Port- Address: 137
Destination Port Address:i37

SffiP Payiodft:58

ItDP Received Checl<sum:,?a8'fe

Received Packet is OK.

Figure 3.5 (b) Packet classification by C program

Results of C-Program are as shown in figure 3.5 (b).

44

3.3.3. Hardware Realization of Packet Classifier

In this realization parallel testing is performed by hardware to avoid testing header fields sequentially;

the classifier extracts pertinent fields, concatenates the fields into multi-octet value, and compares the

resulting value to a constant. The value of the constant is derived directly form the classification rules.

Static classification implemented in hardware performs field extractions and comparisons in parallel,

instead of examining each field sequentially. So hardware classifier is faster.

Protocol
Analyzer

ZZj> Extractor

ZEZ
TCAM

:s:Priority
Encoder

IE
RAM

Figure 3.6 Hardware packet classifier

The hardware-based packet classifier is shown in the figure 3.6 which will consist of the protocol

analyzer and TCAM based classifier. Protocol Analyzer will receive fixed width (8-bit) stream of

packet data from the PHY and output a stream of data into 8,16,24 or 32-bit field data along with the

8 bit field type signal. For fields that do not contain 32 bits worth of data, the most significant bits will

be padded with zero. The basic function of the extractor is to extract the specified field of the entire

frame and put into the header register for packet classification. The output of a protocol analyzer is

given to the TCAM based classifier, which consist of priority encoder and action memory. Action

memory is a RAM, where address is used to find the action associated with that matching rule. The

necessary field values for packet classification from the hardware register are given as search key of

the TCAM. The rules of the packet classification are stored in low priority order in TCAM, which will

perform the lookup and matching operation and give the output result as a match flag of their memory

array. This result will be given to the priority encoder and will resolve the priority or the matching

rules and gives the address of the highest priority match to action memory. Here we implement the

packet classifier using TCAM which produces multi-match classification in VHDL, by using Quartus

II tool of Altera to get the chip area requirement in table 3.3 [15][29][83] .

Table 3.3 Hardware Packet Classifier area requirement

Algorithm/Proj ect Device Total Logic

Elements

Total

Pins

Total Memory

Bits

Hardware Packet EP20kl500 869/51,840 169/488 2,224 / 442,368

classifier/ final block EBC652-1 (1 %) (34 %) (<1%)

45

3.3.4. Hardware/Software Co -Design of Packet Classifier

The traditional packet classifiers are generally based on general-purpose microprocessor.

Since the execution takes place sequentially in such processors they are not able to keep up with the

network speed. The architecture implemented here is a dedicated architecture for packet processing

which operates in a data-flow fashion directly on the data that is received on the network terminal.

Thereby no load and store operations are necessary. So the packets are already processed to a large

extent when the payload is written into memory. This saves data memory bandwidth, program

memory size, processing time and power consumption. Most of the packets those should be discarded

never have to be stored in memory at all.

We have implemented “Linkoping Architecture” designed by Tomas Henriksson, Ulf

Nordqvist and Dake Liu at Linkoping University by writing the code ourselves [38][35][41].

The architecture mainly focuses on the terminal protocol processing. Especially it deals with

classification of single packet or frame. For task that involves several packets, the implemented

architecture only provides supporting functions, such as extraction, classification and information pre

processing. The processor architecture is designed to be re-configurable; hence classification of

newer protocols can be carried out, when required. It consists of “Control Unit”, “Counter Unit”

(named as CCU) and some “Dedicated Modules” (DMs). The Counter Unit keeps track of the input

bits arrived (i.e. frame length) and invoke the necessary signal when required, while the Control Unit

is a simple microprocessor (FSM based architecture) that generates necessary control signals to drive

the Dedicated Modules (DMs). It also interfaces with external application (may be a microcontroller

or some other dedicated hardware) and with program and payload memory. CCU handles only macro

level processing while the actual processing is carried out in Dedicated Modules(DM), where each

module carries out some specific task like IP Length Counter DM, Internet Checksum DM and

Payload Memory DM. There may be single or multiple DM of the same type depending on the

processing speed or complexity to be handled. The data is fed at different instants to the

corresponding module enabled by Control Unit. Hence several modules are working, in parallel and

correspondingly the results are produced at different times. These results are used by Control unit to

decide whether to discard or process the receiving frame, on the fly.

3.3.4.1 Overview
The architecture discussed here is aimed to be operating on a raw data stream, i.e. data stream arriving

on physical layer. The input data is implicitly always loaded into the input buffer, so no load operation

is required. Input buffer is basically a 32-bit serial shift register of FIFO type where incoming bit is

shifted in at line speed. This calls for hard real-time requirements for rest of the blocks too, since

synchronization mismatch will cause loss of data. This is where the architecture differs from the

traditional architecture where entire packet is first buffered into the memory and then read while

processing; hence not requiring real time constraints. However in such a system, the processor needs

46

several instructions per data word, e.g. for explicit loads and stores, so the processor must run at a

frequency much higher than the frequency of the data words.
Input Data Stream

Figure 3.7 Architecture Overview

All hardware modules are acting independently, hence they need to be synchronized. Here since data

is processed on the fly the program is required to be highly synchronized with the input data clock by

clock. We cannot survive with unpredicted behaviour. Hence all instructions are having folly

predictable execution time and no pipeline is used, since any conditional jump may lead to penalty in

terms of unpredictable execution time. On the other hand, as there is no pipeline, in order to utilize

high frequency clock, time spent for instruction execution must be minimum. This is solved by using

three look-up tables inside the processor core. Look-up table have short access time and decoding is

kept minimal to reduce time requirement. Instruction set is also optimized for the application and

hence code size is very small.

An overview of the entire architecture is as shown in Fig. 3.7. Since there is no internal register file,

no intermediate results are stored. Computations that need intermediate results are off-loaded to

dedicated modules. These modules communicate with the control unit via synchronous control and

status signals. There is one master instruction flow in the core, which can start the execution of the

dedicated modules dynamically dependent on the input data. The modules'" thereafter execute

independently of the core instruction flow until a merge occurs when the module have completed

execution. Dedicated Modules have generally four control signals two inputs viz. start and stop and

two outputs viz. end and correct see Figure 3.8. However, all dedicated modules may not have all the

control signals, e.g. some modules do not have any external stop signal to indicate when to stop the

process, similarly, some modules have nothing to say about correctness of received data. All the

control signals are connected to the PP, which generates or processes the respective control signal.

47

Data in----- >

Stjrt St^p

Dedicated
Module

Data out

End Correct
Figure 3.8 Dedicated Module Overview

3.3.4.2 PP Architecture

Protocol Processor is implemented with an aim to process the incoming packet before they are stored

in a memory. This is beneficial for several reasons. If it is discovered while processing the packet

header, that the packet is not interesting for the terminal, then the packet can be discarded before it is

folly stored in memory and further processing can be cancelled. The processor then can go into sleep

mode and wake up when the next packet arrives on the input port. This saves energy as well as

memory bandwidth. Since the processing is already taken care of when the packet is stored in the

memory it can be directly delivered to the application just by passing a pointer. Initially the

architecture is implemented for a small set of network protocols. However the architecture is made

such that later on, by making only minor changes other protocols can be processed. The most

important design goal was to be able to execute if-else and switch-case statements in one clock cycle,

no matter which branch was taken. These are used e.g. in protocol demultiplexing and Address

Resolution Protocol (ARP) handling, as shown in figure 3.9.

//Process Network Layer Protocol switch(ARPOperation)
switch(NtwrkPro) {
{ case ARPRequest:

case IPv4: //IPv4 packet 0x0800
CheckEP(); break;
break; case ARPReply:

case IPv6: //IPv6 packet 0x86DD
CheckIPv6(); break;
break; case RARPRequest:

case ARP: //ARP packet 0x0806
case RARP: //RARP packet break;

0x8035 case RARPReply:
CheckARPO;
break; break;

default: //Handle unknown packet default:Flag.Discard=l; //Discard
Unknown(); //Packet
break;

}
}

Figure 3.9 C Code Example using switch-case statements

Internal architecture of the protocol processor is as shown in Fig. 3.10. There are other blocks also

used for communication with dedicated modules and with external input/outputs.

48

Input Data
Stream

-> I/P Buffer (32 bit)
<4" "......... A

Counter
Unit

------*-------

PLT

Control
Unit

A

<r
* Compare

Unit

ILT CLT

Figure 3.10 Protocol Processor Architecture

3.3.4.2.1 Input Buffer

It is a 32-bit serial shift register in which one bit is shifted in every clock cycle. It is basically a FIFO,

in nature and hence it is necessary that data within it is processed or used at proper instants before it is

pushed out. As shown in figure 3.29 InputStream is input port for the incoming serial data. Control

signal EnOut is used to enable the 32-bit output data port. Ready is an output signal that is used to

indicate that a valid signal is available on output port, OutData. When data is read EnOut signal is

pulled down, which causes Ready signal to go low. Table 3.4 shows the VLSI area requirement of

input buffer.

Table 3.4 Input buffer area requirement

Project Device Total Logic

Elements

Total

Pins

Total Memory

Bits

InputBuf EP20kl500EB

C652-1

64/51,840

(<1 %)

37/488

(7%)

0 / 442,368

(0%)

3.3.4.2.2 Instruction Look-Up Table (ILT)

The ILT stores the main program. Each instruction is 24-bit wide and ILT can hold up to 256

instructions. Hence it requires total 6144 bits of memory. The contents of ILT are accessed by

program counter (PC), which is connected to the address bus of ILT. All three memories (i.e. look-up

tables) can be programmed externally by initializing PP in “program” mode. As shown in figure 3.30

Addr (8-bit) signal specifies the memory location to be fetched. It is controlled by PC of Control unit

in run mode and by external device in program mode. WrEn signal when high enables the memory

write function (i.e. in program mode), while Ready goes high whenever WrEn is low and a valid data

49

is available on OutData (24-Bit). This data, which is an instruction, is then used by Control unit for

further processing.

Table 3.5 Instruction Look-Up Table area requirement

Project Device Total Logic

Elements

Total

Pins

Total Memoiy

Bits

ILT EP20kl500EB 1/51,840 59/488 6,144/442,368

C652-1 (<1%) (12 %) d%)

33.4.2.3 Parameter Look-Up Table (PLT)

PLT contains the parameters, which are used for comparison with the incoming data, e.g. MAC

Destination address, Ethernet Type field, IP destination address, UDP Port number, etc. It consists of

16 pages, each having four 32-bit parameters. This requires a total of 2048 bits of memory. The input

to PLT is 4-bit address line pointing to the specific page, while output is four 32-bit parameters of that

page, i.e. 128-bit data output, which acts as input to compare unit. As shown in figure 3.31, control

signals are functionally same as for ILT. OutData (128-bit) is connected to Compare unit since data

stored here is a compare parameter.

Table 3.6 Parameter Look-Up Table area requirement

Project Device Total Logic

Elements

Total

Pins

Total Memory

Bits

PLT EP20kl500EB 13/51,840 167/488 2,048/442,368

C652-1 (<1%) (34%) (<1%)

33.4.2.4 Control Look-Up Table (CLT)

The CLT contains jump addresses required to be loaded in PC after the successful comparison match

occurs. The CLT has 8 pages corresponding to the first 8 pages of PLT, each having four 8-bit jump

locations. This requires a total of 256 bits of memory. The reason for having more pages in the PLT

than in the CLT is that the CLT is only used for CMP and CPS instructions, with the jump bit set to 1,

while PLT is also used for CMP and CPS instructions with the jump bit set to 0 and for JMP

instructions with type 10. Inputs to the CLT are the 3 least significant bits of the PLT address

(pointer) and 4-bit result from the compare unit. The pointer selects a page and the 4-bit result from

the comparators selects a value within that page. This value simply modifies the PC value to decide

where the control should go. In case comparison has failed, comparator output will be zero and PC

50

//
t;:: '

M *' ’

will be loaded with the next instruction location only. PLT and CLT as combined, |ie}p to manage

multiple comparisons in a single clock cycle. As shown in figure 3.32, Control signals are

functionally same as for ILT. Addr (7 bit) is formed of 3 least significant bits of the

(pointer) and 4-bit result from the compare unit. The pointer selects a page and the 4-bit result from

the comparators selects a value within that page. OutData (8-bit) is connected to Control unit, which

is used to modify PC, if specified.

Table 3.7 Control Look-Up Table area requirement

Project Device Total Logic

Elements

Total

Pins

Total Memory

Bits

CLT EP20kl500EB 3/51,840 26 1488 256 / 442,368

C652-1 (< 1 %) (5 %) (< 1 %)

33.4.2.5 Compare Unit

Compare unit consists an array of four comparators each being capable of comparing 32-bit data as

shown in figure 3.11. It makes it possible to execute the complete switch-case network statements in

one clock cycle. At present only 4 cases and 1 default case can be handled, since only 4 comparators

have been used. However this can be increased by increasing parallel comparators. During compare

operation, the four parameters of the selected page from PLT are fed to the array as one data and the

content of input buffer as another data. The result of the comparators is a 4-bit array, which is used as

an input to the CLT.

Three control signals are used to complete the entire compare operation viz. Width, Offset and New.

The Width bits (2-bit) carried by an instruction are used to mask the data to the desired width X (4, 8,

16, or 32 bits). Hence a flexible comparison can be carried out. The Offset bit decides where to mark

the incoming bit stream as starting point for 32-bit data in the input buffer, which makes it possible to

51

easily extract the desired data for comparison. The comparison is controlled by the New bit, which

specifies if the comparison should start from scratch or if it is a continuation of a previous

comparison. The intermediate result of comparison is always implicitly stored within the compare unit

for this purpose. For example for MAC Destination addresses a 48-bit comparison can easily be

accommodated for in this way. As shown in figure 3.33, InData (32-bit), received from Input Buffer,

is compared with four 32-bit data (4x32=128 bit), PLTData, received from PLT. En enables the

Compare unit to perform comparison. Width specifies whether to carry out 4, 8, 16 or 32 bit

comparison. NewComp when high indicates that comparison should start from scratch else it is a

continuation of a previous comparison. If comparison fails then CompFail signal will go high and

data on OutData will be “0000”. However in case of successful comparison OutData specifies with

which parameter out of the four parameters, successful comparison is occurred. Ready signal goes

high when comparison is completed.

Table 3.8 Compare unit area requirement

Project Device Total Logic

Elements

Total

Pins

Total Memory

Bits

Compare EP20kl500EB 149/51,840 170/488 0 / 442,368

C652-1 (< 1 %) (34%) (0%)

3.3.4.2.6 Counter Unit

Counter Unit is a 12-bit counter that keeps track of number of bits received in Input Buffer. It

generates a signal that is used to indicate when Input Buffer should output a valid 32-bit data. When

Offset bit in the instruction is low, Counter Unit counts for incoming 32 bits thereon, while in other

case, it counts the incoming 16 bits and makes signal high to enable Input Buffer to output a valid 32-

bit data, see Fig. 3.12.

Input Buffer input Buffer

Offset=Low Offset=High

Figure 3.12 Effect of Offset on Output from Input Buffer

It also generates necessary clock input for the Control unit. It can be configured to generate lower

clock rate, i.e. in factor of incoming bit rate, for the Control unit since Control unit does not require

high clock rate for processing. CntrlClk is the clock generated for Control unit. Offset signal is

received from Control unit, which indicates where to mark the incoming bit stream as starting point

52

for 32-bit data in the Input Buffer. IPBufEnOut signal enables Input Buffer to output a valid data on

its output port. Input Buffer then raises IPBujReady to indicate that data is now available,

correspondingly Counter unit raises DataReady signal, which is connected to Control unit.

Table 3.9 Counter unit area requirement
Project Device Total Logic

Elements

Total

Pins

Total Memory

Bits

Counter
EP1S10F484C

5

13/10570

(< 1 %)

9/336

(2 %)
0

3.3A2.7 Control Unit

The Control unit provides necessary signal interactions to make the data flow properly through other

blocks and thereby performs the expected functions. Control unit architecture is Finite State Machine

(FSM) based that causes all appropriate signal values to be updated based on current state and input

signals and produces a next state for the state machine. It maintains the main flow of program and

synchronizes all the dedicated modules by enabling and utilizing their results at right instants. Since all

instructions are implemented using FSM logic, they are absolutely predictable. No pipeline is used

since a jump can lead to pipeline penalty and hence unpredictable behavior. It is not possible to

simulate Control unit as a separate entity, since it requires data from many other units including the

ILT from where the instructions is to be fetched, hence no separate simulation report is shown.

3.3.4.2.8 Inputs and Outputs

It consists of 19 inputs and 10 general-purpose outputs. Outputs are mainly used to enable the DM,

while inputs are used for checking status and results of the DM. The inputs are used for two purposes,

jumps and waits. The program execution can be conditionally halted until a certain input pattern

occurs. Likewise a jump can be conditionally executed dependent on the inputs. For the conditional

jumps only 9 of the 19 inputs can be used.

3.3.4.3 Dedicated Modules

The Protocol Processor core that has been described so far only handles comparison and decision

making part of packet reception processing. The other tasks such as payload storage, IP length

counting and checksum calculation are handled by Dedicated Modules. These modules work as

standalone unit and hence can be added or removed as per requirement (i.e. for different protocol,

different modules can be used).

The reason for dividing the processing is that tasks like comparison (or field matching) and decision

making uses only the packet headers, while checksum calculation and payload storage uses the whole

53

packet. Here, since core and DMs uses the same data at the same time, the architecture can he called

as MISD (Multiple Instruction Single Data) type architecture.

The program flow in different modules is also different, e.g. in processor core field matching consist

of almost only if-then-else or switch-case statements, checksum calculation consists of bitwise

operations and payload storage implies storing the payload in the correct memory location based on

the result of comparison operations, so that later on application can access the payload directly.

Currently only three modules are discussed and implemented as required by the TCP/UDP over IP

over Ethernet, however for other protocols other modules are required and can be added.

33.4.3.1 Payload Memory

To store the payload data various methods are possible. One alternative is to a shared off-chip

memory on the motherboard, but this will create unwanted interrupts for host processing and hence

leads to performance degradation. A better option is to use on-chip memory that can be used to store

payload of only valid (or accepted) packets received in the terminal. From this memory, payload data

can be accessed by the main host memory, as shown in figure 3.13. The payload memory should be of

around 1MB, so that it can store at least 100ms of traffic in lOGB/s networks. In the on-chip memory,

an alternative is of course to store all incoming data until we receive a discard signal from Control

Unit. However, the problem is that we do not want to send the payload data to the host memory before

we know if it should be discarded or not. The purpose of Protocol Processor is to offload and

accelerate the application-processing running on the host.

Figure 3.13 Payload Memory Interfacing

To solve the problem, FIFO is inserted before payload memory. This FIFO will hold the packet until

the PP decides if it should be discarded or accepted. The length of FIFO can be optimized to find the

most power efficient architecture. Figure 3.14 shows the idea.

*

54

Figure 3.14 Using FIFO Enhance Performance

As shown in figure 3.35,Start pulse enables FIFO to store data, while Stop pulse stops FIFO write

operation. If Discard signal is asserted high before Stop pulse is applied, FIFO is flushed. If Discard

is low and Stop pulse is applied, then FIFO content is considered as valid data and is transferred to

payload memory. Content of payload memory can be accessed by enabling Read signal. Ready signal

become high when a valid data is available on OutData.

Table 3.10 Payload Memory area requirement

Project Device Total Logic

Elements

Total

Pins

Total Memory

Bits

PayloadMemr EP20kl500EB 60/51,840 80/488 40,960/442,368

C652-1 (<1 %) (16%) (9%)

3.3.4.3.2 IP Length Counter

IPv4 packet is of variable length. Hence it is necessary to count the received bytes based on header

information. IP Length Counter DM is a counter that keeps track on number of bytes received.

Besides the processor core this module also interfaces with Internet Checksum, since IP data length

information is required for checksum calculation. As shown in figure 3.36, Start pulse enables IP

Length Counter, however no external stop signal is required in this case. Ready signal is asserted high

when header is finished.

Table 3.11 IP Length Counter area requirement

Project Device Total Logic

Elements

Total

Pins

Total Memory

Bits

IPLengthCounter EP20kl500EB

C652-1

42 / 51,840

(<1 %)

36/488

(7%)

0/442,368

(0%)

55

3.3.43.3 Internet Checksum

The checksum calculation is traditionally carried out in host processor within the operating system

kernel, before the payload data is handed over to the application. However here this task is carried out

by a separate module, so as to increase parallelism and hence performance. Two separate DMs are

used, one is used for IP checksum calculation and other is used for TCP/UDP checksum calculation.

This module has relatively straightforward task for most packets. For non-fragmented packets, the

incoming 32-bit data is split into 16 bit words, adds the first and second part and then adds that sum to

the accumulated sum, as shown in figure 3.15.

Figure 3.15 Internet Checksum Calculation

One important task in TCP/UDP checksum is to handle the pseudo header from the IP header that

must be included in the calculation. The pseudo header that is included in calculation for IPv4 and

IPv6 is as shown in figure. 3.16 and figure 3.17 respectively.

The computation gets a lot more complicated when fragmented packets are considered. Fragmented

packets are not dealt with at this stage.

Figure 3.16 Pseudo Header (IPv4) used in TCP/UDP Calculation

56

Figure 3.17 Pseudo Header (IPv6) used in TCP/UDP Calculation
Table 3.12 shows the area requirement of Internet checksum module. As shown in figure 3.37, Start

pulse enables Internet Checksum to perform checksum operation. It continues this operation until Stop

signal is applied form BP Length Counter. Ready signal is asserted high when checksum operation is

finished. Further, Chksum signal is asserted high if the checksum matches.

Table 3.12 Internet Checksum area requirement

Project Device Total Logic

Elements

Total

Pins

Total Memory

Bits

IntemetChecksu

m

EP20kl500EB

C652-1

215/51,840

(< 1 %)

38/488

(7%)

0 / 442,368

(0%)

3.3.4.3.4 CRC Checksum
The most computational demanding task while processing TCP/UDP over BP over Ethemet/ATM is

undoubtedly the link layer checksum calculation. In simple RISC machine a 1500 byte long frame

require almost 44000 (non optimized) instructions to process only the CRC checksum [72]. Therefore

it is necessary to have a separate dedicated hardware to carry out this task. Several architectures are

available for CRC calculation; however parallel implementation is most suitable to tackle with gigabit

rate data. CRC checksum module is not implemented at this stage and while simulation it is assumed

that CRC is correct.

3.3.4.4 Instruction Set
The PP architecture has only 6 instructions. These instructions are optimized for processing of

Ethernet, ARP, IP and TJDP. For other or more general protocol stacks small modifications in the

instruction set may be expected.

3.3.4.4.1 Instruction Format
The general format of the instruction is as shown in Figure 3.18. It is 24-bit wide with 4 bits used to

specify the instruction code, which allows for 16 possible instructions. Since only six instructions are

57

used, more instructions and future changes can be accommodated. The bit next to the Code, i.e. Offset,

decides where to mark the incoming bit stream as starting point for 32-bit data in the input buffer. A

‘T in this bit means extract data when the counter value in counter unit is 16, while ‘0’ means extract

data when counter value is 32, i.e. 32 latest bits are received.

23 20 19 18 0

Code Offset Instruction Specific information

Figure 3.18 Instruction Format

3.3.4.4.2 Synchronization Instruction (SYN)

It is used for synchronization purpose with the incoming bit stream. If some fields are not included in

the processing then they should ignored. This is done by using SYN instruction. Bit 19 acts as Offset

field that is discussed in previous section. Positions 18 through 0 are unused.

23 20 19 18 0

0000 Offset

Figure 3.19 SYN Instruction Format

3.3.4.4.3 Compare Instruction (CMP)

Compare instruction uses the most advanced feature of PP. This instruction is used to perform compare

operation. It makes it possible to execute the complete switch-case network statements in one clock

cycle. At present only 4 cases and 1 default case can be handled, since only 4 comparators have been

used. However this can be increased by increasing parallel comparators. It makes use of values stored

in PLT and CLT.

23 20 19 18 17 16 13 12 11 10 0

0001 Offset New Jump Pointer Width

Figure 3.20 CMP Instruction Format

Format of CMP instruction is as shown figure 3.20. The field, New, specifies if the comparison should

start from scratch or if it is a continuation of a previous comparison. A ‘ 1’ at this field implies new

comparison, while a ‘0’ indicates continued comparison. The intermediate result of comparison is

always implicitly stored within the compare unit for this purpose. E.g. for MAC Destination addresses

a 48-bit comparison can easily be accommodated for in this way. The Pointer field indicates the page

address for PLT. Since it is 4-bit wide maximum 16 pages can be accessed from the PLT. The

58

positions 15 through 13 are used as page address for CCB also, causing maximum of 8 pages access. A

‘1’ in Jump field indicates that a jump should be performed at a match. The jump address used will be

taken from CCB. A ‘05 in this field implies that simply store the comparison result in compare unit,

which may be used for next continued comparison. The Width bits carried by an instruction are used to

mask the data to the desired width (4, 8, 16, or 32 bits), i.e. it decides the width of comparison.

Positions 10 through 0 are unused.

3.3.4 4.4 Set Instruction (SET)

This instruction is used to set the internal and external outputs of PP core. The internal outputs of the

core are used as control signals for the dedicated modules (start and stop signals), while the external

outputs are general-purpose and can be used for other applications such status indication. The positions

9 through 0, Output Bitmap, specify which output should be high or low. Positions 18 through 10 are

unused.

23 20 19 18 10 9 0

0010 Offset — Output Bitmap

Figure 3.21 SET Instruction Format

3.3.4.4.5. Compare and Set Instruction (CPS)

For efficient execution and synchronization purpose, it is sometime necessary to perform comparison

and set operation simultaneously. This is done by CPS instruction. Position 10 is unused.

23 20 19 18 11 10 9 0

0011 Offset As for CMP - As for SET

Figure 3.22 CPS Instruction Format

3.3.4.4.6 Jump Instruction (JMP)

General format of Jump instruction is as shown in Fig. 3.23. Total three types of jump are possible, as

shown in table 3.13. Field Type specifies the type of jump to be performed. The positions 7 through 0,

Absolute Address, specify the exact location where program counter should jump. Since it is an 8-bit

wide field, entire ILT is covered, i.e. 256 words. Positions 16 through 8 are type specific information.

23 20 19 18 17 16 8 7 0

0100 Offset Type Type Specific Information Absolute Address

Figure 3.23 General Format of JMP Instruction

59

Table 3.13 Possible Types of Jump

/,/•«■ 1 hid Jump l\pc

00 Unconditional

01 Conditional, dependent on the inputs

10 Conditional, dependent on the comparison results

Figure 3.24 shows detailed format for all three types of jump. In case of unconditional jump (Type 00), positions

16 through 8 are unused. For conditional jump dependent on inputs (Type 01), positions 16 through 8, Input

Bitmap, specify the required input bit pattern to perform jump. Input Bitmap corresponds to 0-8 inputs i.e. only 9

inputs are used. For conditional jump dependent on comparison results (Type 10), fields New, Pointer and Width

have same functionality as for CMP instruction. Position 8 is unused. On successful comparison jump is carried

out to the location specified by Absolute Address.

23 20 19 18 17 16 8 7 0

0100 Offset 00 Absolute Address

0100 Offset 01 Input Bitmap Absolute Address

0100 Offset 10 Pointer Width New - Absolute Address

Figure 3.24 JMP Instruction Format

3.3.4.4.7 Wait Instruction (WAT)

The wait instruction is used for synchronizing the program flow with external events, e.g. the arrival of a specific

header field or the completion of a dedicated module task. The format of WAT is shown in Fig. 3.25. It simply

defers the updating of the program counter until the inputs match positions 18 through 0, Input Bitmap, in the

instruction word. For every ‘ 1’ in the Input Bitmap, the corresponding inputs must also be ‘ 1’ until the program

counter is advanced to the next instruction.

23 20 19 18 0

0101 Offset Input Bitmap

Figure 3.25 WAT Instruction Format

3.3.5 Demonstration Example of execution of Processor

The best way to explain the execution of processor is by an example program. The program is intended for

Ethernet II frame containing IP/UDP or ARP packets. All other packets are discarded. Packet is intended for MAC

Address 0x001217834586, IP Address 192.168.0.221 and UDP Port 137.

60

3.3.5.1 Program Code

As mentioned in previous chapter, ILT block contains the program that controls the main flow of entire

execution. In following sections ILT, PLT and CLT contents are shown and section 3.3.5.2 program

execution is explained line by line.

3.3.5.1.1 ILT Content

The ILT contents are as shown in Fig. 3.26. This is the main code that decides the flow of entire

architecture. The 24-bit instructions (in hex format) are shown along with respective assembly

representation.

3.3.5.1.2 PLT Content

The PLT contents are as shown in Fig. 3.27. It consists of 16 pages, each containing four 32-bit

parameters. Page 0 contains the Ethernet codes for IP (0x0800) and ARP (0x0806), while page 1

contains the protocol value for UDP (0x11). Page 8 contains the first part of the hardware address

(MAC Address) and page 9 the second e.g.. MAC Address 0x001217834586 is stored as 0x00121783

as first part and 0X00004586 as second part. Page 10 contains the acceptable IP destination addresses

and finally page 11 contains the acceptable UDP destination ports. The other pages are not used by the

example program.

61

0x580001 - 0: WAT 1,(0)

0xlD1800 -1: CMP 1,1,0,8,3

Ox4D3005 - 2: JMP 1,10,9,2,0,5

0x200040 - 3: SET 0,(6)

0x400000 - 4: JMP 0,00,0

0x000000 - 5: SYN 0

0x080000 - 6: SYN 1

0x3E101A -7: CPS 1,1,1,0,10,(1,3,4)

0x400003 - 8: JMP 0,00,3

-------------Code for IP-------

0x200024 -9: SET 0,(2,5)

0x000000 -10: SYN 0

0x000000 -11: SYN 0

0x3E2806 -12: CPS 1,1,1,1,01,(6)

0x400003 -13: JMP 0,00,3

0x000000 -14: SYN 0

0x080000 -15: SYN 1

0x4DA812 -16: JMP 1,10,11,2,0,18

0x400003 -17: JMP 0,00,3

0x580004 - 18: WAT 1,2

0x4D7414 -19: JMP 1,10,11,10,1,20

0x400003 - 20: JMP 0,00,3
6x200020 -21: SET 0,(1)

0x50001A -22: WAT 0,(4,3,1)

0x22E018 -23: JMP 0,01,(7,6,5),24

0x400003 - 24: JMP 0,00,3

0x200080 -25: SET 0,(7)

0x400000 - 26: JMP 0,00,0

Code for ARP---------------

0x280002 -27: SET 1.(1)

0x500002 -28: WAT 0,(1)

0x22101F -29: JMP 0,01,(4),31

0x400003 - 30: JMP 0,00,3

0x200080 -31: SET 0,(7)

0x400000 - 32: JMP 0,00,0

Figure 3.26 Contents of ILT

62

--Page 0 —Page 6 —Page 12

0x00000800 0x00000000 0x00000000

0x00000806 0x00000000 0x00000000

0x00000000 0x00000000 0x00000000

0x00000000 0x00000000 0x00000000

—Page 1 —Page 7 —Page 13

0x00000011 0x00000000 0x00000000

0x00000000 0x00000000 0x00000000

0x00030000 0x00000000 0x00000000

0x00000000 0x00000000 0x00000000

—Page 2 -Page 8 -Page 14

0x00000000 OxFFFFFFF 0x00000000

0x00000000 0x00121783 0x00000000

0x00000000 0x00000000 0x00000000

0x00000000 0x00000000 0x00000000

-Page 3 -Page 9 -Page 15

0x00000000 OxOOOOFFFF 0x00000000

0x00000000 0X00004586 0x00000000

0x00000000 0x00000000 0x00000000

0x00000000 0x00000000 0x00000000

—Page 4 -Page 10

0x00000000 0XC0A80001

0x00000000 0XC0A800DD

0x00000000 OXFFFFFFF

0x00000000 0x00000000

-Page 5 -Page 11

0x00000000 0X00000089

0x00000000 0X000007E9

0x00000000 0x00000000

0x00000000 0x00000000

Figure 3.27 Contents of PLT

3.3.5.1.3 CLT Content

The CLT contents are shown in Fig. 3.28. It consists of 8 pages, each containing four 8-bit parameters,

representing the absolute jump location. CLT contents are in correspondence to the PLT contents, e.g.

Page 0 contains the corresponding absolute jump addresses for the Ethernet codes and page 1 contains

63

the corresponding absolute jump addresses for the protocol values.

-Page 0 —Page 2 -Page 4 -Page 6

09 00 00 00

IB 00 00 00

00 00 00 00

00 00 00 00

-Page 1 —Page 3 -Page 5 —Page 7

0E 00 00 00

00 00 00 00

00 00 00 00

00 00 00 00

Figure 3.28 Contents of CLT

33.5.2 Program Execution

From the beginning, instruction 0 waits for input 0, which indicates packet start and also implicitly

triggers Ethernet CRC calculation dedicated module, as shown in figure 3.38. Instructional then

compares the first 32 bits of the Ethernet destination address with the acceptable parameters from PLT

page 8.

Instruction 1: 0xlD1800, CMP 1,1,0,8,3 (As shown in figure 3.39)

CMP Inst. Format

0001 Offset New Jump Pointer Width —

Decoding: Comp, instr., Offset = 1, New = 1, Jump = 0, Pointer = 8, Width = 3

Figure 3.39 shows execution of comparison instruction with the above parameters. Since New is set

(see newcomp of section Compare) a new comparison is performed, indata represents the data as

received on physical layer, addr in PLT section is the value represented by Pointer in the instruction.

Hence the data from the page 8 is fetched. Data of page 8 in PLT are as shown below, pltdata in

Compare section shows the data as fetched from PLT. width is 3, hence 32 bit comparison is carried

out. The indata matches with the second data of the page (0x00121783), hence the outdata value is 2.

ready signal goes high as soon as comparison is over. Since comparison is successful compfail is

low. The result of the comparison is only stored locally in the compare unit since the jump bit is set to

0.

64

PLT Page 8 data:

OxFFFFFFF, 0x00121783, 0x00000000,0x00000000

Instruction 2: 0x4D3005, JMP 1,10,9,2,0,5 (not shown in fig.)
Continues the comparison, since the new bit is set to 0. Here only 16 bits are used and compared to

PLT page 9, since the width code is 10. If any match occurs, i.e. the Ethernet frame is destined for the

host, a jump is done to instruction 5.

PLT Page 9 data:
OxOOOOFFFF, 0X00004586, 0x00000000, 0x00000000

JMP Inst. Format (Conditional Jump)

0100 Offset 10 Pointer Width New - Absolute Address

Instructions 5 and 6 are SYN to align the data flow processing (in this example we do not care about

the Ethernet source address). Instruction 7 compares the Ethernet type field with PLT page 0 and uses

the jump addresses from CLT page 0. So if the type field is 0x0800 a jump is done to instruction 9,

otherwise, if it is 0x0806 a jump is done to instruction 27. If there is no match the execution continues

with instruction 8. At the same time outputs 1, 3, and 4 are set. These are used to trigger the start of

dedicated modules for payload storage, IP header checksum calculation, and UDP checksum

calculation.

Continuing the execution at instruction 9 (assuming that the arriving packet is DP) outputs 2 and 5 are

set. Output 2 triggers the length counter module for IP and output 5 stops the payload storage. For an

EP/UDP packet only the UDP payload should be stored. For an ARP packet on the other hand, the

whole Ethernet payload is stored, since the data is needed by the microcontroller in order to compile

the ARP reply. Instruction 10 and 11 are again for data aligning. Instruction 12 checks the protocol

field in the IP header and if it is 0x11 (UDP) a jump is done to instruction 14. In instruction 16 IP

destination address is compared with PLT line 10. For a correct packet, then the UDP port is checked

by instruction 19 and instruction 21 triggers the payload storage to start again. Instruction 18 waits for

the input 1 to be high indicating that IP header is finished. After the header has been processed, the

processor waits for inputs 2, 3, and 0 in instruction 22. These three inputs indicate that the IP header

checksum module, the UDP checksum module and the Ethernet CRC calculation module have

completed their computations. In instruction 23 a conditional jump is done on inputs 5, 6, and 4. These

are all 1 if the just mentioned modules have received correct checksums. Then finally, the reception of

a valid IP packet is acknowledged through output 7 in instruction 25 and instruction 26 jumps back to

65

instruction 0 in order to wait for the next packet.

If the Ethernet code would be ARP, instructions 26 to 31 would have executed in a similar manner.

Whenever the received packet does not match the requirements the packet is discarded and the

processor waits for the next packet. This is done by a jump to instruction 3, which sets output 6;

discard payload, and then instruction 4 jumps back to instruction 0.

3.3.6 Comparison

Table 3.14 : Comparison Table

ParamclLT

Soltware

l\l L(l Pg8 l":;r
Execution

Type
Sequential Parallel Parallel

Architecture
Pentium

processor
FPGA based

FPGA based

(PP+DM)

Size
1302 lines

in C Code

Logic

Elements
869 957

Memory

Bits
2224

49,408

(including

Payload

Memory)

Flexibility on

Protocol
Yes

Partial, by adding/

updating the

protocol RAM

Yes, by

reconfiguring

memory and

adding/updating

Dedicated

Modules

66

(S
im

ul
at

io
n

W
av

ef
or

m
s

;gjfli§jj

i "t>
LU

v«nS

CD

Qj
—

j;';

CVJ' d
!

<D

.....ssias^ ;5.^|gil

cCD -
CD-

' CD
• CM

<s<C
CD_

I—i cr>
iltlgBS

*—
CD_
CD
CO

C
CD
CD-
CO

S-CD
*‘*3-7“

*>

£

L

r

T--~

------------ -

r-

LO

r*cu.
CM
CD
CD
CD-
CD

-XX

—-X

CD

—W-.

Kj

--5X;-
Csl

:

I <u CO

jy

-§ i <8

c

JpHlW

ijliiilll^
J2*£ : "c?CD § DC

Z5CD
C

LU

£<oo>
tr>»*_>

23O.

JH<uQ -W
=>-»

JS . c
ii r*s “cr

*D
ro ■js rs <D
Q CD az

^?X

Fi
gu

re
 3

.2
9

Si
m

ul
at

io
n

re
su

lt
of

 In
pu

t b
uf

fe
r

Si
m

ul
at

io
n

W
av

ef
or

m
s*

2
oS'

s
l~
V""

s
oS‘

s?
i“

Ogr

1“

I'

S
<Q_

s

s
1'

c
C3„

£

J.

:

8

x

S

....

i *. ft a.*,

X
!>.

X

X

X

X

1 ■+ f

X

■-Ji.

t a m

1

1
*

?

;

I

i

3
1

i
i
!
>

,

X

8

X

8

X

5
- sr ft

X

8

X

8

X

8

X

S

x
* « *

s

* * * V

>. <* »> ^

* ft % *

. ft i ;

V v •

k ■» m •

S’?#!

or s a>

'■

•

X

9

k m m »

■■* ft ft >

;

' ft «# «* 9

T ft f* *

» » ■» 1
tl

\ to -mi.

1 « «*:

1 W «'

fla
m

e

s
6

C

LU

3
£3

Is
<§
o
El

t
u

QC

L_
_J

1 b h ¥1 ©Fa

En
d

Si
m

M
ttt

a
Ti

m
e B

an
 |

41
0.

0
rc

<[

»[
 P

ot
te

r.[

11
26

.4
5

m

In
fte

cv
ab

f -28155
m

Fi
gu

re
 3

.3
0 Sim

ul
at

io
n

re
su

lt
of

 I L
T

Fi
g.

 3
.3

1 S
im

ul
at

io
n

R
es

ul
t o

f P
L

T

Si
m

ul
at

io
n
W

av
ef

or
m

s

Fi
gu

re
 3

.3
3

Si
m

ul
at

io
n

re
su

lt
of

 co
m

pa
re

 u
ni

t

CD

nr
'

L-J

L)

i—7 LU
1

.-s*: ^ ■'• =$ $EC CC ■
> ra- - or '. =s =s -5S -■ --to- ca ' on

HJ<DEC

CCL CL- CL.

lie

ilillll

Fi
gu

re
 3

.3
4 S

im
ul

at
io

n
R

es
ul

t o
f C

ou
nt

er
 U

ni
t

Si
m

ul
at

io
n

V
/a

re
lW

m
a

mi
i

i
i

11
—

i
i

i
i

i

M
2W

.
I

I
I

I
I

I

!
i

1
i

!
i

I
I

I
I

I
I

I

—
—

y~-—
i—r

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

U
T

j-uun_ru
LiExzo

lO
C

EA
ra

i

M
w

as
ss

ew
ss

ss
s^

T
-S

I I I
i I I

I I I
I I

ic
tir

rlr
tic

tlc
tic

tx
Tt

i
i

i
i

i
i

i

-i—
i—

i—
i

I
1

i
1

i
I

i
I

I
i

[

! ! I-l—
t--

-I
I

I

I
I

i

I
I

I

Z
D

C
D

C
aX

53(Z
X

£X
D

C
L

X
--

p------
-—

i—
i

i
i

i
i

i
i

■ i
i 1 I

I I i
1 i !

1

—
!

I !
I

I
II

!
1

I
i

;
:

I
:

!
i

.
!

1
j

I
i I

I
I

I I I
I

I
!

1
I

I
I

I
I

I
I

I
I

I
I

I
I

i
I

I
I

I
till

I I I
I

oooaacoo

j—
i—

u II
I!

m
 i m

 i ;
; m

i i m
1_!_

I___
!_LJ_

i_J_
L

I
I

I
I

-I—
!—

:—
l

I
I

I
I

J7

Ti
lii

i
i

,
. in

11' FT

i i i
i i

I I I
I I

II
I!

!
I I

I
II I I

I I
TT

i
i

i
i

i it
i

i
i

i
i

i
i

i
i

i
i

i
i

i
ii i

I
I 7

I

l l l

—
i—

i—
u

i
l

i
J__

I__
I

I
i

l
l

l

4—
i—

4

i i
—

;—
:------

i--------------------
i

i r
jIIII

1_____
L_i_

i
i

i
i

i
i

i
i

i
-i—

i—
i—

i—
i—

i—
i—

i—
».

I
I

I
I

I
I

!
t

n—
'—

i—
ri

i
i

i
-i—

i—
u-u

i rrn

i
i

i
i

i
i

i i i
i i i

i
i

i
i

—
i i i

J—
I_

L
tilli

i
i

i
i

i
i

i
i

i

nt Jbp
s40

. D
ns

00

.D
re

12
0.

0n
s1

B
D

.O
na

20

0.
0n

s
24

0.
0n

s
28

0.
D

re

32
0L

O
ns

36

0.
D

re

40
0.

0r
e

44
0.

D
re

49

0.
0r

e
I ril

i _____
__

__
__

__
__

__
__

__
__

IlI
i__

__
 l

i
l

I
l

SL
=r
t

St
op

te
rrp

_d
k.

En C
k

0 I
rD

at
a

D
is

ca
rd

ad

rF
lF

O

w
iF

IF
O

0 s
to

re
flF

O
Io

co
lic

in
0

wi
ad
ie
ss
Rc
rn

wi
R a

m
B A

dd
r

R
ea

d
0 O

uO
st

a
R

ea
dyN
am

e

En
d:

St
ar

t:
1Q

02
 ns

<1>£

V9
s

dr

*|
 Ftinlt

er
O

ps

s©•ma?M
as

te
r T

im
e B

ar
:

tl\
 J

Fi
gu

re
 3

.3
5 S

im
ul

at
io

n R
es

ul
t o

f P
ay

lo
ad

 M
em

or
y

Fi
gu

re
 3

.3
6

Si
m

ul
at

io
n

R
es

ul
t o

f I
P

le
ng

th
 co

un
te

r

in
i ii

i
i

i
1

1
(

'
I

i
!

1

I I I
I II

I I
i m

rm
i'j

tl
|_
|] j

 i j
I I I

I I I
I I i

I I M
 I I

II
 I

11
1

11
1

tii
1

j
j

j jjj "jjj
s jjiggii

i
j jj j j jj

j ji:ixf':M
oq:W

'iyi.''.M
:'h

fr
Li

i
i

i
i

i
i

i
I

i
i

i
Q
D
D
O
i

ill
in

i
i

m
m

zm

 M
sa

w
 lyi

ifs
iT

T

iT"!...
I.i""i...

1...
1..

1...
S..i".................

M

!
I

I
M

 II
1

i
i

I
I

I

........................
i

i
-
i

i
i

i
i m

i
i

i ii h
i

;i
i

i

1 -I i
 i

i-
i

i
i

i rri ii
i

i
i

i

■1-1
■ r-f-r

-t.
'i.r-

i h
i..

i
r

i i
i

i
i

i
i

1.1
i-

i
i

■ -j... .f-f..i.f-f-i..;..
i..r..i.i"

I
I !

I
1

1
i

M

I
i

I
1

< i I
(f

i M
 i i

i ii
 ii

ii i
i i

U
 11

1 M
J-

U
.ii

C
D

 11
11

 U
11

 .j.
i I M

 M
jJ

fe
i

$! i
; i t

i i i
 i i

i i i
i i i

ii
 i i

i i
i m

ii
 i i

i i i
 ii

i

Fi
gu

re
 3

.3
7

Si
m

ul
at

io
n

R
es

ul
t o

f I
nt

er
ne

t C
he

ck
su

m

Fi
gu

re
 3

 38
 E

xe
cu

tio
n

of
 In

st
ru

ct
io

n
-

Fi
gu

re
 3.3

9
Ex

ec
ut

io
n

of
 In

st
ru

ct
io

n
-

3.4 SUMMARY

In this chapter, we have discussed and implemented two packet processing functions of

Network Processor: Packet Encryption and Packet Classification, to understand above packet

processing functions and get the VLSI area requirement. We have implemented and tested 8

round of IDEA algorithm using Quartus tool in VLSI in EP20kl500EBC652-l device. IDEA

requires 43249 logic elements with maximum clock frequency 3.85 Mhz and 246.4 Mbps data

rate. We have implemented packet classification for router using hardware approach and

packet classification for network terminal using hardware software co-design. The

implemented architecture for network terminal using hardware software co-design has higher

performance and is modular, so it can be modified/configured to incorporate any number of

protocols. Currently no optimization is carried out, so performance can still be improved by

applying optimization techniques.

78

